
K. Khaksari et al.: Laser speckle modeling and simulation for biophysical dynamics … doi: 10.18287/JBPE17.03.040302 

J of Biomedical Photonics & Eng 3(4)  31 Dec 2017 © JBPE 040302-1 

Laser Speckle Modeling and Simulation for Biophysical 
Dynamics: Influence of Sample Statistics 

Kosar Khaksari1, and Sean J. Kirkpatrick2* 
1 Department of Biomedical Engineering, Tufts University, Medford, CT 02155, USA 
2 Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA 

* e-mail: sjkirkpa@mtu.edu  

Abstract. Laser speckle is a statistical phenomenon and should be treated as such when 
establishing experimental parameters for using laser speckle techniques to infer 
information about the dynamics of a coherently illuminated medium, such as biological 
tissue. Herein, we demonstrate that when sampling (imaging) speckle patterns, it is 
critical that the sampled speckle patterns are unbiased estimators of the underlying 
random speckle field. If this condition is not met, the quality of the results will be 
compromised. Specifically, this study examines the effects of first and second order 
spatial statistics of speckle intensity images on laser speckle contrast imaging results. 
Finally, it is recommended that when using speckle techniques such as laser speckle 
contrast imaging, investigators should examine the first and second order spatial 
statistics of a speckle image prior to collecting actual data. If this examination reveals 
that the imaged speckle intensity image is not an unbiased estimator of the underlying 
random speckle field, then adjustments should be made to ensure that the images taken 
are unbiased estimators of the true speckle field. © 2017 Journal of Biomedical 
Photonics & Engineering. 
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1 Introduction 
Laser speckle techniques are well established for 
investigating biophysical dynamics, including the 
motion of blood cells [1-3] and tissue mechanics [4-5].  
Laser speckle techniques possess numerous advantages 
as tools for investigating dynamic biological systems, 
including but not limited to good spatial resolution, high 
sensitivity to motions, relative simplicity, and cost 
effectiveness.  These same features, however, present a 
weakness of the techniques. That is, it is relatively 
simple to get data.  The simple act of illuminating a 
scattering surface or volume with coherent radiation 
(i.e., laser light) will result in the appearance of a 
speckle pattern in the observation plane. If the scattering 
medium is dynamic, then the observed speckle pattern 
will also appear to be temporally dynamic and estimates 
of this motion are easily made [6].   

However, laser speckle is a statistical phenomenon 
and this fact must be accounted for in both the 
experimental parameters that are established to spatially 
and temporally sample the scattered speckle field and 
also in the approaches used to assess the speckle 
dynamics.  In other words, the sample statistics of the 
observed intensity pattern must be unbiased estimators 
of the true scattered field.  The result of not meeting this 
minimum sampling requirement can result in significant 
errors in the analysis of speckle dynamics.  This paper 
will focus on the spatial sampling of the speckle 
intensity patterns and will not address temporal 
statistics.  

The first and second order statistics of laser speckle 
patterns are well established for both ‘fully developed’ 
(polarized) and ‘partially developed’ (un-polarized) 
speckle patterns [7] and it is not necessary to present a 
full description of these statistics herein.  Yet, a brief 
overview is necessary as the remainder of the present 
paper explores the effects of inadequate spatial 
sampling of laser speckle patterns such that the sample 
statistics are not unbiased estimators of the true 
underlying statistics.   

We begin by noting that laser speckle may be 
viewed as the result of the coherent summation of 
randomly phased Huygen’s wavelets.  Indeed, speckle 
as a general phenomenon arising from the coherent 
illumination of a scattering surface or volume can be 
viewed in this fashion regardless of the form of the 
radiation (e.g., coherent x-ray, ultrasound, etc.).  Thus, 
for the remainder of this paper we will generalize and 
simply refer to the speckle phenomenon as speckle and 
drop the ‘laser’ modifier.  It is left up to the reader to 
make the appropriate substitutions when necessary.  
These randomly phased wavelets can be viewed as 
arising from a real source in the case of imaged (or 
subjective) speckle or a virtual source in the case of 
non-imaged (or objective) speckle.  Observing the 
speckle pattern intensity with a bare CCD or CMOS 
chip without an intervening system of imaging lenses 
would be an example of the latter case.  Note that this 
configuration is equivalent to imaging at infinity.  
Regardless of the mode of observation, however, the 
physics of the speckle formation is identical and both 
imaged and non-imaged speckle display identical first 
and second order statistics.  For this manuscript, first 
order statistics refer to the statistics at a single point in 
time and space, while second order statistics describe 
the relationships between neighboring points.  First 
order statistics describe, for example, the intensity at a 
given pixel, while second order statistics describe the 
spatial structure of a speckle pattern [8].   

1.1 First Order Statistics 
Consider the situation displayed in Fig. 1.  The desire is 
to describe the fields in some observation plane L 
distant from the illuminated surface.  To do this, we 
consider the surface fields to be equivalent to a finite 
number of secondary Huygens’ wavelets.  The ‘finite’ 
restriction will be subsequently relaxed.  If we ignore 
the nR/1  dependence of the individual wavelets and 
make the valid assumption that there is no systematic 
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variation in phases (i.e., the wavelets are truly randomly 
phased) then the fields at the surface can be expressed 
by  

A = 1
N

αne
iφn

n=1

N

∑ ,  (1) 

where N is the number of summed wavelets.  

	
Fig. 1 Geometry of speckle observation.  The 
observation plane is located at L and s is the extent of 
the illuminated portion of the surface. 

Since we are treating the observation fields as the sum 
of randomly phased phasors, as N →∞  the sum 
becomes asymptotically circularly Gaussian.  The joint 
probability density function (PDF) for the real and 
imaginary parts of a circular Gaussian complex variable 
is readily shown to be [7,8] 

PRI r,i( ) = 1
2πσ 2 exp

r2 + i2

2σ 2

⎧
⎨
⎪
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⎫
⎬
⎪
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where σ 2 =σ r
2 =σ i

2  is the standard deviation of the 
underlying random process. 

By integrating over the real and imaginary parts 
such that the integral of the joint PDF equals unity and 
switching to polar coordinates where 

A = R2 + I 2  and  θ = tan−1 I
R

,    

we see that  
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The term in the brackets of Eq. (3) is the PDF of the 
amplitude and defines the Rayleigh distribution when 
a ≤ 0  .   

Since intensity, not amplitude, is what is observed in 
Fig. 1, by following the preceding approach for 
intensity, I = a2  , the integral becomes 

di
2 i
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(4) 

The term in the brackets is the negative exponential 
PDF of intensity (Fig. 2).   This PDF can be expressed 
by [9] 

pI i( ) = 1
µ
e
− i
µ ; 0 ≤ i.

 
(5) 

	
Fig. 2 Negative exponential PDF of intensity for a 
polarized laser speckle pattern.  The expected value of 
the intensity in the speckle pattern is given by 

E I{ } ≡ µ = i pI i( )di
0

∞

∫ = 2σ 2 .  

1.2 Laser Speckle Contrast 
The contrast, c, of a laser speckle pattern is a first order 
property that is frequently investigated in order to infer 
properties related to the dynamics of a biophysical 
system.  For example, laser speckle contrast imaging 
(LSCI) is a commonly employed modality used for the 
relative and qualitative imaging of blood flux [1, 2, 10].  
LSCI and related modalities are relatively simple to 
implement, have wide fields of view, and relatively 
good spatial and temporal resolution.  These features 
have allowed these techniques to be used as powerful 
tools in the measurement and monitoring of biophysical 
systems in near real-time. 

In addition to the statistical considerations discussed 
below, LSCI results depend upon several other 
experimental considerations as discussed in the review 

z
s

L

x

nR

z
s

L

x

nR



K.	Khaksari	et	al.:	Laser	speckle	modeling	and	simulation	for	biophysical	dynamics	…	 doi:	10.18287/JBPE17.03.040302	

J	of	Biomedical	Photonics	&	Eng	3(4)	 	 31	Dec	2017	©	JBPE	040302-4	

	
Fig. 3 Simulated speckle pattern (left) with a minimum speckle pattern – 4 pixels and corresponding contrast image 
(right).  Contrast was calculated over a  7× 7  sliding window.  Calculated global contrast = 1.0. 

by Briers et al. [2].  Recently, Khaksari and Kirkpatrick 
[10, 11] have demonstrated that ultimately, LSCI is 
sensitive to advective flux, scattering and absorption.  
Indeed, these three variables are challenging to 
disassociate from one another in terms of their influence 
on LSCI.   

The contrast, c, of a speckle pattern is typically 
defined as the quotient of the standard deviation σ I   

and the mean µI   of the measured intensity: 

c =
σ I

µI
.  (6) 

For speckle patterns exhibiting and exponentially 
distributed intensity PDF (see Fig. 2), this value is 
exactly unity.  The concept behind LSCI is to relate the 
motion of scatterers (blood cells) in the object space to 
the motion (and thus time integration) of speckles in the 
observation, or imaging space.  Thus, the imaged 
speckle intensity pattern must be an unbiased estimator 
of the true dynamic speckle field arising from the 
moving scatterers.  Otherwise, establishing this 
relationship between the moving scatterers and the 
observed speckle intensity is fundamentally impossible.   

Thus, while contrast is defined in terms of expected 
values (see Eq. 6), in practice it is calculated over a 
local spatial (or temporal, or both) neighborhood in 
terms of the sampled statistics for the intensity: 

C = S
M
;

M = 1
Ns

Ii
i=1

Ns

∑ ;

S 2 = 1
Ns −1

Ii −M( )2
i=1

Ns

∑ ,

 (7) 

where M is the mean intensity of the sampled speckle 
and S 2  is the standard deviation of the sampled 
intensity, I.    If it is assumed that the sample statistics 
(M and S 2 ) are unbiased estimators of the true field, 
then as the number of samples theoretically goes to 
infinity, then the estimate of the contrast approaches the 
theoretical value of unity.  In practice, the number of 
samples does not need to approach infinity, it is 
sufficient at this point to note that the number of 
samples just needs to be ‘large’.  Thus, we can write: 

S
M Ns→∞

⎯ →⎯⎯⎯ σ
µ
.  (8) 

This is demonstrated in Fig. 3.   
The details of how the speckle pattern in Fig. 3 was 

generated are given below in the Methods section, as is 
the calculation of minimum speckle size.  As 
demonstrated by Duncan et al. [12], and is obvious from 
the contrast image in Fig. 3, the local values of contrast 
exhibit a distribution.  In Fig. 3, the local contrast 
(calculated over a 7× 7 sliding neighborhood window) 
values ranged from a minimum of approximately 0.2 to 
a maximum of approximately 1.7.  An examination of 
the PDF of the contrast values reveals that the PDF of 
the local contrast is closely described by a log-normal 
distribution of the form 

fC c( ) = 1

2π c lnσ g

exp −
ln2 c cm( )
2ln2σ g

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,

 
(9) 

where cm  is the median value and σ g  is a 
dimensionless width parameter.  The shape of this PDF 
is shown in Fig. 4 [12].   
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Fig. 4 Log-normal distribution of contrast values 
calculated over a 7× 7  sliding window for a speckle 
pattern with a speckle size of 4 pixels.   

It should be noted here, that typically when 
discussing sample statistics, the implicit assumption 
(although not required) is that the samples are 
statistically independent.  Recall that in the example 
above, the speckles size equaled 4 pixels. This is 2x the 
spatial Nyquist criteria [13].  Thus in the example 
above, the speckle field was sampled above the spatial 
Nyquist limit and the smallest speckle extended over 
several pixels.  Also note, that as is discussed below, the 
correlation length of the speckle pattern is on the order 
of the smallest speckle. Thus, the samples of intensity 
are not statistically independent.   

This lack of statistical independence suggests that 
the median cm  and width σ g  parameters of Eq. 9 will 
depend upon the size of the neighborhood over which 
the contrast is computed and on the size of the speckles 
relative to size of the pixels in the observing camera.  
Absolute size of the speckles is not a consideration in 
and of itself, per se.  It is the relative size of the speckles 
to the pixels that is of interest.  These considerations are 
examined below.   

1.3 Second Order Statistics 
The spatial structure of a speckle pattern is described by 
the size of the observed speckles.  Speckle size can be 
approximated as the square root of the coherence area of 
the speckle intensity pattern. The coherence area, in 
turn, is a function of the covariance of the intensity 
distribution [8].  The second order statistics of a speckle 
pattern describe, in essence, the coarseness [7] of the 
spatial structure.  The distribution of speckle sizes in a 
speckle pattern has readily been found by either 
examining the full width at half-maximum (FWHM) of 
the autocorrelation function of the speckle intensity 
pattern or, alternatively, the spatial frequency 
distribution of the speckle pattern can be quantified by 
calculating the power spectral density (PSD) of the 

intensity pattern [7, 14].  Either approach yields the 
same information as the autocorrelation function and the 
PWD constitute a Fourier transform pair. 

An alternative approach of using spatial Poincaré 
plots with variable lag lengths was recently presented by 
Majumdar and Kirkpatrick [15]. This approach reduces 
some of the uncertainties associated with the approaches 
discussed above, particularly as the speckle size gets 
large and also provides a more physical connection with 
speckle size and the correlation length of the intensity 
pattern. The effects of spatially under sampling the 
speckle filed is discussed in subsequent sections of this 
paper. 

The remainder of this paper is devoted to a 
discussion of the effects of spatial sampling of laser 
speckle fields on laser speckle contrast images.  In 
particular, the remainder of the manuscript focuses on 
the situations where the sample speckle image is not a 
statistically unbiased estimate of the true underlying 
scattered field. Both simulated speckle fields and actual, 
imaged speckle intensity patterns are used as examples. 

2 Methods 

2.1 Laser Speckle Numerical Simulation 
Simulated band-limited speckle patterns were generated 
in the Matlab  environment by filling a circular masks of 
radius Rr embedded in a larger zero-padded space with 
random complex numbers over the interval of 0,2π⎡⎣ ⎤⎦ .  
The spaces were Fourier transformed and multiplied by 
their complex conjugates, generating polarized speckle 
patterns exhibiting negative intensity PDFs (Fig. 2).  
The size of the speckles was altered by changing the 
relative size of the circular mask to the surrounding 
zero-padded space.  When the speckle size equaled 2 
pixels, the spatial Nyquist criteria was met [13].  This 
process for generating synthetic speckle patterns has 
been used extensively in the past [2, 6, 12, 13-15].   

Using these speckle patterns, the effects of the 
neighborhood size over which speckle contrast was 
calculated was investigated as a function of speckle size 
and the results compared to those obtained when the 
sampled intensities were statistically independent from 
each other.  That is, when the speckle size ≤1.0  pixels 
(see above).  Neighborhood sizes ranging from 3× 3  
pixels up to 13×13  pixels were investigated.  The 
largest speckle size investigated was 3×  the Nyquist 
criteria size (i.e., 6 pixles) and the smallest (under-
sampled) speckles were 1 pixel in size.   

These simulations were used explicitly to examine 
what happens when the second order statistic (speckle 
size) of the sampled speckle intensity pattern is not an 
unbiased estimator of the underlying speckle field.   
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Fig. 5  Optical layout for using a nematic liquid crystal SLM for creating laser speckle patterns and simulated laser 
speckle contrast images.  The intensity of the light incident on the SLM was varied by adjusting the ND filters in front 
of the stabilized 633 nm HeNe laser. (reproduced with permission from Ref. [16]). 

2.2 Laser Speckle Contrast Imaging 
Simulation Using a Spatial Light 
Modulator 

The effects of incorrect first order statistics on LSCI 
was investigated by simulating LSCI experiments with a 
nematic liquid crystal spatial light modulator (SLM) 
operated in the phase-only mode [16].  The focus of 
these experiments was to adjust the total intensity of the 
speckle patterns created via the SLM in the image plane 
of a CMOS camera and assess the resulting first order 
statistics of the speckle patterns.  As the intensity PDFs 
of the speckle patterns changed as a result of altering 
incident intensity on the SLM, the effects on LSCI were 
investigated.  Two separate analyses were performed to 
investigate the influence of first order statistics on 
LSCI.  First, the global contrast of the speckle patterns 
generated with varying incident intensities was 
calculated in order to investigate whether the first order 
statistics had an influence on global contrast.  Second, 
an analysis was performed on speckle patterns 
generated with the SLM that had a central region with a 
shorter decorrelation time, τ c1  , than the surrounding 

speckle regions with a longer τ c2  .  The central region 

mimicked a vessel carrying blood flow while the 
surround speckle simulated more ‘static’ regions.  While 
all other variables, such as camera integration time and 
speckle size were held constant, the intensity incident 
on the SLM was systematically varied.  The difference 
in contrast between the ‘fast’ and ‘slow’ regions was 
compared and contrasted.   

A detailed description of the procedures is given in 
Kirby et al. [16], so only a brief overview will be 
presented herein.  Readers are referred to Kirby et al. 
[16] for details.  The optical layout is presented in Fig. 
5. The figure is reproduced with permission from 
reference [16].   

In the SLM arrangement, the SLM (Boulder 
Nonlinear Systems XY Series, model P512) is 
illuminated by a 2.5 mW stabilized HeNe laser emitting 
at 633 nm.  The resulting speckle patterns were imaged 
via a 4f lens system with an 8-bit CMOS camera 
(Thorlabs, DCC1545M High Resolution USB 2.0 
CMOS Camera).  The half-wave plate ( λ / 2  plate) in 
the incident arm combined with the analyzer in the 
imaging arm allowed the SLM to operate in the phase 
only mode and also to produce polarized speckle 
patterns.  The magnification of the system was 
calculated and measured to be 0.5.   

To generate speckle patterns from the SLM, a 
sequence of 50 phase screens was loaded to the SLM.  
The phase screens were generated in the Matlab 
environment by filing a 512× 512  array with randomly 
generated complex numbers of unit amplitude with 
phases uniformly distributed over the interval 0,2π⎡⎣ ⎤⎦  .  
A look-up table ensured that the phase modulation 
resulted in a linear relationship between the phase 
distribution, 0,2π⎡⎣ ⎤⎦ , and the resulting gray values 

0,255⎡⎣ ⎤⎦ . The scattered light remained both temporally 
and spatially coherent, allowing for random interference 
to occur when the scattered light impinged upon the 
CMOS chip.  Speckle patterns were thus produced.   

Using the copula approach described by Duncan and 
Kirkpatrick [14], the phase screens, and thus the 
resulting speckle patterns, de-correlated in a user-
defined fashion.  In the present experiments the speckles 
decorrelated following a Gaussian decorrelation 
function.  Regions that were made to simulate a blood 
vessel decorrelated approximately 16 times faster than 
the surrounding, more slowly moving speckles.  This 
value was chosen through a purely empirical process so 
that the resulting laser speckle contrast images visually 
resembled actual speckle contrast images acquired in 
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Fig. 6 Dependence on local neighborhood size for the first two moments of the local contrast.  Median (left) and width 
parameter (right) for a sampled speckle pattern exhibiting an exponential PDF.  Speckle size was 4 pixels/speckle. 

	
Fig. 7 Parameters of contrast distribution as a function of local neighborhood and speckle sizes.  The results for the 
statistically independent situation is presented as well (dotted line). 

the laboratory. The minimum speckle size in the imaged 
speckle patterns was approximately 3.25 pixels per 
speckle.  Thus, the speckle size exceeded the minimum 
as determined by the (spatial) Nyquist criteria.   

To create time integrated speckle patterns in order to 
create laser speckle contrast images, sequential frames 
were summed on an intensity basis to simulate the 
speckle blurring observed in an actual LSCI experiment 
when dynamic speckle imaged with a finite exposure 
time.  The blurred speckle resulted in a reduced contrast 
as is seen in LSCI.   

As the goal in these experiments was to alter the first 
order statistics of the sampled (imaged) speckle 
patterns, the incident intensity was varied over 4 orders 
of magnitude.  This resulted in some speckle images 
with an excess of dark pixels (due to under-exposures) 
and at the other end of the spectrum, some speckle 

images with an excess of saturated pixels.  Both of these 
conditions alter the first order statistics of the speckle 
images.   

3 Results 

3.1 Effects of Neighborhood Size on LSCI – 
Second Order Statistics 

To examine the effects of second order statistics on the 
PDF of a speckle contrast image, we first present the 
results of results of local neighborhood size over which 
speckle contrast is calculated [12].  As discussed above, 
the initial speckle size in this analysis was 4 pixels per 
speckle, or 2×  the Nyquist lower limit.  As can be seen 
in Fig. 6, as the neighborhood size increases, cm →1.0  
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Fig. 8a-d  Speckle patterns at various exposures. The top left image is over-exposed and the bottom image slightly 
underexposed.   

and σ g →1.0  .  Both of these results are consistent with 
the unbiased nature of the sample statistic for contrast.  

To examine the effects of speckle size (which is a 
second order statistic) on the above results, the 
simulation was repeated for varying speckle sizes.  The 
results are presented in Fig. 7 for speckle sizes at the 
Nyquist limit, at 2×  and 3×  the Nyquist limit.  
Additionally, the simulation was repeated when the 
sampled speckles were statistically independent of one 
another.  In other words when the speckles were under-
sampled and had sizes ≤1.0  pixel. 

From a practical standpoint, these results indicate 
that in order to maintain statistical validity, the speckle 
pattern must be sampled spatially in a manner that 
meets the Nyquist criteria.  That is, the minimum 
speckle size must be at least 2 pixels per speckle.   

3.2 Effects of Intensity PDF on LSCI – First 
Order Statistics. Global Contrast 

As discussed above, global contrast on a properly 
sampled speckle image should equal unity.  In this 
section, the results of sampling the speckle field so that 
the intensity distribution is not an unbiased estimator of 
the true scattered field is examined.  As discussed 
above, this was accomplished by either under or over 
exposing the speckle images.   

Figures 8a-d and 8e-h display static speckle images 
at several exposures along with their respective intensity 
PDFs. 

The top set of images in Figs. 8 were taken at 100% 
power from the laser and the bottom set of images were 
taken with a relative intensity of 0.1×  that maximum 
intensity (i.e., 4 orders of magnitude lower). 

When the global contrast of speckle images with 
different exposures was calculated, it was found that 
those speckle images that had displayed a negative 
exponential intensity PDF had the highest contrast, 
while those that were either over exposed or under 
exposed, and thus did not display a negative exponential 
PDF, had a lower global contrast.  These results are 
shown in Fig. 9. 

Recalling that contrast is defined as the ration of the 
mean of the intensity to the standard deviation of the 
intensity (Eq. 6), then the results displayed in Fig. 9 can 
be explained by looking at each of these statistical 
descriptors individually.  Figure 10 plots the means and 
standard deviations of intensity for the speckle images 
used to generate the data of Fig. 9.  At the upper and 
lower ends of the plot, it is seen that the standard 
deviations decrease relative to the means as a result of 
pixel saturation (for over exposed images) or under 
exposure at the opposite end.   
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Fig. 8e-h  Intensity PDFs of the speckle patterns shown in Figs 8a-d, respectively.  The top left image is over-exposed 
and the bottom image slightly underexposed.  Partially reproduced with permission from Ref. [16]. 

	
Fig. 9 Global contrast for static speckle images with 
different exposures that altered the intensity PDFs of the 
images.  The highest contrast values were for speckle 
images that displayed a negative intensity PDF.  
Reproduced with permission from Ref. [16]. 

	
Fig. 10 Means and standard deviations of intensity for 
speckle images at different exposure levels.  In the 
central portion of the plot, the means and standard 
deviations are nearly equal, giving a contrast of 1.0.  
Reproduced with permission from Ref. [16]. 
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Likewise, for the simulated laser speckle contrast 
images, incident intensity that moved the intensity PDF 
away from a negative exponential PDF, resulted in a 
smaller difference between the ‘fast’ decorrelating area 
that mimicked a blood vessel and the slower 
decorrelating areas that mimicked the surrounding 
tissues.  This is shown in Figs. 11a and 11b.   

	
Fig. 11a Simulated LSCI image. The central ‘flow’ 
region can be seen and the had a decorrelation time 
approximately 16 times faster than the surrounding 
‘static’ region. 

	
Fig. 11b The ability to discriminate between the flow 
and static regions in Fig. 11a decreased when the 
incident intensity was either too low or too high.  Red 
stars display the contrast in the flow region, while the 
black dots display the contrast of the ‘static’ region.  In 
the central region of the curves, the intensity PDFs of 
the speckle images followed a negative exponential 
behavior.  At the ends the intensity PDFs were not 
negative exponentials.  Reproduced with permission 
from Ref. [16]. 

When the ratio of the contrast in the static region to 
the contrast in the flow region was plotted as a function 
of incident intensity, the trend seen in the above 
simulations was repeated. That is, when the intensity 
PDF of the speckle images was a negative exponential, 
the ratio in contrast between the two regions was a 

maximum.  This is shown in Fig. 12. The ratio of 
contrast in the two regions was defined in decibels as 

Kratio = 20log10
Kstatic
K flow

⎛

⎝
⎜

⎞

⎠
⎟ .  (10) 

	
Fig. 12 Ratio between static and flow regions in the 
simulations as a function of relative incident intensity.  
As the ends of the curve, the ratio decreases.   In the 
middle of the curve, the intensity PDFs of the speckle 
patterns were negative exponentials.   

4 Discussion 
The results of these simulations and experiments 
reinforce the fact that laser speckle is a statistical 
phenomenon and must be treated as such.  The results 
further demonstrate that the sample speckle intensity 
must be an unbiased estimate of the true, underlying 
random process that speckle is.  The results presented 
herein demonstrate that contrast is maximized the 
speckle field is sampled so that the sampled speckle 
intensity is described by a negative exponential PDF 
and so that the minimum speckle size is at least 2 pixels 
per speckle in order to satisfy the Nyquist criteria.   

Frequently, the use of the so-called ‘coherence’ 
factor, β , has been invoked in LSCI for the purpose of 
correcting for insufficient spatial sampling of the field 
[1, 17, 18].  This factor originates from the Seigert 
relation that relates the intensity autocorrelation 
function to the field autocorrelation function in quasi-
elastic light scattering (QLS).  It should be noted that 
while LSCI and QLS are related techniques, their 
sampling requirements are very different.  In particular, 
β  is technically used to correct for under sampled 
speckles, that is, for speckle patterns where the 
minimum speckle size is below the Nyquist 
requirement.  Roughly, β  is equivalent to the inverse of 
the number of speckles per pixel.  However, it is 
frequently invoked, perhaps inappropriately, as a 
universal ‘instrument’ factor to account for all sampling 
and instrument errors.  The arguments above indicate 



K.	Khaksari	et	al.:	Laser	speckle	modeling	and	simulation	for	biophysical	dynamics	…	 doi:	10.18287/JBPE17.03.040302	

J	of	Biomedical	Photonics	&	Eng	3(4)	 	 31	Dec	2017	©	JBPE	040302-11	

that it is statistically more appropriate to sample the 
underlying speckle field adequately in the first place, 
than to attempt to correct for this with a correction 
factor. 

The results of this study lead to a recommendation 
that prior to taking speckle measurements, such as LSCI 
measurements, that a single speckle image (single 
frame) be acquired and the first and second order 
statistics analyzed to ensure that the sampled speckle 
pattern is an unbiased estimator of the true, underlying 
speckle field.  If the acquired speckles are too small, or 
if the intensity distribution of the speckle image is 
anything but a negative exponential (for a polarized 
speckle pattern), then adjustments should be made to 
ensure that these conditions are met prior to acquiring 
data. 
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