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Airborne hyperspectral remote sensing data provide rapid, non-destructive, and near
laboratory quality reflectance spectra for mineral mapping and lithological discrimination,
thereby ushering an innovative era of remote sensing. In this study, NEO HySpex cameras,
which comprise 504 spectral channels in the spectral ranges of 0.4–1.0 μm and
1.0–2.5 μm, were mounted on a delta wing XT-912 aircraft. The designed flexibility and
modular nature of the HySpex aircraft hyperspectral imaging systemmade it relatively easy
to test, transport, install, and remove the system multiple times before the acquisition
flights. According to the design fight plan, including the route distance, length, height, and
flight speed, we acquired high spectral and spatial resolutions airborne hyperspectral
images of Yudai porphyry Cu (Au, Mo) mineralization in Kalatag District, Eastern Tianshan
terrane, Northwest China. By comparing the features of the HySpex hyperspectral data
and standard spectra data from the United States Geological Survey database,
endmember pixels of spectral signatures for most alteration mineral assemblages
(goethite, hematite, jarosite, kaolinite, calcite, epidote, and chlorite) were extracted.
After a HySpex data processing workflow, the distribution of alteration mineral
assemblages (iron oxide/hydroxide, clay, and propylitic alterations) was mapped using
the random forest (RF) algorithm. The experiments demonstrated that the workflow for
processing data and RF algorithm is feasible and active, and show a good performance in
classification accuracy. The overall classification accuracy and Kappa classification of
alteration mineral identification were 73.08 and 65.73%, respectively. The main alteration
mineral assemblages were primarily distributed around pits and grooves, consistent with
field-measured data. Our results confirm that HySpex airborne hyperspectral data have
potential application in basic geology survey and mineral exploration, which provide a
viable alternative for mineral mapping and identifying lithological units at a high spatial
resolution for large areas and inaccessible terrains.
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1 INTRODUCTION

Hyperspectral imaging is a highly relevant topic in remote
sensing research owing to the characteristics of high spectral
resolution, strong wavelength continuity and large amount of
spectral information (Grove et al., 1992; Clark et al., 2003; van der
Meer et al., 2012; Guha, 2020). Each pixel in a hyperspectral
image has its continuous spectrum, the technique has wide
geological applications, including the identification and
classification of mineralogical alteration assemblages and
correlation of geological units (Gomez et al., 2018; Xie B.
et al., 2022; Xie B. S. et al., 2022). For decades, hyperspectral
imaging has been widely used in geological prospecting, such as
porphyry-type copper deposits (Batchelor et al., 2016; Dalm et al.,
2017), hydrothermal gold deposits (Osterloo et al., 2012),
sulphide deposits (Iyakwari et al., 2016), ore deposits (Murphy
and Monteiro, 2013; Metelka et al., 2015), uranium Ore deposits
(Reath and Ramsey, 2013), and rare earth deposits (Riaza et al.,
2001). The most popular hyperspectral sensors for mineral
exploration from spaceborne and airborne platforms are
summarized in Table 1.

Airborne hyperspectral imagers have amajor role in geological
exploration and mineralogy owing to the advantages of spatial
resolution and performance capabilities in a cloudy atmosphere,
compared with the images of spaceborne airborne platforms.
Airborne hyperspectral sensors, such as AVIRIS, HyMAP, CASI/
SASI and HySpex open new possibilities for the detection and
mapping of mineral deposits (Rowan et al., 2000; Rowan et al.,
2004; Jing et al., 2014). Compared with the airborne sensor
parameters in Table 1, HySpex provides high-performance
parameters such as spectral range (0.4–2.5 μm), sampling
interval of 2.8 nm/5.45 nm, 504 spectral channels, a flexible
spatial resolution, and light weight (10.2 kg) to be mounted on
the aircraft platform and ground platform.

In 1995, the hyperspectral sensor of HySpex is a “pushbroom”
scanner produced by NEO (Norsk Elektro Optikk, Oslo, Norway).
The camera scans an object and collects a hyperspectral image or
“cube” with two spatial dimensions and one spectral dimension. In
recent years, numerous studies have identified the detection
capabilities of HySpex sensors for various applications (Baissa
et al., 2011; Steffens and Buddenbaum, 2013; Mathieu et al.,

2017). For example, Cristóbal et al. (2021) demonstrated the
viability of HySpex airborne hyperspectral wetland mapping in
the high latitudes of Alaska. Baissa et al. (2011) identified and
mapped hand specimens of Jurassic carbonate facies via a HySpex
SWIR-320 m hyperspectral sensor in the Agadir Basin. Buckley
et al. (2013) analyzed and mapped geological outcrops by merging
LiDAR and HySpex imaging data. Using a HySpex sensor in a
laboratory with a spectral range from 0.4 to 0.99 μm, Steffens and
Buddenbaum (2013) developed a fast and effective imaging
method that enables the spatially accurate classification of
diagnostic horizons as well as the mapping of different contents
ofmineral elements. Ali et al. (2017) developed a rapid and efficient
method to determine hyperspectral specific leaf area by leaf and
canopy spectral measurements using HySpex airborne imagery.

HySpex imagery is useful when detecting target objects in
hundreds of narrow bands that are only a few nanometers wide
from the visible and near-infrared (VNIR) to the short-wave
infrared region (SWIR). The HySpex airborne hyperspectral
sensors are more effective in the advanced stage of exploration
where there is a need to focus on small ground objects with
spectral data at high spectral and spatial resolutions (Paoletti
et al., 2019; Guha, 2020). Furthermore, the designed flexibility
and modular nature of the HySpex aircraft system made it
relatively easy to test, transport, install, and remove the system
multiple times before the acquisition flights. Besides, the flexible
setup also reduced cost by not committing aircraft use solely to
data acquisition. In contrast, compared with conventional
mineral mapping based on geological fieldwork spectral
surveys, HySpex hyperspectral sensors can provide and collect
easily accessible mineral information over a large spatial area and
are effective in mapping spectrally conspicuous host rocks of
mineral deposits, residual enrichment deposits, and surface
mineralogical proxies occupying a larger spatial domain
(Guha, 2020). HySpex imaging can provide airborne
hyperspectral data that satisfy the high spatial and spectral
resolution requirements of many geoscience remote sensing
applications, offering a near laboratory quality spectrum and
representing a fundamental development in the field of
hyperspectral remote sensing. However, airborne hyperspectral
imaging using HySpex has not been used as commonly as
ground- and laboratory-based imaging and has rarely been

TABLE 1 | Widely used hyperspectral sensors.

Sensors Spectral range (μm) No. of bands Spectral resolution (nm) Ground sample distance
(GSD; m per

pixel)

Year of launch References

Satellite Hyperion 0.40–2.50 220 10 30 2000 Salimi et al., (2018)
EnMAP 0.42–2.40 228 5.25–12.5 30 2006 Rogge et al., (2014)
MODIS 0.40–1.45 36 10 250/500/1000 199-2002 Sun et al., (2011)
DESIS 0.40–2.50 180 3.3 30 2018 Eckardt et al., (2015)
GF-5 0.40–2.50 330 5 30/60 2018 Sun et al. (2011)
PRISMA 0.40–2.50 239 12 30 2019 Vangi et al., (2021)

Airborne AVIRIS 0.36–2.45 224 10 20 1986 Tripathi et al., (2020)
HyMAP 0.45–2.50 126 15 5 1997 Tan et al., (2021)
CASI/SASI 0.36–1.05 144 2.4 2.5 1989 Jing et al., (2014)
HYDICE 0.40–2.50 210 10.2 7 1994 Rickard et al., (1993)
HySpex 0.40–2.50 504 2.8/5.45 / 1995 Cristóbal et al., (2021)
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FIGURE 1 | Schematic diagram of study area (A) Overview map of Kalatag district; (B) generalized geological map of Yudai; (C) hyperspectral images from the
HySpex airborne flight.
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FIGURE 2 | Photographs of the HySpex system for airborne acquisition. (A) Delta wing XT-912 aircraft, (B) HySpex sensors in aircraft, (C) HySpex sensors
assembly, (D) main computer assembly, (E) 4 m × 4 m white reference panel, and (F) a geographical reference correction point. Details of HySpex sensors and
computer assembly:①HySpex VNIR sensor (Sensor 1),②HySpex SWIR sensor (Sensor 2),③ inertial navigation set,④ battery pack,⑤main computer case,⑥ air-to-
ground communication equipment and cables.

Frontiers in Earth Science | www.frontiersin.org June 2022 | Volume 10 | Article 8715294

Wang et al. Mapping Alteration Minerals Using HySpex

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


applied for mineral mapping and discrimination of
lithologic units.

Using hyperspectral images on our own HySpex airborne
flight, we extracted and identified alteration mineral
assemblages of the Yudai porphyry Cu (Au, Mo)
mineralization (Kalatag District, northwest China). The main
objectives of this study were to 1) acquire HySpex airborne
hyperspectral images of the Yudai Porphyry Cu (Au, Mo)
mineralization, 2) determine a workflow for processing
HySpex images, and 3) identify alteration minerals using a
random forest (RF) algorithm and a comprehensive field survey.

2 Study Area
The Eastern Tianshan in Xinjiang, northwest China, is a vital
component of the Central Asian Orogenic Belt as well as the
Altaids. The Kalatag district is located on the southern margin of
the Turpan–Hami Basin and hosts the Yudai, Hongshi,
Hongshan, South Meiling, and Meiling deposits. The Yudai
Cu (Mo, Au) deposit is a newly discovered porphyry Cu
deposit in the northwest part of Kalatag (Figure 1); this is a
key area of early Palaeozoic rocks in the Eastern Tianshan (Chen
et al., 2017). The deposit is a typical porphyry Cu deposit and
occupies an area of nearly 30 km2. Alteration and mineralization
have formed distinct zones around the quartz diorite porphyry,
with disseminated, vein, or veinlet Cu (Mo, Au) mineralization
types mainly related to potassic alteration such as biotite,
magnetite, and quartz (Sun et al., 2017).

The Xinjiang Karatag Jade Zonemining area is an arid area with
large amounts of evaporation and no vegetation cover on the
surface, making it suitable for the use of remote sensing data for
large-area mineral resources exploration work. Therefore, airborne
hyperspectral remote sensing provides a viable and reliable
alternative for a wide range of mineral mapping in this area.

3 HySpex Airborne Hyperspectral Imaging
System
HySpex hyperspectral sensors were mounted on a delta wing XT-
912 aircraft platform, a light vehicle with good gliding
performance, low cost, simple structure, ability to fold, and ease
of transport and storage. The assembly instrument, an airborne
flight tool for HySpex data, included HySpex sensors, a computer
assembly, an inertial navigation set, and a battery pack and was
mounted on the delta wing XT-912 aircraft (Figure 2).

The take-off and landing ground sliding range of the delta
wing XT-912 aircraft is between 50 and 150 m, the flight altitude
range is 50–4,000 m, and the flight speed range is 45–110 km/h.
According to the study area terrain, detection target, and spatial
resolution, the flight height of the HySpex airborne is
500–3,000 m. The airborne hyperspectral sensor of HySpex
consists of Sensor 1 and Sensor 2 imaging spectrometers,
which have spectral ranges of 0.4–1.0 and 0.93–2.5 μm,
respectively. It also consists of 504 spectral channels with
spectral sampling resolutions of 2.8 and 5.45 nm for Sensor 1
and Sensor 2, respectively. The sensors of VNIR and SWIR are
pushbroom scanners that use an angular recording image width
of 15 m. The field of view (FOV) can be doubled to 30° by a field

expander lens. Table 2 lists the spectrometer parameters of the
HySpex sensors of VNIR and SWIR.

The HySpex instrument is equipped with an inertial
navigation system that applies a correction of geometric
errors and georeferencing. The inertial navigation system
can record the posture data of the aircraft (i.e., the sensor)
in real-time to provide data support for the geometric coarse
correction of the image data in the later stage. Data are
transmitted and read through antennas between the
hyperspectral sensor and the inertial navigation system. The
antenna of the inertial navigation system should be aligned to
the sky and the control antenna to the ground.

Ground-based field tasks were synchronously carried out during
flight operations. A 4m × 4m white reference panel of identified
reflectivity (~80%) was placed on the ground in the test area. Several
geographical reference correction points were also placed on the
ground and measured by real-time kinematic navigation.

4 HySpex DATA PROCESSINGWORKFLOW

Figure 3 shows a workflow of HySpex data processing, including
data acquisition, data preprocessing, RF methods, and accuracy
evaluation. The afore mentioned stages are presented in more
detail below.

4.1 Flight Planning and Data Acquisition
Before the flight experiments, the route distance, length, height,
and flight speed were determined to ensure that repetition, a low
signal-to-noise ratio, and a spatial resolution of high spectral
imaging data were achieved. The relationship between route
spacing, flight height, and image repetition rate is as follows:

tan
A
2
� W
2H

(1)

D � 2 tan
A
2
× H × (1 − x) (2)

where D represents the route spacing, A represents the
instantaneous FOV angle of the spectrometer sensor, W
represents the scan width of a route, H represents the flight
height, and x represents the image repetition rate.

TABLE 2 | HySpex spectrometer parameters.

VNIR (Sensor 1) SWIR (Sensor 2)

Spectral sampling (nm) 2.8 5.45
Spectral range (μm) 0.4–1.0 0.93–2.5
Number of spectral bands 216 288
Spatial pixels 1024 384
Max frame rate (fps) 350 450
FOV across track (°) 17 14
Pixel FOV across/along track (mrad) 0.28/0.56 0.73/0.73
Digitization (bits) 12 16
Sensor head power consumption (W) 6 30
Detector material Si CCD Hg Cd Te
Sensor head weight (kg) 4.5 5.7

VNIR, visible and near-infrared; SWIR, short-wave infrared region.
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Flight experiments were conducted from October 9 to 11, 2017
between 09:00 and 12:15 local time in the area of Yudai. The
weather conditions were as follows: sunny, cloudless, 15°C—25°C,
and wind speed < 4 levels. To ensure that data splicing did not
produce voids and affect the quality of the data, the repetition rate
of the image data was set to approximately 40%. The instantaneous
FOV angle of theHySpex two sensors was 32°.When the delta wing
XT-912 aircraft was flown over the test site at an average altitude of
1 km above sea level, the average ground spatial resolutions were 1
and 1.2 m for the VNIR and SWIR images, respectively. Each route
length was designed to be 5 km, and each route had a scan width of
286.7 m. Depending on the flight height and repetition rate, the
route distance was approximately 400 m. Figure 4 shows the route
designed for flight planning, which included the designed route of
the flight location and flight endurance (Figure 4A), the flight
tracks obtained using HySpex AIR software (Figure 4B), and a
photo taken in-flight (Figure 4C).

For this study, we selected a small area as the method training
site. In the training site, we collected 26 hand specimens of

alteration minerals, and each sample was ground and mounted
on a glass holder for thin section preparation. We analyzed the
thin sections using photomicrographs to determine the alteration
and mineral composition of each specimen. The HySpex image
processing used the professional remote sensing software ENVI
5.3 (Environment for Visualizing Images 5.3).

4.2 Hyperspectral Images Preprocessing
The obtained HySpex hyperspectral raw data were the original
digital number (DN) value data without any physical significance;
the data were without coordinate systems but had very strong
geometric distortions and atmospheric effects. For the most
recent HySpex SWIR instrument, the so called “keystone”
effect (related to spatial mistration for different bands within a
pixel) and the spectral smile effect (the spectral curvature effect is
a spectral distortion) are considered during the data correction
process to remove spectral and spatial misregistrations
(Koloniatis et al., 2020). Data preprocessing forms the basis of
alteration mineral mapping analysis, and mainly consists of

FIGURE 3 | Workflow of HySpex data processing.
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radiation calibration, geometric correction, atmospheric correction,
and bad band removal. First, the original DN value was converted to
a radiation brightness value to obtain the attitude data of the flight
platform synchronized with the images using HySpex RAD and
HySpex NAV software, which was brought by the instrument
manufacturer of NEO A/S. Second, atmospheric correction of
the HySpex image data was performed by the atmospheric
correction ATCOR4 software (ReSe Applications LLC, Swiss).
Third, geometric correction, including coarse corrections and

precision corrections, was carried out. PARGE (PARametric
Geocoding, ReSe Applications LLC, Swiss)1, HySpex’s airborne
post-processing software, was used for orthorectification and
georeferencing with a standard digital elevation model. PARGE
used an empirical view angle correction method available in the
software to remove the view angle effects. Approximately 10
geographical reference correction points within the study area
were used for precision geometric correction. The resulting
geometric accuracy was > 0.50 m. Furthermore, a certified

FIGURE 4 | Route design for flight planning. (A) Designed route of the flight location and flight endurance, (B) flight tracks of HySpex AIR software, and (C) a photo
taken in-flight.

FIGURE 5 | Geometric correction, atmospheric correction, and bad band removal (A) before geometric correction preprocessing, (B) after geometric correction
preprocessing, (C) before atmospheric correction and bad band removal preprocessing, and (D) after atmospheric correction and bad band removal preprocessing.
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reflectance standard white reference panel of known reflectivity was
recorded with each image and used as reference material to convert
the obtained spectral data into reflectance data. To further analyze
the HySpex spectral data, image registration, noise removal, mosaic,
and mask were used by ENVI.

The efficacy of the geometric and atmospheric corrections was
assessed by comparing the spectra extracted from the original and
preprocessed image from the same location (Figure 5).

4.3 Random Forest Algorithm
RF is an ensemble learningmethod for data classification, regression,
and other tasks based on classification and regression trees (Breiman,
2001). The RF algorithm performs well with fewer training sample
sets, less computation time, and more accuracy through its out-of-
bag error estimation than other methods (Demarchi et al., 2014).
Moreover, it offers a cross-validation-like accuracy measure through
its out-of-bag error estimation and indicates variable importance
through the loss in accuracy when feature values are randomly
permuted (Breiman, 2001; Waske et al., 2012). Hence, when
remotely sensed spectra represent mixtures of a variety of
materials, RF is a highly robust discrimination method and can
improve overall prediction accuracy.

In this study, RF was run using the ImageRF toolbox of the
EnMAP-Box v2.2.1 software. ImageRF is an Interactive Data
Language-based tool for RF classification and regression analysis
of remote sensing imagery. A four-step image analysis workflow
consisting of model parameterization and application is shown in
Figure 4. First, the RF classification (RFC) model was made by a
reference dataset for training and internal validation. Second, the
RFC model was used to perform image classification. Third, the
accuracy of the model was estimated by comparing it with an
independent validation. Finally, themodel was applied to the target
image data.

4.4 Endmember Spectra Collection and
Spectrum Analysis
The collection and analysis of endmember spectra are the first
stages of classification because they are used as references for
subsequent processing and directly affect themapping results. Each
endmember spectrum is the average of 10 typical endmember
spectra obtained by manual selection from images collected with
the VNIR and SWIR sensors. We analyzed the spectral absorption
positions and overall spectral shapes based on expert knowledge to
select possible alteration mineral endmembers. In addition, the
spectra extracted from the HySpex image were compared with
existing reference library standard spectra from the United States
Geological Survey (USGS) spectral library (Kokaly et al., 2017). The
extracted spectral information was evaluated by interactive visual
inspection and ENVI 5.3. To complement this analysis, continuum
removal was used to find differences between varying spectra
(Clark and Roush, 1984). Continuum removal is generally
normalized in the range of spectral reflectance (0–1) to enhance
the absorption features and intensity of characteristic peaks.

In this study, images acquired by the VNIR and SWIR sensors
were used to map different alteration minerals. Alteration minerals
of metal ores (e.g., Fe, Cu, andMn) can bemapped using the VNIR
image of Sensor 1 (0.4–1.0 μm), and the OH-group and carbonate
minerals can be identified using the SWIR image of Sensor 2
(0.93–2.5 μm) (Sabins, 1999; Clark et al., 2003; Kruse, 2012).
Wavelengths outside the atmospheric windows of ~1.45 and
~1.91 μm of SWIR were eliminated from further consideration
because atmospheric water vapor causes strong disturbances in
these regions (Vane and Goetz, 1988; Magendran, 2014).

According to geological map and field references, endmember
extraction yielded average spectral features for most alteration
minerals in the study area, such as hematite, goethite, jarosite,
calcite, epidote, kaolinite, and chlorite (Figure 7). The standard

FIGURE 6 | Workflow of parameterization, application, and assessment of the random forest classification (RFC) model in the ImageRF toolbox of EnMAP-Box
v2.2.1.
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spectra, which were used for comparison with the endmember
spectra, were obtained from the USGS spectral library. The
common major absorption areas are highlighted by color blocks
corresponding to the chemical components’ letters and arrows.

5 RESULTS

5.1 Alteration Mineral Mapping
5.1.1 Iron Oxide Minerals
In the visible light bands, the endmember 1 spectrum displays a
significant absorption feature at 0.51 μm, weak absorption valleys
near 0.74 and 0.78 μm, and a distinct band centered at 0.91 μm
(Figure 7A).

A previous study on visible light spectra of minerals and rocks
found that crystal field effects are the most common electronic

processes and are associated with transition elements such as
ferrous (Fe2+) and ferric (Fe3+) iron (Hunt, 1971). Minerals
containing Fe2+ have a wide absorption range centered near
1.0–1.1 μm with a longwave slope that can extend to ~1.8 μm.
For example, Fe3+ minerals in jarosite have crystal field
absorptions near 0.51 μm (Hunt and Ashley, 1979). The
position of the ~0.91 μm absorption in hematite shifts to
longer wavelengths in goethite samples, and this can be
detected by hyperspectral imaging sensors.

The ferric iron minerals goethite (ɑ-FeOOH) and hematite (α-
Fe2O3) have distinct spectral curves in the region of 0.35–0.90 μm
owing to absorption induced by crystal field transitions near 0.46,
0.65, and 0.85–0.95 μm (Murphy and Monteiro, 2013). The
general chemical formula of jarosite is AB3(SO4)2(OH)6, in
which A represents K+ and B represents Fe3+ for typical

FIGURE 7 | Endmember spectra. (A), (B), and (C) Endmember 1/iron oxide minerals; (D), (E), and (F) endmember 2/clay alteration; and (G), (H), and (I)
endmember 3/propylitic alteration; (A), (D), and (G) reflectance of the endmember spectra; (B), (E), and (H) continuum removal spectra of endmembers and standard
spectra; (C), (F), and (I) continuum removal spectra (stacked) of endmembers and standard spectra.
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jarosite. The groups of jarosite minerals are important indicators
of aqueous, acidic, and oxidizing formation conditions (Singh
et al., 2016).

The spectra assigned to goethite and hematite show strong
absorption at 0.52 μm with matching bands at 0.42 μm
(Figure 7C). In addition, the spectra of goethite and jarosite
display a broad absorption feature at 0.91 μm with matching
band-189 of HySpex VNIR. The absorption of spectra between
0.91 and 0.93 μm (bands 187–96) can, therefore, be assigned to
hematite (Figure 7C). The wavelength position of the primary
Fe3+ absorption band (~ 0.92 μm) and the shapes of the
absorption edge and shoulder near 0.48 and 0.55 μm,
respectively, are most consistent with hematite, goethite,
jarosite, or their combinations (Figure 7C). However, features
of the endmember 1 spectrum show slight deviations and are
relatively weaker than the standard spectrum. There are two
possible reasons for this behavior: first, a mixing of the spectra of
hematite, goethite, and jarosite may have occurred, which also
mixes the spectra of primary rock-forming minerals and
secondary weathering minerals (Metelka et al., 2015); second,
there may be potential masking by pyrophyllite and chlorite
owing to Fe–OH and OH stretching and bending (Hosseinjani
Zadeh et al., 2014).

The iron oxide minerals (red-colored pixels in Figure 7) such
as hematite, goethite, and jarosite occur in a mostly longitudinal
distribution and coincide with mine pits and grooves in the Yudai
area, reflecting the secondary alteration of iron-rich minerals.
Under oxygen-rich conditions, oxidation is the main ironmineral
alteration, and secondary weathering minerals dominate the
reflectance spectra (Singh et al., 2016). Iron absorptions
associated with both primary rock-forming minerals and
secondary weathering minerals (hematite and goethite) were
detected in most samples (Metelka et al., 2015).

5.1.2 Clay Alteration Minerals
The spectral profile of endmember 2 has absorption bands centered
at 1.43, 1.91, 2.18, and 2.21 µm (Figure 7D), corresponding to
H2O, OH, Al-OH, and Mg-OH vibrations, respectively. In the
2.0–2.5 µm region (Figure 7E), the endmember 2 spectrum shows
characteristic absorption at 2.21 μm and minor changes in the
intensity of reflectance near 2.16 μm, which is an easily identifiable
bimodal feature. This strong absorption with discrete absorption
features at 2.21 μm is characteristic of Al-OH minerals
(Hosseinjani Zadeh et al., 2014). Kaolinite predictably exhibited
the strongest water overtones at 1.43 µm, in addition to water
combination bands at 1.90 µM, with strong OH combination
bands from 2.1 to 2.4 µm (Figures 7E,F). Most importantly, Al-
OH clays (kaolin-group minerals) have diagnostic absorption
features between 2.18 and 2.21 μm as a result of a combination
of Al-OH bending and OH stretching vibrations (Clark et al.,
2003). In our data, spectra with diagnostic absorption features at
2.16 μm (band of 440) and 2.21 μm (band of 449) attributable to
Al-OH vibration are indicators of kaolinite (Figure 7E).

Kaolinite, smectite, and illite are mainly the result of clay
alteration; this hydrothermal alteration of wall rock that contains
the alteration minerals of kaolinite alteration (light-green-colored
pixels in Figure 7) is concentrated near pits and grooves.

5.1.3 Propylitic Alteration Minerals
The reflectance change from the 2.0–2.5 μm region is lower, and
the endmember three spectrum tends to be similar to that of
calcite, epidote, and chlorite (Figure 7I). The SWIR spectrum
displays a weak absorption valley close to 2.26 μm and a distinct
band centered near 2.35 μm. In addition, Fe-OH molecules lead
to absorption bands at 2.44 μm (Murphy and Monteiro, 2013).
Figures 6H,I show the reflectance spectra of chlorite, calcite, and
epidote between 2.0 and 2.5 μm in the near-infrared that. The
diagnostic infrared absorption feature of calcite (CaCO3) is
focused at 2.34 μm, as is those of epidote [Ca2(Fe

3+,
Al)3(SiO4)3(OH)] and chlorite [(Mg, Fe2+)5 Al (Si3Al)
O10(OH)8] (Dalton et al., 2004). Even though we found a
small shoulder near 2.34 μm in the main absorption valley,
there is no corresponding absorption feature in the spectrum
of calcite. Calcite shows a weak and small absorption valley near
2.15 μm, that is, not detected for other minerals (Dalton et al.,
2004). The secondary absorption feature (~2.26 μm) of the
chlorite spectrum would have changed and obscured the
tendency and strength of the primary absorption feature
(~2.34 μm; Figures 7H, 5I). The spectral signature of epidote
has nearly the same features as that of chlorite. The spectral
relationships help with the identification of these minerals using
remote sensing data. The spectrum of endmember 3, which was
assigned to calcite, epidote, and chlorite, shows broad and strong
absorption at 2.35 μm, matching band 475 (Figure 7I). In
addition, the spectra with absorptions at 2.26 μm (band 459)
can be assigned to epidote and chlorite.

Propylitic alteration is the chemical alteration of rock, that is, rich
in biotite or amphibole owing to iron- and magnesium-bearing
hydrothermal fluids. Pixels indicating propylitic alteration (light-
blue-colored pixels in Figure 8) are the most common class of pixels
on the map of Yudai, demonstrating the dominance of propylitic
alteration over porphyry copper bodies. Chlorite, calcite, and epidote
can be identified through the method; however, the three
endmember minerals create discrepancies in areas where they are
combined and have different particle sizes.

5.2 Accuracy Evaluation
The accuracy of our mineral identification was evaluated via the
mineralogical analysis of samples collected during fieldwork
(Figure 9). We used the common classification comparison
method, overall accuracy, and Kappa classification accuracy.
The classification accuracy of iron oxide minerals, clay
alteration minerals and propylitic alteration minerals was
82.60, 62.16, and 70.59%, respectively. The overall
classification accuracy and Kappa classification were 73.08 and
65.73%, respectively. The experiments demonstrate that the
workflow for processing data and using RF algorithm is
feasible and active, and show a good performance in
classification accuracy.

The mineralogy of each HySpex image pixel identified using
the proposed method generally matched our field observations
(Foody, 2002). There was excellent consistency in the alteration
minerals observed through visual inspection (Figure 9). The
main alteration mineral assemblages were primarily distributed
around pits and grooves. However, minor differences were
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noticed, most of which were owing to co-occurrences of alteration
minerals in the study area. Furthermore, the poor effect of
classification includes some other environmental reasons, such
as shadows of mountains, valleys, and rock walls; the footprint of
wheels in the study area; and white holes caused by sun’s violent
reflection.

6 DISCUSSION

6.1 HySpex Airborne Hyperspectral Image
Data Acquisition
In this study, a HySpex aircraft system including HySpex sensors,
computer assembly, inertial navigation set, and battery pack was
successfully mounted on an aircraft platform. Using this system,
we designed a route and performed flight test acquisition,
geometric correction, and atmospheric correction based on the
collected hyper spectroscopic image to provide basic data for
corrosion information extraction. The final remote sensing data
were obtained through radiation correction, bad band removal,
spectral reconstruction, cutting, and splicing.

With recent fundamental developments in remote sensing,
sensor design, processing rate, computer power, and speed, this
technology has wide-ranging applications including mineral
identification with high-quality spatial resolution. Recent

research has focused on HySpex data from laboratory and
field-based research. Most studies have shown how spectra can
be interpreted and processed to produce mineralogical
information using an array of HySpex data, such as mine
faces, diamond cores, and drill chips (Kurz et al., 2008, 2009;
Buckley et al., 2013; Qiu et al., 2017). However, compared with
ground-based data, airborne acquisition of HySpex hyperspectral
data has several advantages in terms of convenience and
efficiency of data collection over large areas. In addition, the
images include data on the geological context and textures of a
rock unit and can detect faults and fractures as well as evaluate the
degree of veining or dissemination of minerals (Qiu et al., 2017).

Specifically, using HySpex airborne hyperspectral data in large
mining areas offers three distinct advantages. First, HySpex
airborne hyperspectral data connect both spectral and spatial
imaging methods, creating the illustration of objects in 504
contiguous and narrow spectral bands, with spectral
resolutions of 2.8 and 5.45 nm, respectively. Second, SWIR
sensors (0.93–2.5 μm) are used in combination with sensors
operating in the VNIR (0.4–1.0 μm) range, allowing the user
to separate and identify different alteration mineral assemblages
(Dalponte et al., 2013). Third, a very high spatial resolution can be
obtained using aerial platforms, which supports mapping at
different scales. The spatial resolution is based on the
performance parameter of the sensor, the flying altitude, and

FIGURE 8 | Alteration mineral map of the mineralization of Yudai.
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weather conditions during acquisition. With a delta wing XT-912
aircraft, spatial resolutions of 1 and 1.2 m were achieved for the
VNIR and SWIR images, respectively, enabling the accurate
identification and mapping of alteration minerals.

6.2 RF Algorithm
The RF algorithm refers to decision tree modeling of each
bootstrap sample using bootstrap resampling methods by
taking multiple samples from the original sample. When
image classification is performed using the RF method, the
final category of each image element is determined by the
joint voting after each decision tree. Therefore, the RF
classifier has a high-dimensional processing capability and can
solve problems that occur as a result of high spectra (e.g., few
training samples and class imbalance). To differentiate the
ensemble predictors, not all available features are used to
determine the optimum split point in a node. Instead, only a

predetermined number of randomly selected features are used to
avoid overfitting the model.

In this study, the identification of corrosion mineral
information differed from the conventional classification; it is
difficult to identify and extract the target information from the
algorithm in the absence of prior knowledge. Moreover, the
alternation mineral information has its own characteristics;
therefore, extracting information from complex ground object
spectra, making the property judgment, and then extracting the
training samples were all required. For the applicability of the RF
algorithm in imaging for the identification of high spectral erosion
mineral information, combining the RF algorithmwith the spectral
feature matching technique was the proposed method. During the
experiment, the training samples overcame the difficulty of
extracting corrosion mineral information, and the training
model of RF was constructed to apply the RF algorithm to
hyperspectral corrosion mineral information identification.

FIGURE 9 | Accuracy evaluation map, hand specimen photographs, and thin section photomicrographs at 10-fold magnification. (A) Iron oxide minerals, (B) clay
alteration minerals, (C) clay alteration minerals, (D) propylitic alteration minerals, (E) propylitic alteration minerals, and (F) iron oxide minerals. Qtz, quartz; Pl, plagioclase;
Ser, sericite; Py, pyrite; Ep, epidote.
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6.3 Identification and Mapping Alteration
Minerals
Themain absorption features of rocks in VNIR are affected by the
presence of various ironminerals, in addition tomixtures of ferric
oxides, ferric hydroxides, and other minerals (Ramanaidou et al.,
2007; Salles et al., 2017). Ferric oxides are recognized by their
various spectral properties; for example, an absorption edge at
0.52 μm, an absorption band or shoulder at 0.74 μm, and a strong
absorption band between 0.86 and 0.98 μm (endmember 1). The
SWIR region (0.1–2.5 μm) is key to identifying carbonates and
hydrous minerals (Clark, 1999; Guo et al., 2017) that are often
products of hydrothermal alteration. Spectral features at 1.0–2.5,
2.2–2.5, and 1.9 μm are attributable to O–H vibrations, hydroxyl
groups, and the water content of the rocks, respectively (Velasco
et al., 2005; Milton et al., 2009). All spectra exhibit several typical
absorption bands, including bound water resulting in absorption
bands generally at 1.4 and 1.9 μm, and structural water
absorption bands at 1.4, 2.2, 2.3, and 2.4 μm. The geometries
of sites occupied by water affect the shapes, intensities, and widths
of the 1.4 and 1.9 μm bands (Clark et al., 2003; Dalton et al.,
2004). We did not consider features located around 1.45 and
1.91 μm as features in these regions are attributable to
atmospheric water vapor (Vane and Goetz, 1988).

This study provides an example of the airborne acquisition and
utilization of HySpex hyperspectral data for mineral mapping and
the identification of lithologic units. By overcoming problems
regarding safety, flight technology, field wind impact, and image
processing, the preliminary results indicate that hyperspectral
images of HySpex provide excellent and effective data for
separating alteration mineral assemblages in the Yudai porphyry
mineralization. The spectral curve characteristics of Cu
mineralization show that the strong iron oxide/hydroxide
characteristic absorption at 0.51 μm and the weak absorption
valleys near 0.74 and 0.78 μm are caused by goethite and
hematite; the absorption bands centered at 2.18 and 2.21 µm are
caused by Al-OH andMg-OH vibrations; and the weak absorption
valley close to 2.26 μm and a distinct band centered near 2.35 μm
may be the reflectance spectra of propylitic alteration minerals.
According to the type and distribution characteristics of alteration
mineral assemblages by hyperspectral remote sensing and
geological characteristics of the study area, the hyperspectral
remote sensing prospecting model of the alteration mineral
assemblages of the Yudai copper deposit was determined as
iron oxide/hydroxide, clay, and propylitic alteration.

Notably, high classification accuracy with a low time-cost for
identification of alteration mineral assemblages in the mine pits
and grooves was obtained. However, the reflectance spectra did
not provide the complete identification and mapping of the
surface mineralogy. In the field investigation, physical
characteristics of minerals and rocks revealed that there is a
stain of iron oxide/hydroxide, clay, and propylitic alteration
minerals on the rocks and the surface of the mine pits,
whereas the grooves are colored yellow but change to red with
increasing depth. These changes occur mainly because of
hydrothermally altered minerals but can also be generated
through redox potentials at the time of weathering, and even

during secondary weathering (Tripathi et al., 2020). This
limitation is most likely related to the spectral resolution of
diagnostic absorption features of the field reflectance spectra,
the spectral resolution of the image, the spatial extent of the
ground target, the spatial resolution of the image, noise in the
image, and the accuracy of image preprocessing (Kodikara et al.,
2012). Moreover, geologic surfaces are always partly shielded with
non-geologic materials or composed of mixtures of minerals with
different grain sizes and varying grades of compaction and
weathering. The remote spectral measurements and the limit
on the number of pixels that can be classified and mapped were
greatly influenced by these factors.

By comparing the spectra of rock and ore samples from
hyperspectral images with standard spectra from the USGS
database and the open integrated rock spectral library, the
principle spectral absorption characteristics of the altered rock
units were comprehensively understood, laying a theoretical
foundation for mapping alteration products (Xie B. et al., 2022).
The total shape of some reference spectra differed from the
extracted spectra, most likely because the reference spectra are
based on pure materials, which are unusual in natural
environments. In addition, residual atmospheric absorption
features, grain size variation, rock/desert varnish of rock
surfaces, and calibration errors of laboratory spectrometers and/
or hyperspectral instruments may have contributed to these
differences. Therefore, image spectra, instead of library reference
spectra, should be used as reference spectra in the RF algorithm.

The applicability of the algorithm was verified experimentally
and provides a technical reference for subsequent work. However,
this study has some limitations. For classification, the problem of
mixed image decomposition may affect high spectral images.
Information identification in this study was based on image
endmembers, which directly affected the classification accuracy
and caused the results to show discrete points and discontinuities
in graph spots. Meanwhile, some environmental factors, such as
shadows, ground trajectory, and violent reflection also affect the
classification accuracy. Consequently, subsequent studies should
focus on extending our analyses over a wider range of spatial
scales, including field and laboratory scales, using hyperspectral
data with high spatial and spectral resolutions. HySpex sensors
can also be used in the field and laboratory to acquire ground
spectra of altered minerals, considering weathered surfaces, grain
size variation, and other natural variations. To increase our
understanding of the differences in spectra between mixtures
of minerals and pure minerals, spectral tests of such minerals and
mineral assemblages are required, both at field and laboratory
scales. In the meantime, we will expand our analyses to better
understand the connection between spectral features and mineral
alteration in addition to the mineral structure.

7 CONCLUSION

This study investigated the practicability of using HySpex
airborne hyperspectral imaging for the detection and mapping
of alteration zones in the Yudai porphyry mineralization area of
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Kalatag district, northwest China. The results show that HySpex
airborne hyperspectral data can be used to detect alteration zones.
The main conclusions are summarized follows:

1) The study presents an effective sequence for analyzing
HySpex airborne hyperspectral data for lithological
discrimination and mineral mapping. The analytical sequence
consists of geometric correction, atmospheric correction, bad
band removal, spectral reconstruction, the selection of a
classification method (RF algorithm), spectrum analysis, and
alteration mineral mapping.

2) Using alteration mineral spectra, expert knowledge, and an
RF algorithm, the distribution of alteration minerals was mapped.
Endmember pixel extraction yields average spectral signatures for
most alteration mineral assemblages (goethite, hematite, jarosite,
kaolinite, calcite, epidote, and chlorite). As remotely sensed
spectra generally represent mixtures of materials, the RF
method performs well.

3) Alteration mineral assemblages of iron oxide/hydroxide,
clay, and propylitic alteration were found, and their distributions
generally coincide with field observations. Although endmember
minerals can be identified using this proposed scheme,
discrepancies arise in areas where minerals occur as complex
mixtures. The shape of the spectral curve of endmembers can
change based on several factors, such as the replacement of iron
by aluminum, particle size variations causing trans-opaque
spectral effects in different wavelengths of the spectrum, and
particle shape.

HySpex sensors mounted on a delta wing XT-912 aircraft have
the advantage of producing integrated images and spectra. The
high spatial resolution produces images at a large scale, and the
high spectral resolution can facilitate the accurate identification of
alteration minerals. Hence, this study demonstrates that airborne
hyperspectral imaging can be widely applied to basic geological
research and mineral exploration.
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