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Abstract: This study aimed to evaluate pilot manipulation comfort in different flight scenarios
under different ambient temperatures. To achieve this goal, we designed a test plan to devise the
physiological indexes used in the evaluation of pilot manipulation comfort, collected and analyzed
pilot EMG signals and mean skin temperature, and on this basis revealed the impacts of different
ambient temperatures and different flight missions on muscle activation and mean skin temperature.
Based on this, we extracted muscle activation and mean skin temperature as the evaluation indices
for the evaluation of manipulation comfort and established a model for this evaluation based on an
improved particle swarm optimization and least-squares support vector machine (IPSO-LSSVM).
Based on this model, the predicted manipulation comfort values of the participants were 4, 5 and 6,
which belong to the categories of fair, somewhat comfortable and rather comfortable, respectively. By
comparing the prediction results of different evaluation methods, the method proposed in this study
was verified to be effective.

Keywords: evaluation of manipulation comfort; muscle activation; mean skin temperature; IPSO-
LSSVM; cockpit

1. Introduction

An intelligent cockpit makes it easy to steer an airplane. Some airplanes have already
been equipped with touch-sensitive flight display systems. However, these systems are not
yet 100% reliable. A pilot controls and manipulates an airplane. Thus, it is of great signifi-
cance to study ways to improve a pilot’s efficiency by enabling him or her to comfortably
manipulate an aircraft in a favorable environment, thereby ensuring flight safety.

Comfort evaluation methods mainly include subjective evaluation and objective eval-
uation approaches. In subjective evaluation approaches [1–3], questionnaires and various
comfort scales are used to evaluate the feeling of comfort for a pilot. Such evaluations are
characterized by low repetitions and uncertainties. The evaluation results, which depend
mainly on the pilot’s subjective judgment, are prone to randomness and a large number of
individual differences. In objective evaluation approaches, body pressure distribution [4,5],
electrophysiological measurement, and other variables are introduced into the comfort eval-
uation. At present, the representative electrophysiological evaluation approaches mainly
include heart rate variability (HRV) [6], electromyography (EMG) [7–10] and electroen-
cephalography (EEG) [11]. EMG is the most widely applied method in comfort evaluation.
Currently, the most commonly used noninvasive method for the objective evaluation of
muscle load is the surface electromyogram (sEMG). In essence, comfort determinations are
still based on the subjective experience of the operator. It requires a combination of subjec-
tive and objective characterizations of comfort, which allows for further improvement in
practice [12].
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In subjective and objective manipulation comfort evaluations, human–machine interac-
tions are examined in the majority of studies [12–14]. However, the impact of environmental
factors on pilot manipulation comfort has not been considered. According to the man-
machine system model [15], the aircraft operation and control process involves a typical
man-machine environmental control system that includes a pilot, aircraft and environment.
In this situation, the pilot functions as the controller of the closed-loop system, the aircraft
serves as the controlled link in the system, and the pilot operates according to the current
environment. In this study, we factored in the impact of the environment on comfort
based on a human–machine–environment system. Under different ambient temperatures,
we collected the pilots’ myoelectric and skin temperature signals when they performed
different flight missions, analyzed the changes in these signals, and used them as the input
of the manipulation comfort evaluation model. The pilots’ subjective evaluations were
used as the output of the model. Based on an improved particle swarm optimization and
least-squares support vector machine (IPSO-LSSVM), we conducted an evaluation of pilot
manipulation comfort.

2. Methodology
2.1. Evaluation Index of Manipulation Comfort
2.1.1. Muscle Activation

Muscle activation refers to the ratio of muscle stress to maximum muscle strength,
which is an intuitive index for determining whether a muscle is in a comfortable or fatigued
state [13]. Therefore, in the current study, we employed a surface EMG signal detection
device to measure the pilot’s sEMG signal during manipulation. At the same time, we
extracted muscle activation as an evaluation index for manipulation comfort.

2.1.2. Mean Skin Temperature

The temperature of the cockpit has a direct impact on the thermal comfort of a pilot,
which in turn affects pilot comfort during flight manipulations. Fanger’s thermal comfort
equation is widely applied in human thermal comfort evaluation standards [16]. The
comfort evaluation of aircraft cockpits is based on the calculation of the predicted mean
vote (PMV) indexes of the thermal comfort equation. Its shortcomings lie in the large
number of parameters and complicated calculations. To find a simpler and more objective
method for the thermal comfort evaluation of the human body, some researchers have
introduced mean skin temperature in their studies [17], which is an index used to evaluate
human thermal comfort. Therefore, we used mean skin temperature as an evaluation index
for manipulation comfort.

2.1.3. Manipulation Force and Joint Torque

The manipulation force and joint torque directly affect pilot manipulation comfort.
The mean manipulation force and joint torque were selected as the parameters of the
manipulation comfort evaluation. In previous research, we obtained the manipulation
force and the joint torque during the manipulation process, as discussed in detail in the
literature [18,19].

2.1.4. Subjective Evaluation of Pilot Manipulation Comfort

The subjective evaluation of pilot manipulation comfort refers to the subjective eval-
uation made by the pilot according to his or her feeling of manipulation comfort when
performing different flight missions in different environments. In this study, the evaluation
criteria were based on the Likert psychological scale [14]. This scale divides the psycho-
logical continuum into seven fixed-choice options. The intensity of sensory changes was
represented by a line segment, and points 1–7 corresponded to the intensity of sensory
changes, namely: very uncomfortable, rather uncomfortable, somewhat uncomfortable,
fair, somewhat comfortable, rather comfortable, and very comfortable (Figure 1). A higher
score indicates a higher degree of comfort.
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Figure 1. Evaluation criteria of the Likert scale.

Every time an operator completed a flight mission, he or she evaluated their level of
manipulation comfort during the flight according to the Likert scale.

2.2. Design of the Test Plan

For typical civil aircraft flight tasks, a physiological index test for pilot control comfort
was designed. Based on the semiphysical cockpit simulation control platform (15006010;
Nanjing University of Aeronautics and Astronautics, Nanjing, China), by simulating differ-
ent flight tasks, the physiological characteristic parameters of the pilot, such as EMG [20]
and skin temperature [21], were monitored. Based on parameter analysis, we aimed to
identify the mechanism underlying the influence of different ambient temperatures and
different flight tasks on the physiological indexes with regard to pilot manipulation comfort.

2.2.1. Participants

Pilots with different amounts of flight experience were selected as the participants in
this study. The number of participants for most tests was usually between 5–15. In this
study, we selected six pilots with certain flight experience (all of them received training at
Nanjing University of Aeronautics and Astronautics, Nanjing, China, received 20 months of
flight training abroad and acquired a commercial pilot license) and six project researchers
with a large amount of simulator experience. That is, 12 participants between 22 and
45 years old were selected for this study. Among the participants, ten were male and two
were female (in real life, there are more male pilots than female pilots). The participants
were required to be in good health, have good eyesight, and have no disease impeding
their manipulation function. They must also have no physical pain or any psychological
factors that might affect manipulation comfort. In addition, they were familiar with the
operating program for the simulated flight.

2.2.2. Design of the Test Scenario

Based on the cockpit simulation control platform, the pilots were required to complete
the traffic patterns (including the phases of taking off, climbing, cruising, approaching and
landing), nonprecision approaches and single-engine-landing flight missions at Shanghai
Hongqiao Airport at ambient temperatures of 20 ◦C, 26 ◦C, and 31 ◦C. The design of the
test scenarios is shown in Table 1.

Table 1. Design of test scenarios.

Test Scenario Temperature ◦C Operation Task Specific Flight Phase

1 20 ◦C Takeoff and landing Takeoff, climb, cruise,
approach, and landing

2 20 ◦C
Nonprecision
approach and

single-engine landing

Descent, approach, and
landing

3 26 ◦C Traffic pattern Takeoff, climb, cruise,
approach, and landing

4 26 ◦C
Nonprecision
approach and

single-engine landing

Descent, approach, and
landing
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Table 1. Cont.

Test Scenario Temperature ◦C Operation Task Specific Flight Phase

5 31 ◦C Traffic pattern Takeoff, climb, cruise,
approach, and landing

6 31 ◦C
Nonprecision
approach and

single-engine landing

Descent, approach, and
landing

2.2.3. Construction of the Test Platform

The human–machine–environment closed-loop simulation experiment system is shown
in Figure 2. It is composed of a pilot, an aircraft simulation platform and an environment
simulation cockpit, which can be used to simulate experimental ergonomics research in a
specific environment.
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Figure 2. Human–machine–environment closed-loop simulation system.

The environmental simulation cockpit is a simulation device allowing for the integra-
tion of multiple environmental factors. Table 2 shows the design indices and requirements.

Table 2. Design indexes of the environmental simulation cockpit.

Index Requirements

Hypoxia height 0~5000 m

Noise 70~100 dB

Temperature (5~40 ◦C) ± 0.2 ◦C

Humidity (5~95%) ± 5%RH

Cockpit 3 × 3 × 2 = 18 m3

A wireless physiological data acquisition and analysis system (BioNomadix; BIOPAC,
Santa Barbara, CA, USA) was used to collect myoelectric signals and local skin temperature.

2.2.4. Test Procedures

(a) Preparatory work before the experiment. Before the experiment, the participants
avoided vigorous activities to prevent physical fatigue. They wore summer clothes
in the simulation cockpit. After entering the environment simulation cockpit, it took
approximately 20 min for the participants to adapt to their physiological conditions
in the new environment.

Each pilot kept his or her chest as motionless as possible during the manipulation
process. We selected five muscles as the research objects, namely, the bicep, tricep, flexor
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carpi radialis, brachioradialis, and deltoid muscles. The participants’ skin surface was
wiped with medical alcohol, and electrode patches (LT-7; Shanghai LT Company, Shanghai,
China) were pasted on. The best positions were determined by observing the EMG signal,
as shown in Figure 3.
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Figure 3. Schematic diagram of the locations of the upper limb muscle sEMG sensor electrode.
1. deltoid; 2. triceps; 3. biceps; 4. flexor carpi; and 5. brachioradialis.

In addition, each participant was required to participate in an experiment to test the
maximum voluntary contraction (MVC) of the above five muscles before carrying out the
simulated flight test. Each participant used their maximum force to pull the dynamometer
and held it for 5 s in the maximum force state, during which the sEMG signal of each
muscle was recorded. To prevent the subsequent experimental results from being affected
by the fatigue of the muscles generated in the previous test, the participants were required
to rest for at least 10 min after the maximum isometric force test before carrying out the
corresponding simulated flight experiment. Otherwise, the experimental results would
have been affected.

(b) The participants assumed a comfortable sitting posture when manipulating the aircraft
simulator. The designed test scenarios are shown in Table 1. All participants carried
out simulated flights according to the test scenarios, and the staff collected relevant
experimental data. All participants completed the subjective evaluation form with the
Likert scale based on their subjective feelings after completing a test scenario. Each
test scenario was repeated 5 times, and the average values of the data collected during
the 5 repetitions were grouped as a set of samples. When all the participants had
completed the flight operations for all the scenarios, the experiment was completed.

(c) AcqKnowledge for Windows software (Microsoft Flight Simulator; Microsoft, Seattle,
WA, USA) was used for the collation and analysis of the experimental data.

2.2.5. Collection and Processing of the Experimental Data

(a) Acquisition and processing of EMG signals. The sEMG signal reflected the activity
information of the muscle from the triggering of the muscle contraction to the end
of the contraction. The voltage of the EMG signal was 0~10 mV within the signal
frequency band range of 0~500 Hz. According to Shannon’s sampling theorem,
the frequency of the sEMG signal acquisition equipment should not be lower than
1000 Hz. Therefore, the sampling frequency was determined to be 1000 Hz.

The sEMG signal itself is relatively weak and easily affected by environmental noise.
Therefore, it was necessary to clean the skin first. The skin was cleaned with an alcohol
solution before the electrode patch was pasted on, as described above. After the alcohol
evaporated, conductive glue was applied [22].
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The sEMG signal is mainly concentrated in the 20~400 Hz range. In this study, the
FIR bandpass filter (20–500 Hz) in the AcqKnowledge 4.4 software was used to filter the
measured sEMG signal data to eliminate artificial signal errors caused by the movement of
the surface electrode, as shown in the second and fourth rows of the figure. The adaptive
option in the digital filters could also be used to filter out the noise caused by the other
channels in this channel, and the filtered effect is shown in Figure 4. The first and sixth rows
are the original EMG signal, and the second and fourth rows are the filtered signal. The
same filter was adopted for the sEMG signal collected in the MVC experiment to ensure
that the EMG signal collected in the experiment was in the same frequency domain as the
EMG signal used to normalize the MVC experiment.
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Figure 4. Comparison of the sEMG signal before and after processing. The first and sixth lines are
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lines are the root mean square of the EMG signal.

The root-mean-square (RMS) value of the muscle sEMG signal was used to evaluate
muscle activation. The 3rd and 5th rows in Figure 4 represent the RMS of the EMG signal,
and the window time for the RMS calculation was 0.03 s, which is the default time in
AcqKnowledge. The RMS of the sEMG signal of each operation task was normalized to
100% by MVC RMS EMG to obtain a muscle activation value in the range of [0, 1].

(b) Skin temperature signal acquisition and processing method: The BioNomadix data
acquisition and analysis system was employed to measure each participant’s local
skin temperature. It should be noted that, when measuring, the probe was pasted to
the skin measuring point and fixed with medical tape to closely attach it to the skin.

The local skin temperatures were measured for nine parts of the human body, namely,
the middle forehead, chest, nape, the middle part of the outer upper arm, the middle part
of the outer forearm, the back of the hand, the middle part of the outer thigh, the middle
part of the outer calf, and the back of the foot. The measuring points were all located on the
left side of the participant’s body.

The calculation of mean skin temperature
−

Tsk was weighted according to nine local
skin temperatures, and the calculation formula is as follows [20]:

−
Tsk = 0.07Tforehead + 0.18Tchest + 0.18Tback + 0.07Tupperarm + 0.07Tforearm + 0.05Thand+

0.19Tthigh + 0.13Tcalf + 0.06Tfoot
(1)

where Tforehead represents the middle of the forehead, Tchest the chest, Tback the nape, Tupperram
the middle part of the outer upper arm, Tforeram the middle part of the outer forearm, Thand
the back of the hand, Tthigh the middle of the outer thigh, Tcalf the middle of the outer calf,
and Tfoot the back of the foot, and different numbers indicated the weighted values of the
corresponding temperatures.
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3. Analysis of Results
3.1. Data Analysis of the EMG Signal

For the six test scenarios, the activations of the biceps, triceps, flexor carpi radialis,
brachioradialis, and deltoid of the 12 participants are shown in Figure 5. In the same
ambient environment, the activation values for the nonprecision approach and the single-
engine landing missions were greater than those for the traffic pattern missions. For the
nonprecision approach and the single-engine landing flight, the pilot manipulated the
aircraft when one engine failed, during which time the muscle load was greater than
that recorded during the traffic pattern mission. Therefore, the muscle activation values
were greater. When the pilots performed the same flight mission, there were individual
differences in the values of muscle activation. For example, in the sixth test scenario, among
the participants, the maximum muscle activation value of the triceps was 15.75%, while the
minimum value was 9.30%. Under different ambient temperatures, the activation values of
most muscles exhibited a declining trend. Reference [23] noted that, when exercising in a
high-temperature environment, the muscle RMS declines compared with that found in a
mild environment.
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Figure 5. Muscle activation in different test scenarios. (a) Test scenario 1. (b) Test scenario 2. (c) Test
scenario 3. (d) Test scenario 4. (e) Test scenario 5. (f) Test scenario 6. Abbreviations: FCR, flexor carpi
radialis; and Br, brachioradialis.

In the different test scenarios, the muscle activation values of the biceps, triceps, and
deltoid were greater than those of the flexor carpi radialis and the brachioradialis, as the
pilot’s main actions are the flexion and extension of the shoulder and elbow joints.

3.2. Data Analysis of the Skin Temperature Signal

Table 3 shows the skin temperature variations of nine test parts during different
missions under different ambient temperatures. When the ambient temperature rose from
20 ◦C to 31 ◦C, the mean skin temperature of each test part gradually increased, among
which the temperature of the upper limbs (upper arms, forearms, back of the hand) and
lower limbs (thigh, calf, back of the foot) rose more noticeably than those of the other
parts. The skin temperature of the forearm rose by approximately 5 ◦C when the ambient
temperature rose from 20 ◦C to 31 ◦C. For the forehead, the skin temperature rose by
approximately 3 ◦C when the ambient temperature increased from 20 ◦C to 31 ◦C. Multiple
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comparisons showed that the temperatures of the local skin at different body positions
exhibited significant changes with increasing environmental temperature (Table S1).

Table 3. Local skin temperature under different test scenarios.

Test
Scenario

Skin Temperature (◦C)

Forehead Chest Back Upper Arm Forearm Hand Back Thigh Calf Foot Back

1 32.98 ± 0.94 33.01 ± 1.01 32.50 ± 0.98 30.68 ± 0.92 30.11 ± 1.20 30.18 ± 1.11 30.96 ± 0.98 30.78 ± 1.05 30.58 ± 1.04

2 33.60 ± 1.23 32.96 ± 0.96 32.80 ± 0.94 31.02 ± 1.02 30.06 ± 0.89 31.02 ± 0.78 31.01 ± 1.13 30.93 ± 0.79 30.50 ± 1.05

3 34.01 ± 0.93 34.36 ± 0.77 34.22 ± 0.81 32.96 ± 0.90 32.88 ± 1.12 33.92 ± 0.99 33.32 ± 0.88 32.56 ± 0.75 33.97 ± 1.07

4 34.76 ± 0.83 34.57 ± 0.98 34.50 ± 0.69 33.25 ± 0.60 33.20 ± 0.78 34.02 ± 0.76 33.54 ± 0.83 32.99 ± 0.71 34.35 ± 0.52

5 35.33 ± 0.56 35.66 ± 0.79 35.91 ± 0.97 34.76 ± 1.01 34.89 ± 0.94 35.40 ± 0.72 34.05 ± 0.61 33.80 ± 0.70 34.74 ± 0.98

6 35.90 ± 0.61 35.96 ± 0.45 36.01 ± 0.54 35.02 ± 0.84 35.01 ± 0.96 35.80 ± 0.50 34.81 ± 0.47 34.01 ± 0.86 35.10 ± 0.66

Note: The ambient temperatures of test conditions 1–2, 3–4, and 5–6 were 20 ◦C, 26 ◦C, and 31 ◦C, respectively.
The accuracy of this measure was 0.001 ◦C, but for convenience, the results here are presented in hundredths.

According to the test data in Table 3, the mean skin temperature (
−

Tsk) of the 12 participants
in the 6 test scenarios was calculated to be 31.50 ◦C, 31.76 ◦C, 33.63 ◦C, 33.94 ◦C, 34.95 ◦C,
and 35.30 ◦C, respectively, as shown in Figure 6.
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It is clear from Figure 6 that, as the ambient temperature rose, the mean skin tempera-
ture rose, displaying a pattern of first larger and then smaller increases. When performing
different missions, the mean skin temperature during the nonprecision approach and the
single-engine-landing missions was higher than during the traffic pattern missions.

SPSS software was used to perform a multifactor analysis of variance (ANOVA) on the
mean skin temperature. As shown in Table 4, for ambient temperature, p = 0.0055 < 0.05,
indicating that the ambient temperature had a significant impact on the mean skin temper-
ature, and for operating procedures, p = 0.14 > 0.05, indicating that different missions had
no significant effect on the mean skin temperature.

Table 4. Analysis of variance of mean skin temperature.

Source df MS F p-Value Fcrit

Operating
procedures 1 0.18 5.81 0.14 18.51

Ambient
temperature 2 5.69 179.83 0.0055 19.00

Note: A multifactor analysis of variance was performed. Abbreviations: df, degree of freedom; MS, mean square;
F, statistics; and Fcrit, the critical value at the corresponding significance level.

4. Evaluation Model of Pilot Manipulation Comfort Based on IPSO-LSSVM

For traditional models, comfort evaluation is achieved through multiple linear statis-
tical regression analysis. However, the results of the weighted average involved in these
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models cannot reflect the degree of comfort well. Furthermore, the weight determination in
the evaluation process is affected by human factors, which makes it difficult to accurately
reflect the complex nonlinear relationship between various indicators and therefore results
in a difference between the evaluation results and the actual values [12]. To date, LSSVM
has been applied in the field of nonlinear prediction, which has a faster operation speed
and is suitable for predicting pilot handling comfort. In this study, we constructed the
LSSVM model and selected the operating force, joint torque, muscle activation and average
skin temperature as the model inputs, with the subjective evaluation of handling comfort
as the model output. By doing so, a combination of subjective and objective methods was
used to evaluate pilot manipulation comfort.

4.1. Least-Squares Support Vector Machine

The comfort evaluation of aircraft manipulation and control is a multi-input, high-
dimensional, nonlinear prediction problem. Relevance vector machines (RVMs), artificial
neural networks (ANNs), and support vector machines (SVMs) are widely applied in the
field of nonlinear prediction. Suykens et al. proposed the least-squares support vector
machine (LSSVM) model. To compensate for the shortcomings of the standard SVM
algorithm, the LSSVM algorithm is simpler in form, more convenient for solution, and
faster in computation [24].

For a set of l samples (xi, yi) in a given area, i = 1, . . . , l, where xi = Rs are some
influencing factors, s is the dimension of the input vector, and yi is the corresponding
output result, the regression function of LSSVM is:

y = f (x) = ω·φ(x) + b (2)

where ω ∈ Rm is the weight vector and b ∈ R is a constant representing the bias. The key
problem of LSSVM is to choose a suitable mapping φ(x). The radial basis kernel function
(RBF) has advantages such as a simple expression, good smoothness, radial symmetry, and
a wide application range. Therefore, RBF was selected in this study. The optimization goals
of LSSVM are:

minJ(ω, e) =
1
2
‖ω‖2 +

1
2

C
l

∑
i=1

e2
i (3)

S.t.yi = ωφ(xi) + b + ei, i = 1, · · · , l (4)

where ei is the error, e ∈ Rl×l is the error vector, and C is the regularization parameter,
whose function is to control the degree of penalty for the error.

4.2. Improved Particle Swarm Algorithm

In the iterative process of the PSO algorithm, prematurity and convergence phenomena
are likely to occur. The specific measures used to improve the standard PSO algorithm in
this study were as follows:

(a) The main reason for prematurity and convergence is the lack of diversity. To address
this issue, the linear decreasing strategy of the standard particle swarm algorithm was
adopted. The formula is as follows:

ω = ωmax − (ωmax −ωmin)×
n
N

(5)

where ωmax and ωmin represent the maximum and minimum values of the inertia
weight, respectively, n is the current iteration number, and N is the set maximum iter-
ation number. Through a large number of experiments, it was proven in reference [25]
that when the inertia weight ω decreased from a maximum value of 0.95 to 0.2, the
local search ability and global search ability of the particle swarm were the strongest.
In this study, ω ∈ [0.2, 0.95] was selected.
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(b) The particle distance was introduced, and the following formula was used to deter-
mine the evolution state of PSO:

dg <
−
di Convergent state

dg >
−
di Divergent state

(6)

where
−
di represents the average distance between each particle and other particles in

the evolution of each generation and dg is the average distance of the global optimal
particles in the current generation. Tan [26] demonstrated that the evolution process
of the PSO algorithm is unrelated to the particle speed. When the evolution of the
PSO algorithm is in a convergent state, the IPSO algorithm shown in Equation (7) can
fully disperse the swarm in the solution space and enhance the global search ability
of the algorithm.

xk+1
in = ω·xk

in + c1·rand()·(pin− xk
in)+ c2·rand()·(pgn− xk

in)+ c3·rand()·(xrand− xin) (7)

where xk+1
in and xk

in represent the k+1th and kth iterations of the nth-dimension com-
ponent of the position vector of particle i; c1, c2 and c3 are the acceleration constants,
which can adjust the maximum step length of learning; rand() is a random function
in the range [0, 1], which can increase the randomness of the search; and ω is an
inertia factor, which is a nonnegative number. The optimal position of the individual
is denoted as pi = (pi1, pi2, . . . , pin). The optimal position of the swarm is denoted as
pg = (pg1, pg2, · · · , pgn).

4.3. Evaluation Model of Pilot Manipulation Comfort
4.3.1. Selection of the Input and Output Parameters

The manipulation force, joint torque, muscle activation and mean skin temperature
were used as the inputs of the pilot manipulation comfort evaluation model. The output of
the model was the result of a subjective evaluation of the pilot manipulation comfort.

To unify the units of the input and output parameters, it was necessary to normalize the
extracted comfort evaluation parameters. Muscle activation was reported as a percentage.
The mean skin temperature and the subjective evaluation scores of manipulation comfort
were normalized using Equation (8).

x′i =
xi − xmin

xmax − xmin
(8)

The training samples were normalized and expressed as {(x1, y1), . . . , (xj, yj), . . . , (xm,
ym)}(j = 1, 2, . . . , m); then, we have:

x =



x11 x12 x13 x14
...

...
...

...
xj1 xj2 xj3 xj4
...

...
...

...
xm1 xm2 xm3 xm4

Y =



y1
...

yj
...

ym


where Y is the sample output matrix, X is the training sample matrix, m is the number of
training sample sets, xj1, xj2, xj3, and xj4 represent the manipulation force, joint torque, mus-
cle activation and mean skin temperature, respectively, and yj is the normalized subjective
evaluation score for manipulation comfort.

4.3.2. Setting of the Model Parameters

According to the research conclusions of experts and researchers [24,27], before estab-
lishing a predictive model, it is necessary to establish relevant parameters, which were:
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C ∈ [0.1, 150], σ ∈ [0.1, 10], and the swarm number m, which is set artificially and can
determine the calculation amount and search ability of the algorithm. Generally, the swarm
number is between 20 and 40. Here, the swarm number was set to 20. The inertia weight
was ω ∈ [0.2, 0.95], for which a linear, decreasing strategy was adopted, as shown in
Equation (5). The learning factors c1 and c2 contributed to the learning of the particles, and
after multiple summations, the particles were finally made to approach the optimal point.
Usually, c1 = c2 = 2.

To further verify the superiority of the improved PSO-LSSVM, it was compared with
the LSSVM and PSO-LSSVM algorithms. The settings of the other algorithm parameters
are shown in Table 5.

Table 5. Settings of the algorithm parameters.

Algorithm C σ m ω c1 c2

LSSVM 2 30 - - - -

PSO-LSSVM [0.1, 150] [0.1, 10] 20 0.95 2 2

IPSO-LSSVM [0.1, 150] [0.1, 10] 20 [0.2, 0.95] 2 2

4.3.3. Evaluation of Manipulation Comfort

In the cockpit simulation manipulation platform, the temperature environment was
set to 20 ◦C, 26 ◦C, and 31 ◦C, under which the pilots performed different manipulation
tasks. The traffic pattern included taking off, climbing, cruising, approach and landing.
During the descending phase of the nonprecision approaches and the single-engine landing
missions, a fault was set on the simulator. The failure mode was single-engine failure. After
setting the failure mode, the pilots were required to complete the descent, approach and
landing in the single-engine failure mode. There were twelve participants in total and six
test scenarios. The measured test data were divided into 72 sets, 12 of which were used
as the test data of the model and 60 of which were used as the training samples of the
IPSO-LSSVM model. A simulation analysis was conducted based on the MATLAB 2015b
platform. The prediction results are shown in Table 6. In this table, participants no. 1 to
no. 6 were experienced pilots, and the remaining were researchers with a large amount of
simulator experience. As shown in the table, the absolute errors for these participants were
all small. The actual values of the two female participants (no. 10 and no. 11) were 3.89 and
3.95, respectively, which belonged to the category of fair comfort, and those of the male
participants fell in the categories of being somewhat comfortable and rather comfortable.

Table 6. Prediction results of the IPSO-LSSVM model.

Serial Number Actual Value Predicted Value Absolute Error

1 5.20 5.28 0.08

2 5.12 5.21 0.09

3 5.68 5.78 0.10

4 5.40 5.49 0.09

5 6.24 6.14 0.10

6 6.11 6.00 0.11

7 4.66 4.75 0.09

8 4.52 4.6 0.08

9 4.78 4.85 0.07
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Table 6. Cont.

Serial Number Actual Value Predicted Value Absolute Error

10 * 3.89 3.96 0.07

11 * 3.95 4.01 0.06

12 4.50 4.58 0.08
* Note: No. 1–no. 6 were experienced pilots. No. 7–no. 12 were researchers with a large amount of simulator
experience. No. 10 and no. 11 were female.

Figure 7a shows the prediction results, and Figure 7b shows the absolute error. The
prediction effect of this model was good, with an absolute error between 0.06 and 0.11.
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To verify the accuracy of the IPSO-LSSVM algorithm, the prediction results for LSSVM,
PSO-LSSVM and IPSO-LSSVM were compared. The absolute error results are shown in
Figure 8.
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To facilitate the evaluation of the accuracy of each algorithm, the root-mean-square
error (RMSE) and the mean absolute percentage error (MAPE) were used for comparative
analysis, as shown in Equations (9) and (10).

RMSE =

√√√√√ n
∑

i=1
(ypi − ysi)

2

n
(9)

MAPE =

n
∑
i

∣∣∣ ypi−ysi
ysi

∣∣∣
n

× 100% (10)

where ysi is the actual value and ypi is the predicted value.
As calculated by Equations (9) and (10), the evaluation results of the different algo-

rithms are shown in Table 7.

Table 7. Comparison of the evaluation results of different algorithms.

Model RMSE MAPE (%)

LSSVM 0.120 2.37

PSO-LSSVM 0.105 2.05

IPSO-LSSVM 0.086 1.68

The comparison results show that the RMSE and MAPE values of IPSO-LSSVM were
smaller than those of LSSVM and PSO-LSSVM, demonstrating that this model had a higher
prediction accuracy. Among them, the RMSE values of IPSO-LSSVM were 0.034 and 0.019
less than those of LSSVM and PSO-LSSVM, respectively. The MAPE value of IPSO-LSSVM
was smaller than those of LSSVM and PSO-LSSVM by 0.69 and 0.37 percentage points,
respectively. The above results show that the IPSO-LSSVM model yields better performance
in evaluating pilot manipulation comfort.

5. Conclusions

The summary of this study is as follows:

(1) In this study, we designed a test plan for the physiological indexes used to eval-
uate pilot comfort in manipulating aircraft, and collected and analyzed the pilot
electromyographic signal, mean skin temperature, and biceps, triceps, flexor carpi
radialis, brachioradialis, and deltoid activation of the 12 participants. Under the same
temperature environment, the nonprecision approach and single-engine landing mis-
sions exhibited greater muscle activation values than the traffic pattern flight missions.
Under different ambient temperatures, the activation values of most muscles showed
a declining trend. When the ambient temperature rose from 20 ◦C to 31 ◦C, the mean
skin temperature of nine test locations on the participants gradually increased, among
which the temperature of the upper limbs (upper arm, forearm, and back of hand) and
lower limbs (thigh, calf, and back of foot) rose more significantly than that of the other
parts. Under different missions, the mean skin temperature during the nonprecision
approach and the single-engine landing was higher than that during the traffic pattern
missions.

(2) We also constructed a pilot comfort evaluation model based on IPSO-LSSVM and
selected the manipulation force, joint torque, muscle activation and mean skin tem-
perature as the inputs of the model and the subjective evaluation results of the
manipulation as the output of the model. Sixty sets of data were used as the training
samples of the IPSO-LSSVM model, and 12 sets of data were used as the test data
of the model. Based on the MATLAB 2015b platform, we predicted the manipula-
tion comfort evaluation. Using the parameters RMSE and MAPE, we compared the
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three algorithms, namely LSSVM, PSO-LSSVM and IPSO-LSSVM, demonstrating
that the prediction accuracy of the IPSO-LSSVM method was higher. Based on the
human–machine–environment system, we evaluated pilot manipulation comfort by
combining subjective and objective methods, shedding light on the evaluation of pilot
manipulation comfort.

This study suffers from some limitations. First, the sample size of this study was small.
Future studies with a larger sample size will be conducted to validate the results of this
study. Second, the proportion of female participants was small, which might cause bias
in the results obtained in this study. Although our results did not show that the model
proposed in this study was applicable to both male and female operators, future studies
with a more balanced ratio of male to female operators should also be conducted.

Currently, the evaluation methods for pilot comfort in a civil flight include subjective
methods, such as the Cooper–Harper Handling Qualities Rating Scale and the NASA TLX
Likert psychological scale, and objective methods, such as electrocardiography, electromyo-
graphy (EMG) and electroencephalograms, and the EMG method is the most frequently
employed evaluation method. In this study, we combined the pilot’s subjective evaluation
(the Likert scale) with objective evaluations (EMG and skin temperature) to assess pilot
comfort degree, which is expected to enhance flight safety in the future. Based on this
study, the factor of the cockpit vibrational environment can be integrated into the model
to investigate the influence of this factor on pilot manipulation comfort. If experimental
conditions are permitted, the operating environment with different vibration intensities
and excitation frequencies can be taken into account to collect the sEMG signals of the
pilot’s main muscles for manipulation comfort assessment.
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//www.mdpi.com/article/10.3390/aerospace9030122/s1. Table S1: Multiple pairwise comparisons
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