Asian Journal of Research and Reviews in Physics

2(3): 1-6, 2019; Article no.AJR2P.48545

Open String under the Modified Born-Infeld Field

Aeran Kim1*

¹A Private Mathematics Academy, 1-#406, 23, Maebong 5-gil, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54921, Republic of Korea.

Author's contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/AJR2P/2019/v2i330101

Editor(s):

(1) Dr. Jelena Purenovic, Assistant Professor, Department of Physics and Materials, Faculty of Technical Sciences, Kragujevac University, Cacak, Serbia.

Reviewers:

(1) Viktor T. Toth, Canada.

(2) Dr. A. Ayeshamariam, KhadirMohideen College, India.

(3) Tetiana V. Obikhod, Institute for Nuclear Research, Ukraine.

Complete Peer review History: http://www.sdiarticle3.com/review-history/48545

Received: 20 February 2019

Accepted: 29 April 2019

Published: 10 May 2019

Original Research Article

ABSTRACT

In this article we consider the two end-points of the string to be attached to D-brane with the different Born-Infeld field strength ${\cal F}$ and calculate the total momenta for the special case.

Keywords: Bloch vector.

1 INTRODUCTION

We consider a string ending on a $\mathrm{D}p$ -brane, the bosonic part of the action is

$$S_B = \frac{1}{4\pi\alpha'} \int_{\Sigma} d^2\sigma \left[g^{\alpha\beta} G_{\mu\nu} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} + \epsilon^{\alpha\beta} B_{\mu\nu} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} \right] + \frac{1}{2\pi\alpha'} \oint_{\partial \Sigma} d\tau A_i(X) \partial_{\tau} X^i,$$

where A_i $(i=0,1,\cdots,p)$, is the U(1) gauge field living on the Dp-brane [1]; [2]; [3]. The string background is

$$G_{\mu\nu} = \eta_{\mu\nu}, \quad \Phi = \text{constant}, \quad H = dB = 0.$$

Here we use the boundary condition of the action S_B so that we can get more specific equations of motion for a free field and the canonical momentum.

^{*}Corresponding author: E-mail: ae_ran_kim@hotmail.com;

2 EQUATIONS OF MOTION AND THE CANONICAL MOMENTUM

Variation of the action yields the equations of motion for a free field

$$\left(\partial_{\tau}^{2} - \partial_{\sigma}^{2}\right) X^{\mu} = 0 \tag{2.1}$$

and the following boundary conditions at $\sigma=0$:

$$\partial_{\sigma}X^{i} + \partial_{\tau}X^{j}\mathcal{F}_{j}^{i} = 0, \quad i, j = 0, 1, \dots, p,$$

 $X^{a} = x_{0}^{a}, \qquad a = p + 1, \dots, 9,$ (2.2)

and at $\sigma = \pi$:

$$\partial_{\sigma}X^{i} + \partial_{\tau}X^{j}\mathcal{F'}_{j}^{i} = 0, \qquad i, j = 0, 1, \cdots, p.$$

$$(2.3) \qquad = \partial_{\sigma}\left(x_{0}^{k} + (a_{0}^{k}\tau + b_{0}^{k}\sigma) + c_{0}^{k}\sigma\tau\right)$$

Here

$$\mathcal{F} = B - F$$
 and $\mathcal{F}' = B' - F'$

are the modified Born-Infeld field strength and x_0^a , x_0^b are the location of the D-branes. Indices are raised and lowered by $\eta_{ij}=(-,+,\cdots,+)$.

The general solution of X^k to the equations of motion in (2.1) is [1]

$$X^{k} = x_{0}^{k} + \left(a_{0}^{k}\tau + b_{0}^{k}\sigma\right) + c_{0}^{k}\sigma\tau$$

$$+ d_{0}^{k}\left(\tau^{2} + \sigma^{2}\right)$$

$$+ \sum_{n \neq 0} \frac{e^{-in\tau}}{n} \left(ia_{n}^{k}\cos n\sigma + b_{n}^{k}\sin n\sigma\right)$$
(2.4)

and

$$X^a = x_0^a + b^a \sigma + \sum_{n \neq 0} \frac{e^{-in\tau}}{n} a_n^a \sin n\sigma,$$
 for $a = p + 1, \dots, 9,$

where $x_0^a + \pi b^a$ is the location of the D-brane to which the other end-point of the open string is attached

Lemma 2.1. The coefficients c_0^k and d_0^k in Eq. (2.4) are

$$c_0^k = \sum_{n \in \mathbb{Z}} (-1)^n \left(in(b_n^l + a_n^j \mathcal{F}'_j^l) + \frac{1}{\pi} (b_n^j + a_n^k \mathcal{F}'_j^j) \mathcal{F}'_j^l \right) (M'^{-1})_l^k,$$

(b)

$$\begin{split} d_0^k &= \frac{1}{2} \sum_{n \in \mathbb{Z}} (-1)^{n-1} \Bigg(\frac{1}{\pi} (b_n^l + a_n^j \mathcal{F'}_j^l) \\ &+ in (b_n^j + a_n^k \mathcal{F'}_k^j) \mathcal{F'}_j^l \Bigg) (M'^{-1})_l^k, \end{split}$$

where
$$M'_{ij} = \eta_{ij} - \mathcal{F'}_i^k \mathcal{F'}_{kj}$$
.

Proof. By (2.3) and (2.4) we have

$$\begin{split} 0 &= \partial_{\sigma}X^{k} + \partial_{\tau}X^{j}\mathcal{F}'_{j}^{k} \\ &= \partial_{\sigma}\left(x_{0}^{k} + (a_{0}^{k}\tau + b_{0}^{k}\sigma) + c_{0}^{k}\sigma\tau \\ &+ d_{0}^{k}(\tau^{2} + \sigma^{2}) \\ &+ \sum_{n \neq 0} \frac{e^{-in\tau}}{n}(ia_{n}^{k}\cos n\sigma + b_{n}^{k}\sin n\sigma)\right) \\ &+ \partial_{\tau}\left(x_{0}^{j} + (a_{0}^{j}\tau + b_{0}^{j}\sigma) + c_{0}^{j}\sigma\tau \\ &+ d_{0}^{j}\left(\tau^{2} + \sigma^{2}\right) \\ &+ \sum_{n \neq 0} \frac{e^{-in\tau}}{n}(ia_{n}^{j}\cos n\sigma + b_{n}^{j}\sin n\sigma)\right)\mathcal{F}'_{j}^{k} \\ &= b_{0}^{k} + c_{0}^{k}\tau + 2d_{0}^{k}\sigma \\ &+ \sum_{n \neq 0} \frac{e^{-in\tau}}{n}\left(-ina_{n}^{k}\sin n\sigma + nb_{n}^{k}\cos n\sigma\right) \\ &+ \left(a_{0}^{j} + c_{0}^{j}\sigma + 2d_{0}^{j}\tau + \sum_{n \neq 0} \frac{-ine^{-in\tau}}{n}\right) \\ &\times \left(ia_{n}^{j}\cos n\sigma + b_{n}^{j}\sin n\sigma\right)\mathcal{F}'_{j}^{k} \\ &= b_{0}^{k} + a_{0}^{j}\mathcal{F}'_{j}^{k} + (c_{0}^{k} + 2d_{0}^{j}\mathcal{F}'_{j}^{k})\tau \\ &+ \left(2d_{0}^{k} + c_{0}^{j}\mathcal{F}'_{j}^{k}\right)\sigma \\ &- \sum_{n \neq 0} e^{-in\tau}\left(i\sin n\sigma(a_{n}^{k} + b_{n}^{j}\mathcal{F}'_{j}^{k})\sigma \\ &- \sum_{n \in \mathbb{Z}} e^{-in\tau}\left(i\sin n\sigma(a_{n}^{k} + b_{n}^{j}\mathcal{F}'_{j}^{k})\sigma \\ &- \sum_{n \in \mathbb{Z}} \left(i\sin n\sigma(a_{n}^{k} + b_{n}^{j}\mathcal{F}'_{j}^{k})\sigma \\ &- \cos n\sigma(b_{n}^{k} + a_{n}^{j}\mathcal{F}'_{j}^{k})\right) \end{split}$$

then, now since $\sigma=\pi$ and using the Taylor and series, this identity can be written as

$$\begin{split} &(c_0^k + 2d_0^j \mathcal{F}'^k_j)\tau + (2d_0^k + c_0^j \mathcal{F}'^k_j)\pi \\ &+ \sum_{n \in \mathbb{Z}} e^{-in\tau} (-1)^n (b_n^k + a_n^j \mathcal{F}'^k_j) \\ &= (c_0^k + 2d_0^j \mathcal{F}'^k_j)\tau + (2d_0^k + c_0^j \mathcal{F}'^k_j)\pi \\ &+ \sum_{n \in \mathbb{Z}} \left(\sum_{m=0}^{\infty} \frac{(-in\tau)^m}{m!}\right) (-1)^n (b_n^k + a_n^j \mathcal{F}'^k_j) \\ &= \left((2d_0^k + c_0^j \mathcal{F}'^k_j)\pi + \sum_{n \in \mathbb{Z}} (-1)^n (b_n^k + a_n^j \mathcal{F}'^k_j)\right) \\ &+ \left(c_0^k + 2d_0^j \mathcal{F}'^k_j - i\sum_{n \in \mathbb{Z}} (-1)^n n(b_n^k + a_n^j \mathcal{F}'^k_j)\right)\tau \\ &+ \sum_{n \in \mathbb{Z}} \left(\sum_{m=2}^{\infty} \frac{(-in)^m}{m!}\right) (-1)^n (b_n^k + a_n^j \mathcal{F}'^k_j)\tau^m \\ &= 0. \end{split}$$

Thus the above identical equation about $\boldsymbol{\tau}$ shows that

$$(2d_0^k + c_0^j \mathcal{F'}_j^k) \pi + \sum_{n \in \mathbb{Z}} (-1)^n (b_n^k + a_n^j \mathcal{F'}_j^k) = 0,$$

$$(2.5)$$

$$c_0^k + 2d_0^j \mathcal{F'}_j^k - i \sum_{n \in \mathbb{Z}} (-1)^n n(b_n^k + a_n^j \mathcal{F'}_j^k) = 0,$$

(2.6

and

$$\sum_{n\in\mathbb{Z}}n^m(-1)^n(b_n^k+a_n^j{\mathcal{F}'}_j^k)=0\quad\text{for }m\geq 2.$$

(a) From (2.5) we can easily obtain

$$2d_0^j \mathcal{F}'_j^k + c_0^l \mathcal{F}'_l^j \mathcal{F}'_j^k + \frac{1}{\pi} \sum_{n \in \mathbb{Z}} (-1)^n (b_n^j + a_n^l \mathcal{F}'_l^j) \mathcal{F}'_j^k = 0.$$
(2.7)

Subtracting (2.7) from (2.6) we get

$$c_{0}^{k} - i \sum_{n \in \mathbb{Z}} (-1)^{n} n (b_{n}^{k} + a_{n}^{j} \mathcal{F'}_{j}^{k})$$
$$- c_{0}^{l} \mathcal{F'}_{l}^{j} \mathcal{F'}_{j}^{k}$$
$$- \frac{1}{\pi} \sum_{n} (-1)^{n} (b_{n}^{j} + a_{n}^{l} \mathcal{F'}_{l}^{j}) \mathcal{F'}_{j}^{k} = 0$$

$$\sum_{n \in \mathbb{Z}} (-1)^n \left(in(b_n^k + a_n^j \mathcal{F}'_j^k) + \frac{1}{\pi} (b_n^j + a_n^l \mathcal{F}'_l^j) \mathcal{F}'_j^k \right)$$

$$= c_0^k - c_0^l \mathcal{F}'_l^j \mathcal{F}'_j^k$$

$$= c_0^l \eta_l^k - c_0^l \mathcal{F}'_l^j \mathcal{F}'_j^k$$

$$= c_0^l (\eta_l^k - \mathcal{F}'_l^j \mathcal{F}'_j^k)$$

$$= c_0^l M_l^{'k}$$

so

$$c_0^l = \sum_{n \in \mathbb{Z}} (-1)^n \left(in(b_n^k + a_n^j \mathcal{F'}_j^k) + \frac{1}{\pi} (b_n^j + a_n^l \mathcal{F'}_l^j) \mathcal{F'}_j^k \right) (M'^{-1})_k^l.$$

(b) In a similar manner, by (2.6) we have

$$c_0^j \mathcal{F'}_j^k + 2d_0^l \mathcal{F'}_l^j \mathcal{F'}_j^k - i \sum_{n \in \mathbb{Z}} (-1)^n n(b_n^j + a_n^l \mathcal{F'}_l^j) \mathcal{F'}_j^k = 0.$$
(2.8)

After dividing (2.5) by π , we subtract (2.8) from (2.5) and obtain

$$2d_0^k + \frac{1}{\pi} \sum_{n \in \mathbb{Z}} (-1)^n (b_n^k + a_n^j \mathcal{F}'_j^k)$$
$$- 2d_0^l \mathcal{F}'_l^j \mathcal{F}'_j^k$$
$$+ i \sum_{n \in \mathbb{Z}} (-1)^n n (b_n^j + a_n^l \mathcal{F}'_l^j) \mathcal{F}'_j^k = 0$$

and

$$\begin{split} \frac{1}{2} \sum_{n \in \mathbb{Z}} (-1)^{n-1} & \left(\frac{1}{\pi} (b_n^k + a_n^j \mathcal{F}'_j^k) + in(b_n^j + a_n^l \mathcal{F}'_l^j) \mathcal{F}'_j^k \right) \\ & + in(b_n^j + a_n^l \mathcal{F}'_l^j) \mathcal{F}'_j^k \\ & = d_0^k - d_0^l \mathcal{F}'_l^j \mathcal{F}'_j^k \\ & = d_0^l \eta_l^k - d_0^l \mathcal{F}'_l^j \mathcal{F}'_j^k \\ & = d_0^l (\eta_l^k - \mathcal{F}'_l^j \mathcal{F}'_j^k) \\ & = d_0^l M_l^{'k} \end{split}$$

so

$$d_0^l = \frac{1}{2} \sum_{n \in \mathbb{Z}} (-1)^{n-1} \left(\frac{1}{\pi} (b_n^k + a_n^j \mathcal{F}'_j^k) + in(b_n^j + a_n^l \mathcal{F}'_l^j) \mathcal{F}'_j^k \right) (M'^{-1})_k^l.$$

Remark 2.1. Let us consider the two end-points of the string to be attached to D-brane with the same \mathcal{F} field. Then we can see that

$$b_n^k + a_n^j \mathcal{F}_i^k = 0$$
, for all n

in [1]. Applying this fact to Lemma 2.1, we simply have $c_0^k=d_0^k=0$, which equates the result obtained in [1].

Now the canonical momentum is given by

$$2\pi\alpha' P^{k}(\tau,\sigma) = \partial_{\tau} X^{k} + \partial_{\sigma} X^{j} \left(\frac{\mathcal{F}_{j}^{k} + \mathcal{F}'_{j}^{k}}{2} \right)$$

So by (2.4), we note that

$$\begin{split} &2\pi\alpha'P^k(\tau,\sigma)\\ &=\partial_\tau \left(x_0^k+a_0^k\tau+b_0^k\sigma+c_0^k\sigma\tau+d_0^k(\tau^2+\sigma^2)\right.\\ &\quad +\sum_{n\neq 0}\frac{e^{-in\tau}}{n}\left(ia_n^k\cos n\sigma+b_n^k\sin n\sigma\right)\right)\\ &\quad +\partial_\sigma \left(x_0^j+a_0^j\tau+b_0^j\sigma+c_0^j\sigma\tau+d_0^j(\tau^2+\sigma^2)\right.\\ &\quad +\sum_{n\neq 0}\frac{e^{-in\tau}}{n}\left(ia_n^j\cos n\sigma+b_n^j\sin n\sigma\right)\right)\\ &\quad \times\left(\frac{\mathcal{F}_j^k+\mathcal{F}_j'^k}{2}\right)\\ &=a_0^k+c_0^k\sigma+2d_0^k\tau\\ &\quad -i\sum_{n\neq 0}e^{-in\tau}(ia_n^k\cos n\sigma+b_n^k\sin n\sigma)\\ &\quad +\left(b_0^j+c_0^j\tau+2d_0^j\sigma-\sum_{n\neq 0}e^{-in\tau}(ia_n^j\sin n\sigma-b_n^j\cos n\sigma)\right)\left(\frac{\mathcal{F}_j^k+\mathcal{F}_j'^k}{2}\right) \end{split}$$

$$= \left(a_0^k + \frac{b_0^j(\mathcal{F}_j^k + \mathcal{F}'_j^k)}{2}\right) + \left(c_0^k + d_0^j(\mathcal{F}_j^k + \mathcal{F}'_j^k)\right)\sigma + \left(2d_0^k + \frac{c_0^j(\mathcal{F}_j^k + \mathcal{F}'_j^k)}{2}\right)\tau - \sum_{n \neq 0} e^{-in\tau} \left\{i\left(b_n^k + \frac{a_n^j(\mathcal{F}_j^k + \mathcal{F}'_j^k)}{2}\right)\sin n\sigma - \left(a_n^k + \frac{b_n^j(\mathcal{F}_j^k + \mathcal{F}'_j^k)}{2}\right)\cos n\sigma\right\} = \left(c_0^k + d_0^j(\mathcal{F}_j^k + \mathcal{F}'_j^k)\right)\sigma + \left(2d_0^k + \frac{c_0^j(\mathcal{F}_j^k + \mathcal{F}'_j^k)}{2}\right)\tau - \sum_{n \in \mathbb{Z}} e^{-in\tau} \left\{i\left(b_n^k + \frac{a_n^j(\mathcal{F}_j^k + \mathcal{F}'_j^k)}{2}\right)\sin n\sigma - \left(a_n^k + \frac{b_n^j(\mathcal{F}_j^k + \mathcal{F}'_j^k)}{2}\right)\cos n\sigma\right\}.$$

$$(2.9)$$

Theorem 2.2. If $\mathcal{F}' = -\mathcal{F}$, the total momenta

$$\begin{split} P_{tot}^{k}(\tau) &= \frac{\pi}{4\alpha'}c_{0}^{k} + \frac{1}{\alpha'}d_{0}^{k}\tau + \frac{1}{2\alpha'}a_{0}^{k} \\ &+ \frac{1}{2\pi\alpha'}\sum_{n \neq 0}\frac{ie^{-in\tau}}{n}\left((-1)^{n} - 1\right)b_{n}^{k}, \end{split}$$

where

$$c_0^k = \frac{i}{2} \sum_{n \in \mathbb{Z}} n \left((1 + (-1)^n) b_n^k + (1 - (-1)^n) a_n^j \mathcal{F}_j^k \right),$$

$$d_0^k = \frac{i}{4} \sum_{n \in \mathbb{Z}} n \left((1 + (-1)^n) b_n^j \mathcal{F}_j^k + (1 - (-1)^n) a_n^i \mathcal{F}_j^i \mathcal{F}_j^k \right)$$

$$- \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} (-1)^n \left(b_n^k - a_n^j \mathcal{F}_j^k \right).$$

Proof. By the condition $\mathcal{F}'=-\mathcal{F}$ and (2.9), we have

$$2\pi\alpha' P^{k}(\tau, \sigma)$$

$$= c_{0}^{k} \sigma + 2d_{0}^{k} \tau$$

$$- \sum_{n \in \mathbb{Z}} e^{-in\tau} \left(ib_{n}^{k} \sin n\sigma - a_{n}^{k} \cos n\sigma \right)$$

and so

$$\begin{split} P_{tot}^{k}(\tau) &= \int_{0}^{\pi} d\sigma P^{k}(\tau, \sigma) \\ &= \frac{1}{2\pi\alpha'} \int_{0}^{\pi} d\sigma \bigg(c_{0}^{k} \sigma + 2 d_{0}^{k} \tau \\ &- \sum_{n \in \mathbb{Z}} e^{-in\tau} \left(i b_{n}^{k} \sin n\sigma - a_{n}^{k} \cos n\sigma \right) \bigg) \\ &= \frac{1}{2\pi\alpha'} \bigg(\frac{\pi^{2}}{2} c_{0}^{k} + 2\pi d_{0}^{k} \tau + a_{0}^{k} \pi \\ &+ \sum_{n \neq 0} \frac{i e^{-in\tau}}{n} \left((-1)^{n} - 1 \right) b_{n}^{k} \bigg) \\ &= \frac{\pi}{4\alpha'} c_{0}^{k} + \frac{1}{\alpha'} d_{0}^{k} \tau + \frac{1}{2\alpha'} a_{0}^{k} \\ &+ \frac{1}{2\pi\alpha'} \sum_{n \neq 0} \frac{i e^{-in\tau}}{n} \left((-1)^{n} - 1 \right) b_{n}^{k}. \end{split}$$

And using the boundary condition (2.2) and Taylor series for τ we obtain

$$\sum_{n \in \mathbb{Z}} (b_n^k + a_n^j \mathcal{F}_j^k) = 0, \tag{2.10}$$

$$c_0^k + 2d_0^j \mathcal{F}_j^k - i \sum_{n \in \mathbb{Z}} n(b_n^k + a_n^j \mathcal{F}_j^k) = 0,$$
 (2.11)

and

$$\sum_{n\in\mathbb{Z}} n^m (b_n^k + a_n^j \mathcal{F}_j^k) = 0 \quad \text{for } m \ge 2.$$

Also applying the assumption $\mathcal{F}'=-\mathcal{F}$ to Eqs. (2.5) and (2.6), we have

$$(2d_0^k - c_0^j \mathcal{F}_j^k)\pi + \sum_{n \in \mathbb{Z}} (-1)^n (b_n^k - a_n^j \mathcal{F}_j^k) = 0,$$

$$(2.12)$$

$$c_0^k - 2d_0^j \mathcal{F}_j^k - i \sum_{n \in \mathbb{Z}} (-1)^n n (b_n^k - a_n^j \mathcal{F}_j^k) = 0.$$

Then by (2.11) and (2.13) we deduce that

$$\begin{aligned} 2c_0^k - i \sum_{n \in \mathbb{Z}} n(b_n^k + a_n^j \mathcal{F}_j^k) \\ - i \sum_{n \in \mathbb{Z}} (-1)^n n(b_n^k - a_n^j \mathcal{F}_j^k) = 0 \end{aligned}$$

so

$$c_0^k = \frac{i}{2} \sum_{n \in \mathbb{Z}} n \left((1 + (-1)^n) b_n^k + (1 - (-1)^n) a_n^j \mathcal{F}_j^k \right).$$

Finally, substituting the above c_0^k into (2.12) we complete the proof. $\hfill\Box$

3 CONCLUSION

Here we focus on the coefficients c_0^k and d_0^k existing in the general solution of X^k explaining the equations of brane motion given by [1], i.e.,

$$X^{k} = x_{0}^{k} + \left(a_{0}^{k}\tau + b_{0}^{k}\sigma\right) + c_{0}^{k}\sigma\tau$$
$$+ d_{0}^{k}\left(\tau^{2} + \sigma^{2}\right)$$
$$+ \sum_{n \neq 0} \frac{e^{-in\tau}}{n} \left(ia_{n}^{k}\cos n\sigma + b_{n}^{k}\sin n\sigma\right)$$

and obtain coefficients value.

ACKNOWLEDGEMENT

The authors are grateful to the referees for their careful reading, constructive criticisms, comments and suggestions, which have helped us to improve this work significantly.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

[1] Chu CS, Ho PM. Noncommutative open string and D-brane. Phys. Rev. A, NEIP-98-022, hepth/yymmddd.

- [2] Dai J, Leigh RG, Polchinski J. New connection between string theories. Mod. Phys. Lett. A4. 1989;2073.
- [3] Leigh R. Dirac-Born-Infeld action from dirichlet sigma models. Mod. Phys. Lett. A4. 1989;2767.

© 2019 Kim; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/48545