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With the development of renewable energy, the exploitation and utilization of

solar energy resources also need continuous progress, but solar radiation data

shortage has become a serious concern. A method for estimating global solar

radiation has been developed to address this issue. The sunshine-based model

is currently themost widely usedmodel due to its high calculation accuracy and

few input parameters. This paper will first review 13 subcategories (8 categories

in total) of the global solar radiation prediction model based on sunshine.

Subsequently, the astronomical factors were introduced to modify empirical

coefficients, and 8 new categories of models based on sunshine rate were

introduced. The radiation data from 83 meteorological stations in China was

used to train and validate the model, and the performance of the model was

evaluated by using evaluation indicators, such as coefficient of determination

(R2), rootmean square error (RMSE),mean absolute bias error (MABE), mean bias

error (MBE), and global performance index (GPI). The results show that the R2

value of the unmodified empirical model is in a range of 0.82–0.99, and the

RMSE value is in a range of 0.018–3.09. In contrast, with the introduction of the

astronomical factor, the model accuracy improves significantly, and the

modified power function model (N3) gains its best performance. The R2 of

model N3 is in a range of 0.86–0.99, and the RMSE value is in a range of

0.018–2.62. The R2 increases by 0.49%, while the RMSE value 6.44%. Above all, it

does not require the input of other meteorological parameters for predicting

the value of global solar radiation.
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1 Introduction

Solar radiation is the source of energy for the movements of

the earth’s atmosphere and the causes of all physical phenomena

in the atmosphere. Meanwhile, solar radiation is also the main

energy source of the earth’s ecosystem and has a significant

impact on the development of solar equipment (Sen, 2008). With

the continuing depletion of fossil fuels and the aggravation of

environmental pollution, the use of renewable energy is

becoming important. Therefore, the research and utilization of

solar radiation must be expanded (Zhou et al., 2021a). Yet, few

ground radiation observation stations have been built in China

due to the high costs of solar radiation observation equipment

and their maintenance. There are more than

2,000 meteorological data stations in China, but only

122 ground radiation observation stations are found across

the country (Chen and Li, 2013). China has a vast land area

with various terrains, and the distribution of global solar

radiation value varies greatly. Therefore, the observational

data from the current stations are insufficient to predict the

solar radiation values of other regions.

The commonly used solar radiation prediction methods can

be divided into empirical models and data-driven models (Zhou

et al., 2021b). Among them, themachine learning model has been

widely used to predict solar radiation (Bounoua et al., 2021), and

its prediction results are accurate. However, the amount of

calculation is large and the calculation process is complicated,

making it impossible to predict the radiation data of large-scale

stations. The empirical model has become one of the most widely

used ones to predict daily global solar radiation due to its

relatively high computational accuracy and efficient

computational capacity. Hence, it is particularly suitable for

large-scale solar radiation calculation tasks (Ustun et al.,

2020). Empirical models can be divided into four types

according to their input parameters, which include models

based on sunshine, temperature, cloud cover, and other

meteorological parameters (Mohammadi et al., 2016). The

sunshine-based model was the first to be developed among

the four types of models. Later, the model based on average

daily temperature (Ta) (Sheik and Rao, 2021), cloud cover (CC)

(Yakoubi et al., 2021), and other meteorological parameters was

developed to improve accuracy (Naserpour et al., 2021). The

input of multiple meteorological parameters improves the

prediction accuracy of the model, but at the cost of the

model’s complexity (Okundamiya and Emagbetere, 2016).

Oyewola et al. (2022) evaluated three groups of 20 models

based on sunshine duration, temperature and relative

humidity. The results show that the mixed model of

temperature and relative humidity has the best prediction

accuracy. Quansah et al. (2014) evaluated the performance of

various models for estimating global solar radiation in Ghana

and other tropical regions, and found that models using S and Ta

parameters had the smallest values of MBE, MPE, and RMSE.

Benamrou et al. (2018) evaluated 10 prediction models of global

solar radiation for sunshine duration and temperature, as well as

a newly proposed functional model of Fourier series. The results

show that the proposed model is more accurate with smaller

errors and the best coefficient of determination.

Several new combination models based on sunshine rate by

introducing other meteorological parameters have been

developed (Ta, relative humidity (RH), CC, atmospheric vapor

pressure (Vp), etc.) (Chen et al., 2006b). Falayi et al. (2008)

proposed a mixed model of the sunshine rate, RH, Ta, maximum

daily temperature (Tmax) and minimum daily temperature

(Tmin). Chen and Li (2013) established several models

combining sunshine rate, Ta, Vp, RH, and precipitation (Pt).

The result showed that when the sunshine duration (S) is

available, the introduction of daily average Vp, RH, Pt, and

other parameters contributes little to the accuracy of model.

The accuracy of the combined model, after the introduction of

Ta, has barely improved. Okundamiya and Emagbetere (2016)

established a combined model with sunshine rate, Ta, and CC.

The model prediction accuracy was better, and the R2 value

increased. On the one hand, these models require more input

parameters, which significantly increases the difficulty of data

acquisition. However, when compared with the sunshine-based

model, the accuracy of these models is limited and does not have

a significant advantage.

Although different models have advanced significantly, the

sunshine-based model has a clear advantage in terms of accuracy

and the difficulty of obtaining meteorological parameters. One of

the important directions for future large-scale solar radiation

prediction tasks is to improve the accuracy of the sunshine-based

model without increasing the meteorological parameters (that is,

without increasing the difficulty of obtaining meteorological

data). Therefore, some researchers proposed to use

meteorological factors (including latitude (φ), longitude (λ),

and declination angle (δ)) and the number of the day of the

year to improve the accuracy of the model. For example, Chen

et al. (2006a) introduced parameters such as λ, φ, and altitude (h)

to modify experience coefficients. OO Ajayi et al. (2014)

introduced the cosine form of the number of the day of the

year to improve the accuracy of the model, and the results show

that the accuracy of this type of method is better than the

combined model based on only the sunshine rate. Prieto and

Garcia (2022) introduced the ratio of altitude and distance to the

sea as the correction parameter of the empirical coefficient, and

established the equation of the coefficient to evaluate the
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accuracy of the newly-built prediction model. The results show

that most of the corrected models have higher accuracy.

This paper reviews more than 100 articles on empirical models

for predicting global solar radiation from 1957 to 2021 and divides

the models into 13 subcategories (8 categories in total). Based on

this, 8 new categories of models have been introduced to explain

astronomical factors. By using the radiation data between 1980 and

2016 from 83 meteorological stations in China, we analyzed and

studied the global daily solar radiation in different climate zones.

The 21 categories of models were trained and validated, and the

best model was determined by comparing the evaluation

indicators, such as R2, RMSE, MBE, MABE, and GPI, providing

guidance to select the best solar radiation prediction model for a

specific region. The conclusion showed that from the perspective

of GPI indicators, the power function model with astronomical

factors has the highest accuracy, good stability, and best overall

performance in different climate regions of China. Therefore, the

power function model with astronomical factors can forecast

global daily solar radiation.

2 A review of global solar radiation
estimation models

As for the sunshine-based model, its S measurement is

accurate, the data it collects is reliable, and it is easier to

compare its meteorological parameters with those of others.

Moreover, various studies have shown that S has the highest

correlation with the value of solar radiation, so the accuracy of

global solar radiation based on the sunshine-based model is

higher (Nwokolo and Ogbulezie, 2017). Angstrom (1924) was

the first to put forward the linear relationship between the ratio of

solar radiation to global radiation for clear days and the sunshine

rate, and he also established the first monthly average daily global

solar radiation calculation model. Prescott (1940) then modified

Angstrom’s model by replacing clear-sky radiation with average

daily extraterrestrial radiation on a horizontal surface and got a

new computational model, which is known as the Angstrom-

Prescott model. Garg and Garg (1985) developed linear equations

by using the data from eleven stations in India. The equation

predicts global solar radiation to an accuracy of 0.5%. Bahel et al.

(1986) calculated themonthly average daily global radiation from

May 1979 to July 1985 in Dhahran city and established the

following model, with its prediction error being lower than 7.5%.

Ogelman et al. (1984) developed the quadratic model

equation by fitting the radiation data from Adana and

Ankara, Turkey and using the S data from Adana between

1979 and 1981 and Ankara between 1977 and 1981. The

predicted data were then compared with the actual measured

data, showing that it had a mean absolute relative error of 4.1%.

Akinoglu and Ecevit (1990) established a quadratic model that

has better performance in predicting global solar radiation.

Togrul et al. (2000a) used the data of the Elazig weather

station in Turkey to establish the relationship between

sunshine rate and the coefficients a and b, and obtained the

best results for the linear and logarithmic equations. Almorox

and Hontoria (2004) established linear, quadratic, cubic,

logarithmic and exponential equations using data from

16 weather stations in Spain, and found that the cubic model

had better performance. Katiyar and Pandey (2010) used 5 years

data of India to obtain relevant models for four cities. The results

show that compared with the linear model, the accuracy of the

quadratic and cubic models has not been significantly improved,

and the calculation difficulty has increased. Duzen and Aydin

(2012) obtained data from seven weather stations in Turkey and

evaluated linear, quadratic, cubic, logarithmic, and exponential

models. The conclusion is: The cubic and quadratic regression

models are the most suitable regression equations.

Assi and Jama (2010) established the linear, quadratic, cubic,

single term exponential, logarithmic, linear logarithmic, and

power models for Abu Dhabi and Al Ain. The results show

that linear and cubic models perform best in the region. Sekhar

et al. (2013) obtained linear and quadratic models by using

weather data from different cities in Andhra Pradesh, India,

and the results showed that the quadratic model is better than the

linear model. Suthar et al. (2014) established linear and quadratic

models to estimate the global daily solar radiation in India, and

the results showed that the quadratic model was more effective.

M. Ozturk (2015) established linear, quadratic, cubic, and power

function models for Isparta, Turkey, and the cubic model

predicted the best results. Liu et al. (2016) established linear,

quadratic, and cubic equations for Zhengzhou, China by using

the data between January 1995 and December 2004, and the

cubic model predicted better results than other models. Ishola

et al. (2019) modified the various model coefficients for Ireland,

and the results show that the quadratic model works best.

Ampratwum and Dorvlo (1999) established linear, quadratic,

logarithmic, and linear-logarithmic model equations. The

estimated results of the quadratic model and the linear

logarithmic model were better than that of the logarithmic

model, but the logarithmic model was simpler and its error

was not significantly higher than that of the quadratic model.

Exponential and linear exponential models were newly proposed

by Bakirci (2009), and they were compared with other empirical

equations. The linear-log and linear-exponential models

generally give the best results, while the log and exponential

models perform worse than the other models. Pant et al. (2019)

built quadratic, cubic, logarithmic, linear-logarithmic models to

estimate global solar radiation, and the cubic model was the best

of all. Akpootu et al. (2019) evaluated the model and found that

exponential and linear exponential models were more suitable for

estimating global solar radiation. Nadjem et al. (2020) study

found that the best model for estimating global solar radiation in

southwestern Algeria was a linear exponential model.

Elagib and Mansell (2000) used the data gathered from

16 stations in four different climatic zones in Sudan to establish
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TABLE 1 The existing sunshine-based models.

Model Functional form Main studies which
developed or discussed
the models

S1 H � H0[a + b( S
S0
)] Angstrom (1924), Prescott (1940), Rietveld (1978), Hay (1979), Lewis (1981), Andretta et al. (1982), Khogali et al. (1983),

Benson et al. (1984), Garg and Garg (1985), Bahel et al. (1986), Jain (1986), Jain and Jain (1988), Newland (1989), Luhanga
and Andringa (1990), Jain (1990), Raja and Twidell (1990a), Alsaad (1990), Louche et al. (1991), Gopinathan and Soler
(1992), Lewis (1992), Veeran and Kumar (1993), Rehman and Halawani (1997), Elagib et al. (1999), Togrul et al. (2000b),
Akpabio and Etuk (2003), Rensheng et al. (2006), Ulgen and Hepbasil (2004), Almorox and Hontoria (2004), Jin et al.
(2005), El-Metwally (2005), El-Sebaii and Trabea (2005), Aras et al. (2006), Rensheng et al. (2006), Bakirci (2009), Katiyar
and Pandey (2010), Assi and Jama (2010), Duzen and Aydin (2012), Srivastava and Harsha (2013), Suthar et al. (2014), Ouali
and Alkama (2014), Yao et al. (2014), Onyango and Ongoma (2015), Gbadebo and Adeleke, 2015, Adeala et al. (2016),
Ozturk (2015), Poudyal (2016), Akinnawo et al. (2016), Okundamiya and Emagbetere (2016), Sarkar and Sifat (2016),
Mohammadi et al. (2016), Coulibaly and Ouedraogo. (2016), Liu et al. (2016), Gong et al. (2016), Yang et al. (2016),
Olomiyesan and Oyedum (2016), Namrata et al. (2016), Ayodele and Ogynjuyigbe (2017), Soulouknga et al. (2017a), Achour
et al. (2017), Soulouknga et al. (2017b), Bakirci (2017), Kalogirou et al. (2017), Cao et al. (2017), Yaniktepe et al. (2017), Aoun
and Bouchouicha (2017), Benamrou et al. (2018), Yıldırım et al. (2018), Kaplan (2018), Siva Krishna Rao et al. (2018), Gouda
et al. (2018), Chala (2018), Uckan and Khudhur (2018), Kada et al. (2018), Pereira and Schiebelbein (2018), Zhang et al.
(2018), Mbiaké et al. (2018), Akpootu et al. (2019), Ishola et al. (2019), Khan and Ahmad (2019), Makade et al. (2019), Manju
and Sandeep (2019), Monteiro et al. (2019), Samanta et al. (2019), Shahrukh Anis et al. (2019), Tsung et al. (2019),
Woldegiyorgis (2019), Argungu et al. (2020), Kaplan and Kaplan. (2020), Nadjem et al. (2020), Saud et al. (2020)

S2 H � H0[a + b( S
S0
) + c( S

S0
)2] Ogelman et al. (1984), Rietveld (1978), Akinoǧlu and Ecevit (1990), Layi Fagbenle (1993), Aksoy (1997), Elagib et al. (1999),

Togrul et al. (2000b), Toğrul and Toğrul, 2002, Almorox and Hontoria (2004), Jin et al. (2005), Aras, Balli, and Hepbasli
(2006), Bakirci (2009), Katiyar and Pandey (2010), Duzen and Aydin (2012), Assi and Jama (2010), Sekhar et al. (2013),
Suthar et al. (2014), Onyango and Ongoma (2015), Ozturk (2015), Akinnawo et al. (2016), Sarkar and Sifat (2016), Liu et al.
(2016), Gong et al. (2016), Yang et al. (2016), Ayodele and Ogynjuyigbe (2017), Achour et al. (2017), Bakirci (2017), Cao
et al. (2017), Aoun and Bouchouicha (2017), Kaplan (2018), Benamrou et al. (2018), Siva Krishna Rao et al. (2018), Olatona
(2018), Uckan and Khudhur (2018), Kada et al. (2018), Zhang et al. (2018), Akpootu et al. (2019), Ishola et al. (2019), Khan
and Ahmad (2019), Manju and Sandeep (2019), Pant et al. (2019), Samanta et al. (2019), Shahrukh Anis et al. (2019), Kaplan
and Kaplan. (2020), Nadjem et al. (2020), Saud et al. (2020), Xiao et al. (2020)

S3 H � H0[a + b( S
S0
) + c( S

S0
)2 + d( S

S0
)3] Bahel et al. (1987), Samuel (1991), Lewis (1992), Togrul et al. (2000b), Toğrul and Toğrul, 2002, Rensheng et al. (2006),

Ulgen and Hepbasli (2004), Almorox and Hontoria (2004), Jin et al. (2005), Aras et al. (2006), Rensheng et al. (2006), Katiyar
and Pandey (2010), Duzen and Aydin (2012), Assi and Jama (2010), Ouali and Alkama (2014), Onyango and Ongoma
(2015), Ozturk (2015), Akinnawo et al. (2016), Sarkar and Sifat (2016), Liu et al. (2016), Gong et al. (2016), Yang et al. (2016),
Ayodele and Ogynjuyigbe (2017), Kaplan (2018), Achour et al. (2017), Bakirci (2017), Cao et al. (2017), Benamrou et al.
(2018), Gouda et al. (2018), Uckan and Khudhur (2018), Kada et al. (2018), Zhang et al. (2018), Siva Krishna Rao et al.
(2018), Akpootu et al. (2019), Khan and Ahmad (2019), Manju and Sandeep (2019), Pant et al. (2019), Pant et al. (2019),
Samanta et al. (2019), Feng et al. (2020), Kaplan and Kaplan. (2020), Nadjem et al. (2020), Saud et al. (2020)

S4 H � H0[a + blog( S
S0
+ 1)] Ampratwum and Dorvlo (1999), Almorox and Hontoria (2004), Togrul et al. (2000a), Bakirci (2009), Duzen and Aydin

(2012), Assi and Jama (2010), Yao et al. (2014), Onyango and Ongoma (2015), Sarkar and Sifat (2016), Ayodele and
Ogynjuyigbe (2017), Kaplan and Kaplan (2020), Achour et al. (2017), Cao et al. (2017), Aoun Bouchouicha (2017),
Benamrou et al. (2018), Uckan and Khudhur (2018), Kada et al. (2018), Akpootu et al. (2019), Khan and Ahmad (2019),
Manju and Sandeep (2019), Pant et al. (2019), Saud et al. (2020)

S5 H � H0[a + b( S
S0
) + clog(S/S0 + 1)] Newland (1989), Bakirci (2009), Assi and Jama (2010), Ouali and Alkama (2014), Cao et al. (2017), Akpootu et al. (2019),

Pant et al. (2019), Nadjem et al. (2020), Saud et al. (2020)

S6 H � H0[a + bexp( S
S0
)] Almorox and Hontoria (2004), Elagib et al. (1999), Toğrul and Toğrul, 2002, Bakirci (2009), Duzen and Aydin (2012), Assi

and Jama (2010), Yao et al. (2014), Onyango and Ongoma (2015), Ayodele and Ogynjuyigbe (2017), Achour et al. (2017),
Cao et al. (2017), Aoun and Bouchouicha (2017), Siva Krishna Rao et al. (2018), Akpootu et al. (2019), Ishola et al. (2019),
Khan and Ahmad (2019), Manju and Sandeep (2019), Monteiro et al. (2019), Shahrukh Anis et al. (2019), Argungu et al.
(2020), Nadjem et al. (2020), Saud et al. (2020)

S7 H � H0[a( S
S0
)b] Bakirci (2009), Elagib et al. (1999), Togrul et al. (2000a), Assi and Jama (2010), Yao et al. (2014), Sarkar and Sifat (2016),

Achour et al. (2017), Aoun and Bouchouicha (2017), Benamrou et al. (2018), Siva Krishna Rao et al. (2018), Uckan and
Khudhur (2018), Akpootu et al. (2019), Khan and Ahmad (2019), Manju and Sandeep (2019), Shahrukh Anis et al. (2019),
Argungu et al. (2020)

S8 H � H0[a + b( S
S0
)c] El-Sebaii et al. (2009), Ozturk (2015), Cao et al. (2017), Uckan and Khudhur (2018), Saud et al. (2020)

S9 H � H0[a + b( S
S0
) + cφ] Achour et al. (2017), Glover and McCulloch (1958), Raja and Twidell (1990b), Achour et al. (2017), Uckan and Khudhur

(2018), Awasthi and Poudyal (2018), Zhang et al. (2018), Pereira and Schiebelbein (2018)

S10 H � H0[a + b( S
S0
) + cZ] Lewis (1992)

S11 H � H0[a + b( S
S0
) + c sin δ] Toğrul et al. (2000b)

S12 H � H0[a + b( S
S0
) + cφ + dZ] Elagib and Mansell (2000), Jin et al. (2005), Rensheng et al. (2006), Zhang et al. (2018)

S13 H � H0[a + b( S
S0
) + c cosφ + dZ] Gopinathan (1988), Jin et al. (2005), Rensheng et al. (2006), Zhang et al. (2018), Makade et al. (2019)
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several new models. The results show that adding geographic

parameters to the classical predictors improves global solar

radiation estimation. Siva Krishna Rao et al. (2018) used the

solar radiation data measured in India from August 2015 to July

2016 to build various models. The results show that the model with

the input latitude parameter produces more accurate results.

Rensheng et al. (2006) corrected the linear and cubic models by

using factors such as longitude, latitude, and altitude. The results

show that the latitude can effectively improve the accuracy of the

model, and the cos φ results are better. Awasthi and Poudyal (2018)

corrected the coefficients of the daily global solar radiation model at

Simara Airport in India. The results proved that themodel wasmore

accurate after the latitude is introduced.

Researchers have done a lot of research on empirical models and
proposed models based on different parameters such as S, Ta, and
CC. However, due to the advantages of the simple acquisition of
sunshine data, less computation, and high model accuracy, the
empirical model based on sunshine duration is still the most
widely used empirical model. And a large number of studies
have shown that the introduction of other meteorological
parameters on the basis of the sunshine model can improve the
accuracy of the model, but the performance is not obvious. Because
of the multi-parameter input, it is difficult to obtain meteorological
data, and the complexity of the model also increases. How to use the
least meteorological parameters and improve the accuracy of the
model is one of the focuses of the research. On the basis of the
sunshine-based model, the introduction of known parameters such
as astronomy and geography to improve the accuracy of themodel is
lacking in current research.

According to the above model introduction, the current

empirical models based on sunshine rate can be divided into

the following 13 categories. They have been reviewed, and the

review results are summarized in Table 1. The detailed

introduction of the model is shown in the Supplementary

Material.

3 Data acquisition and quality control

The research data in this paper is from the daily radiation data

dataset of theNationalMeteorological Data Sharing Center of China

and the daily dataset of China’s surface climate data of the National

Scientific Meteorological Data Center. The covering period is

between 1981 and 2016 while the period records varied from

6 to 35 years. Data includes Daily global radiation on a

horizontal surface (H), Daily sunshine duration (S), Ta, Tmax,

Tmin, daily maximum pressure, daily minimum pressure, daily

average pressure, etc. The theory is used to calculate Maximum

possible daily sunshine duration (S0) and extraterrestrial radiation

on a horizontal surface (H0) values. The data set is divided into two

parts. Two-thirds of them are used formodel training, and the rest of

them are used for model testing.

Radiation data may have abnormal values due to random errors

and instrument errors, whichmay easily lead to large errors in global

radiation calculation. Therefore, the quality of radiation data must

be ensured. The data quality control process is as follows: 1)Missing

data. If a piece of data is missing, delete it along with all data of that

day; 2) If the H is greater than H0 or less than 0.03 time of H0, then

remove all data for that day.

China has a vast land expanse from east to west, so it has

different climates in different areas. Based on the data of

660 meteorological stations, Liu et al. (2017) proposed a two-

step solar radiation zoning method based on support vector

machines and k-means clustering, dividing the whole country

into five climate zones: zone I: strong radiation and semi-arid

zone; zone II: long-sun and arid zone; zone III: semi-humid zone;

zone IV: humid zone; zone V: high-humidity and low-sun zone.

This paper analyzes the data of 83 meteorological stations in

China. Then, according to the climatic zone of each station, the

evaluation indicators of each model in different climatic zones

are statistically analyzed (Figure 1).

4 Model development and evaluation
method

Liu et al. (2015) analyzed the changing rules of the empirical

coefficient of the A-P model and found that the coefficient value

changes dynamically. This paper firstly takes Mohe data as an

example, calculates the empirical coefficients a, b of the A-P

model of the site in 1 year, and plots the results in Figures 2, 3.

It can be seen from the figure that the empirical coefficients a and b

of this site change in a trigonometric function, with the

characteristics of fluctuation, which is similar to the change law

of astronomical factors. This paper proposes a hypothesis to modify

the empirical coefficient of themodel tomake itmore in line with the

actual change law, no matter whether it affects the improvement of

the model accuracy or not. Therefore, this paper introduces the

declination angle to dynamically correct the empirical coefficient of

the A-P model, that is, the coefficient a in the original empirical

model is corrected to a0+a1sinδ, and the coefficient b is corrected to

b0+b1sinδ. Similarly, this process is extended to other models, and

8 new models as shown in Table 2 are proposed.

In this paper, the least square method (Zhou et al., 2019) was

used to calculate the model coefficients. The mathematical

principles of the least square method are as follows: given a

set of data (xi, yi), (i � 1, 2, . . . , n), the empirical function is

F(x) � a0 + a1xi + . . . + akxk
i , the experience coefficient is

constant ak. The squared formula to get the standard error is:

E2 � ∑n

i�1(yi − F(xi))2 (1)

Minimize the value of Eq. 1, solve the coefficient ak, and get

the following equation:
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1 x1 / xk

1

1 x2 . . . xk
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..

. ..
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n
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y1

y2

..

.

yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

The equation of the coefficient matrix A is as follows:

A � X−1Y (3)

This paper compares the new model with the original one and
computes the results by using the least square fitting method. All
models are evaluated by using various indicators, and the most
suitable model equations for various climate regions in China are
obtained. This paper uses the R2, RMSE, MABE, MBE, and GPI
methods for data evaluation. The calculationmethods are as follows:

(1) determination coefficient

R2 � [∑n
i�1(Yi,c − �Yi,c)(Yi,m − �Yi,m)]2∑n

i�1(Yi,c − �Yi,c)2∑n
i�1(Yi,m − �Yi,m)2 (4)

(2) root mean square error

RMSE �
���������������∑n

i�1(Yi,m − Yi,c)2
n

√
(5)

(3) mean absolute bias error

MABE � 1
n
∑n

i�1(∣∣∣∣Yi,m − Yi,c

∣∣∣∣) (6)

(4) mean bias error

MBE � 1
n
∑n

i�1(Yi,m − Yi,c) (7)

FIGURE 1
Station distribution and radiation zones.
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FIGURE 2
Annual change distribution of empirical coefficient a.

FIGURE 3
Annual change distribution of empirical coefficient b.

Frontiers in Energy Research frontiersin.org07

Lan et al. 10.3389/fenrg.2022.1010745

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1010745


(5) global performance index

GPIi � ∑4

j�1αj(yj − yij) (8)

Where yij is the standardized value of the j-th index of the i-th

model, yj is the median of yij, yi,m is the measured value, yi,c the

is calculated value, and n is the number of observations. For

j � 1(R2), αj is equal to -1, whereas for other indicators, αj is

equal to 1.

R2 is the ratio of the regression sum of squares to the total

sum of squares. The model’s performance improves as R2 gets

closer to 1. The degree of dispersion between the calculated and

measured values is represented by the RMSE, which is always

greater than 0, and the smaller the value, the better the result.

MABE is a statistic that describes the degree of data dispersion,

which can be used to better reflect the actual situation of the

predicted error. The smaller the value, the better the result.

Models with higher accuracy have higher GPI values.

5 Results and discussion

In this paper, the least squares method is used to fit the solar

radiation data of 83 stations under 21 equations, and various

evaluation indicators are obtained. The boxplots of each

indicator under 21 equations are drawn, and the different

results of each indicator in 5 radiation zones, as well as the

graphs of the global performance indicators, are also drawn.

As can be seen from the Figure 4, the values of R2, RMSE,

MABE, and MBE for these models range from 0.82 to 0.99,

0.018–3.09 MJm−2d−1, 0.014–1.74MJm−2d−1, −0.71–1.31MJm−2d−1,

the average values are 0.97, 1.34MJm−2d−1,

0.67MJm−2d−1, −0.028 MJm−2d−1. Among them, the model

S7 and N4 have poorer performances, and the values of the

evaluation indicators of the model S7 are all the last digits in

each model. The S7 model is in the form of a power function, so

it can be seen that the empirical equation in the form of a power

TABLE 2 The modified empirical model proposed in this paper.

Model ID Model equation

N1 H � H0[a0 + a1 sin δ + (b0 + b1 sin δ)S/S0]
N2 H � H0[a0 + a1 sin δ + (b0 + b1 sin δ) ln (S/S0 + 1)]
N3 H � H0[a0 + a1 sin δ + (b0 + b1 sin δ)(S/S0)c]
N4 H � H0[a0 + a1 sin δ + (b0 + b1 sin δ)(S/S0)1.5]
N5 H � H0[a + b(S/S0)c+dsinδ]
N6 H � H0[a0 + a1 sin δ + (b0 + b1 sin δ)(S/S0)2]
N7 H � H0[a + b(S/S0) + c(S/S0)2 + d sin δ]

N8 H � H0[a + b(S/S0) + c(S/S0)2 + d(S/S0)3 + e sin δ]

FIGURE 4
Boxplots of evaluation indicators for eachmodel. (A)Boxplots for eachmodel R2; (B)Boxplots for eachmodel RMSE; (C)Boxplots for eachmodel
MABE; (D)Boxplots for each model MBE.
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function is used to estimate the total solar radiation with poor

results. The N4 model is a 1.5th power function model after the

correction of the empirical coefficient, and the result is not good.

Except for the N4 model, the prediction accuracy of the rest of the

new models, after the correction of the empirical coefficients, has

improved. Therefore, for the traditional empirical models, the use of

the declination angle δ to correct the empirical coefficients can

effectively improve the model accuracy.

Among all the models, the N3 model in the new model has

the best performance. The R2, RMSE, MABE, MBE values of this

model range from 0.86 to −0.99, 0.018–2.62 MJm−2d−1,

0.014–1.33 MJm−2d−1, −0.67–0.39 MJm−2d−1. The N3 model is

a power function model after correcting the empirical

coefficients. Compared with the S8 model, it can be seen that

the accuracy of the exponential model including the constant

term, after the correction of the declination angle δ, has

improved. Compared with the N4 model, it can be seen that

limiting the exponential value of the exponential model will

reduce the prediction accuracy of the model. Different from the

value improvements of the uncorrected individual models, the R2

value improvement ranges from 0.076% to 2.89%, and the RMSE

value reduction is between 1.36% and 29.8%.

When model S7 is used to predict the H, if it is under cloudy

conditions, S equals zero, and the predictedH by themodel is also

zero. However, in fact, the H must be greater than zero.

Therefore, the prediction accuracy of S7 is limited. It can be

only used to predict theH on clear days, and it is not applicable in

FIGURE 5
The average evaluation index of the models in each climate zone. (A) R2 values of different models in each climate zone; (B) RMSE values of
different models in each climate zone; (C)MABE values of different models in each climate zone; (D)MBE values of different models in each climate
zone.

FIGURE 6
The distribution of H in Naqu over 37 years.
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cloudy conditions. As for the yearly H, it produces poor results.

In terms of model N4, due to the influence of aerosol

concentration and other factors, the variation law between the

H and the S of each station is not a definite value. Therefore, the

deterministic coefficients of the model reduce the prediction

accuracy of the model. As for N3, the constant term of the model

is not zero, and it also has the fluctuating characteristics of

coefficient changes, which is suitable for prediction under various

climatic conditions. The coefficients in N3 can be changed with

the change of the station data, which improves the flexibility of

the model and makes its prediction result the best among all the

models.

It can be seen from Figure 5 that for all models in different

partitions, the indicators R2, RMSE, and MABE have the best

performance in zone II, and their ranges are 0.95–0.99,

0.72–2.06 MJm−2d−1, and 0.27–1.01 MJm−2d−1 respectively.

Zone V has the worst performance, with the ranges of

0.85–0.98, 0.018–3.09 MJm−2d−1, and 0.014–1.74 MJm−2d−1,

respectively. For the indicator MBE, the performance of zone

I is the best, and its range is −0.41–0.44 MJm−2d−1, and the

performance of zone III is the worst, and its range

is −0.53–0.71 MJm−2d−1. The newly-built model N3 has the

best evaluation performance in each region, while the R2

evaluation model ranks second in Zone I and first in the

remaining regions. The average values of R2 are 0.97, 0.98, 0.97,

0.97, and 0.95 in the I-V zones, respectively. The average values of

RMSE of I–V zones are 1.44MJm−2d−1, 1.18MJm−2d−1,

1.23MJm−2d−1, 1.27MJm−2d−1, and 1.34MJm−2d−1 respectively.

The average MABE values of I-V zones are 0.71MJm−2d−1,

0.56MJm−2d−1, 0.63MJm−2d−1, 0.65MJm−2d−1, and 0.69MJm−2d−1,

and the mean values of MBE are −0.027MJm−2d−1, −0.063MJm−2

d−1, −0.087MJm−2d−1, −0.045MJm−2d−1, and 0.016MJm−2d−1

respectively. Model S7 has the worst adaptation performance of

each evaluation index in the five climatic zones. The average R2 and

RMSE values in each zone are 0.96, 0.97, 0.94, 0.93, and 0.90, and

1.86MJm−2d−1, 1.52MJm−2d−1, 1.77MJm−2d−1, 1.96MJm−2d−1, and

2.13MJm−2d−1, respectively. The average MABE values of I-V zones

are 0.88MJm−2d−1, 0.70MJm−2d−1, 0.86MJm−2d−1, 0.94MJm−2d−1,

and 1.07MJm−2d−1, and the mean values of MBE are 0.13MJm−2d−1,

0.11MJm−2d−1, 0.26MJm−2d−1, 0.46MJm−2d−1, and 0.71MJm−2d−1,

respectively.

FIGURE 7
The distribution of H in Altay over 37 years.

FIGURE 8
Global performance indicators of each model.
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Comprehensive analysis. The performance of all models in

zone II is generally higher than those in other regions, and

their performance in zone V is the worst. Figure 6 shows the

distribution of H in Naqu over 37 years. Naqu belongs to zone

I (high radiation zone). The reason that the radiation in zone I

is high is due to the high atmospheric transparency. As a

result, the H on clear and cloudy days varies greatly, as shown

in Figure 6, and the distribution of H is much more discrete.

Therefore, the prediction accuracy of models decreases. In

comparison, zone II belongs to the long sunshine duration

zone. The reason why the radiation in zone II is high is because

of the long sunshine duration. Take Altay as an example.

Figure 7 shows H distribution. It is can be easily found that the

distribution of H is much more concentrated. Therefore, the

prediction accuracy of the model in zone II is the best. The

difference in solar radiation between clear and cloudy

conditions is large. We can see from the figure that the

distribution of global solar radiation values is more

discrete, resulting in the accuracy of each prediction model

being lower than that of the stations in zone II. Area II has a

long-day and arid area with enough solar radiation and long

sunshine duration, and the environment is less affected by

other meteorological conditions. As can be seen from Figure 7,

the global solar radiation value at the Altay site is more

concentrated, so the performance of each model in this

zone is the best. Zone V has high humidity and a low solar

radiation area. Precipitation, cloud cover, and other factors

influence the relationship between global solar radiation and

sunshine rate, so each model’s performance in zone V is the

worst.

This paper uses four evaluation indicators, but the

comprehensive performance of the model cannot be judged

by a single evaluation indicator. Therefore, the GPI value is

used to rank the model. It can be seen from Figure 8 that

model N3 has the best performance with a GPI value of 1.75;

model S7 has the worst performance with a GPI value

of −49.98. The comprehensive evaluation results are

consistent with the above model analysis and regional

evaluation results.

6 Conclusion

This article reviews more than 100 papers on prediction

models of global solar radiation based on sunshine rate. By

introducing the astronomical factors to modify the empirical

coefficients, eight new categories of daily global solar radiation

models have been proposed. The radiation data from

83 meteorological stations in China is used to train and

validate models of 21 categories. The main conclusions of this

study are as follows:

(1) Although different combined models have been

developed, the model performances have not improved

that much. Furthermore, the difficulties of the acquisition

of required meteorological data have increased sharply.

Therefore, the sunshine-based models should be the best

model for global solar radiation prediction, which yields

higher accuracy and less meteorological data.

(2) The power function model with declination angle

outperforms all other models. The R2 value is the highest

in long-sunshine and arid areas (~0.98), and the smallest in

high-humidity areas (~0.95). The average value of RMSE is

in a range of 1.15–1.44 MJm−2d−1. The maximum and

minimum average values of MABE are 0.71 MJm−2d−1 and

0.54 MJm−2d−1 respectively. The minimum and maximum

MBE values are -0.091 MJm−2d−1 and—0.027 MJm−2d−1

respectively.

(3) A method is proposed to modify the empirical models by

using astronomical factors. The modified models improve R2

by 0.076%–2.89%, and the RMSE value decreases by 1.36%–

29.8%, allowing it to predict the more accurate value of daily

global solar radiation.

To improve the accuracy of sunshine-based models, this

paper introduces the astronomical factor to modify the

empirical coefficient, but the changes of empirical

coefficients in other kinds of models have not been

discussed yet. In the future research, more models will be

discussed, such as temperature-based models. Concurrently,

this paper only focuses on the influence of the sun’s

declination angle. In fact, more astronomical,

meteorological, and geographical parameters should be

covered, such as the day of the year.
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