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Abstract

Multiscale models are ones that link the epidemiological processes dealing with the transmission
between hosts and the immunological processes dealing with the dynamics within one host. In
this study, a multiscale model of Ebola Virus Disease linking epidemiological and immunological
processes has been developed and analysed. The model has considered two infectious classes ;
the exposed and the infected individuals. Local and global stability analyses of the Disease Free
Equilibrium and the Endemic Equilibrium points of the model show that the disease dies out if
the basic reproduction number Rc0 < 1 and persists in the population when Rc0 > 1 respectively.
Sensitivity analysis shows that the rate of vaccination, v , is the most sensitive parameter. This
indicates that effort should be directed towards implementing an effective vaccination strategy
to control the spread of the disease. It has also been established that when treatment efficacy is
scaled up, the viral load goes down and consequently, the transmission between hosts is also
reduced. The impact of treatment on the disease spread has also been established through
the coupling function λ(L∗) . The study indicates that a higher percentage of the exposed
and the infected individuals should be treated to control the spread of the disease within the
population.

*Corresponding author: E-mail: doganga@mmust.ac.ke;

http://www.sdiarticle4.com/review-history/56387


Oganga et al.; ARJOM, 16(6): 53-69, 2020; Article no.ARJOM.56387

Keywords: Ebola virus disease; viral load; local and global stability; disease free and endemic
equilibrium; sensitivity analysis; simulations.

Subject Classification: 37M05.

1 Introduction

Ebola virus disease (EVD), which is caused by Ebola virus is a rare and deadly illness whose
mortality rate is high, sometimes as high as 90% [1]. It is introduced into the human population
through close contact with the blood, secretions, organs or other bodily fluids of infected animals
such as chimpanzees, gorillas, fruit bats, monkeys, forest antelopes and porcupines found ill or
dead in the rain forest. It then spreads through human to human transmission via direct contact
(through broken skin or mucous membranes) with the blood secretions, organs or other bodily fluids
of infected people and with surfaces and materials such as bedding and clothing contaminated with
these fluids [2].

The Characteristic symptoms of EVD which appear between 2 to 21 days include fever, joint
and muscle aches, abdominal headache, sore throat, diarrhea, vomiting, stomach pains and body
weakness. One week after the onset of symptoms, a rash often appears followed by hemorrhagic
complications leading to death after an average of 10 days in 50 to 90% of infections [3]. Due to
its deadly nature, a number of efforts are being employed to combat the disease. These include
vaccination, treatment which mainly involves supportive care to maintain adequate cardiovascular
function while the immune system mobilizes an adaptive response to eliminate the infection, quarantine
of the infected individuals and safe burial of the infected who die.

The disease first emerged in 1976 in Sudan and Democratic Republic of Congo. The first outbreak
of Ebola (Ebola-Sudan) infected over 284 people with a mortality rate of 53 %. A few months later,
the second Ebola virus emerged from Yambuku, Democratic Republic of Congo (Ebola-Zaire) . It
infected 318 people and it has the highest mortality rate, 88%. Other major outbreaks have been
in Kikwit Congo (1995), Gulu Uganda (2000), Librevile Gabon (2000), Mbomo Congo (2002 and
2003), Luebo Congo(2007), Bundibugyo Uganda (2007) and in West Africa in Guinea, Sierra Leone
and Liberia (2014) [4]. This outbreak in West Africa is the deadliest outbreak recorded in history.
Currently, there is an outbreak that is going on in Democratic Republic of Congo (DRC). It was
declared on 1st August 2018. As at 10th April, 2019, 1206 confirmed and probable cases had been
reported during this outbreak in DRC and by 10th April 2020, confirmed cases were 3,456 and
deaths were 2,276 according to World Health Organisation (WHO).

For most viral infectious diseases, there are two key processes in the host-parasite interaction. One
is the epidemiological process, dealing with the disease transmission among hosts, and the other is
the immunological process at the within host level [5]. Many at times, these processes are decoupled
from one another.

Several Mathematical models to study EVD have been developed and analysed. These include
the between host models in the references ([3],[6],[7][8],[4],[9], [10])among other studies, within host
models in the references ([1],[11],[12] [13]) among others and a few multiscale models. For instance,
Alexis et al. [14] developed a multiscale model of within host and between host for viral infectious
diseases (can be applied to EVD). Here, the within-host model describes virus replication and
the respective immune response while disease transmission is represented by a simple susceptible-
infected (SI) model. The within host subsystem is given as;

dV

dt
= pV (1− V

Kv
)− cvEV, V (0) ≥ 0,

dE

dt
= (NE − δEE) +G(V )E,E(0) ≥ 0. (1)
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V denotes the virus, E denotes the T-Cell population, p denotes the virus replication rate and Kv

denotes the carrying capacity. They imposed the following properties; G(0) = 0 , G′(V ) = dG
dV

> 0

and considered a special case of G in the Michaelis-Menten form G(V ) = rEV
V+KE

in the analysis.
In this model, T- cells are replenished at a constant rate NE and they are cleared at the rate δE .
The virus is cleared at the rate cv while rE and KE denote maximum value and half saturation
constant respectively.

The between host model is given below;

dS

dt
= (NS − δSS)− βSI, S(0) > 0,

dI

dt
= βSI − δII, I(0) ≥ 0. (2)

where β denotes the transmission rate while δS and δS denote the death rate of susceptible
individuals and infected individuals respectively. In this work, the bridge of within- to between-
host was by considering transmission as a function of the viral load of the within-host level. i.e
β = β(V ) and it has the properties β(0) = 0 , β′(V ) > 0 . They considered three different functional
forms of the coupling function including a linear, logistic and saturation function in their numerical
analyses.

Their main result was the derivation of the between host model reproduction number as a general
increasing function of the within host model reproduction number.

Alexis et al. [15] developed a multiscale model for EVD coupling a Susceptible Infected Recovered
(SIR) between host model and a within host model considering Viral load and Antibodies. Here,
they refered quite a lot to the paper [14] above.

In Amira et al. [6] , a Susceptible Exposed Infected Recovered (SEIR) model is developed in which
infection is taken to spread only through interaction between the Susceptible and the infected
individuals. However, it has been shown that the exposed individuals are also infectious ([16],[17]).
In view of this, the model in [6] is modified by taking into consideration this reality. The new model
is then coupled with a within host model (that we have developed) via the transmission rate.

2 Model Formulation

2.1 Within host model

The within host system is modeled by the following system of equations;

dX

dt
= mX(1− X

Q
)− (1− ρ)β

L(t)X(t)

1 + kL(t)
− αX(t),

dY

dt
= (1− ρ)β

L(t)X(t)

1 + kL(t)
− ηY (t),

dL

dt
= cY (t)− γL(t) (3)

where X(t), Y(t) and L(t) represents the number of uninfected target cells (Monocytes/ Macrophages
and dendritic cells for the case of Ebola), infected cells and virions respectively,

m denotes growth rate of uninfected cells,
Q denotes the carrying capacity,
ρ denotes the efficacy of treatment,
β denotes the transmission rate,
k denotes the saturation constant,
α denotes the natural death rate of uninfected cells,
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η denotes the death rate of infected cells,

c denotes rate of production of virions upon lysis of an infected cell,

γ denotes the death rate of virions.

2.2 Between host model

The proposed model is given by the system of Equations below;

dS

dt
= Λ− λSI − λSqE − µS − vS,

dE

dt
= λSI + λSqE − σE − µE,

dI

dt
= σE − (ω + ψ + µ)I,

dR

dt
= ωI − µR+ vS (4)

where

Λ denotes the rate of recruitment into susceptible population,

λ denotes the infection rate,

µ denotes the natural death rate,

v denotes the rate of vaccination,

ω denotes the recovery rate,

σ denotes the rate of transition from asymptomatic to symptomatic state,

ψ denotes the disease induced death rate,
The parameter q (0 6 q 6 1) is a weight added to the model to emphasize the fact that a susceptible
individual has a higher chance of getting infected from an infectious individual than from an exposed
individual.

2.3 Multiscale model

The between host model is taken to be dependent on the value L∗ which is the viral load (at
equilibrium) from the within host system. This yields the system

dS

dt
= Λ− λ(L∗)SI − λ(L∗)SqE − µS − vS,

dE

dt
= λ(L∗)SI + λ(L∗)SqE − σE − µE,

dI

dt
= σE − (ω + ψ + µ)I,

dR

dt
= ωI − µR+ vS (5)

where λ(L∗) is the transmission rate and is assumed to be an increasing function of L∗ with
λ(0) = 0 and L∗ denotes the viral load at the endemic equilibrium in a single infected host. Here,

λ(L∗) = a(L∗)
(L∗)+b and L∗ = 1

k
[Rw0 − 1] where a and b denote the maximum tramsmission rate and

half saturation constant of the virus respectively.

It can be shown that the model (5) is mathematically and epidemiologically well posed in the

region Ω =

{(
S(t), E(t), I(t), R(t)

)
∈ R4

+|0 < N(t) < Λ
µ

}
and therefore it suffices to consider it

dynamically in this region.
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In the model (5), the equation of the removed class is decoupled from the other three equations and
so we analyse the reduced model consisting of the first three equations. This is given by

dS

dt
= Λ− λ(L∗)SI − λ(L∗)SqE − µS − vS,

dE

dt
= λ(L∗)SI + λ(L∗)SqE − σE − µE,

dI

dt
= σE − (ω + ψ + µ)I (6)

3 Stability Analysis of the Disease Free Equilibrium
(DFE)

3.1 Reproduction number

The reproduction number for the coupled model (6), Rc0 is given by Rc0 = ρ(FV −1) as described
in Dieckmann et al. [18]

Rc0 =
λ(L∗)qΛ

(σ + µ)(µ+ v)
+

λ(L∗)σΛ

(σ + µ)(µ+ v)(ω + ψ + µ)
. (7)

where the Transmission matrix ,F and the Transition matrix V , evaluated at the Disease Free
Equilibrium (DFE) are;

F : =

(
λ(L∗)qΛ
µ+v

λ(L∗)Λ
µ+v

0 0

)
V : =

(
(σ + µ) 0
−σ (ω + ψ + µ)

)
(8)

The first part of Equation (7) accounts for infections caused by exposed individuals while the
second part is for infections caused by infected individuals. All the parameters in Equation (7) are
nonnegative.

3.2 Local Stability Analysis of the Disease Free Equilibrium

The eigenvalues of the Jacobian matrix evaluated at the equilibrium gives insight into the stability
properties at that equilibrium.

Theorem 3.1. If Rc0 < 1 , then Z0 = [ Λ
µ+v

, 0, 0] is locally asymptotically stable.

Proof. The Jacobian matrix of model (6) is given by

J =

−λ(L∗)I − λ(L∗)qE − µ− v −λ(L∗)Sq −λ(L∗)S
λ(L∗)I + λ(L∗)qE λ(L∗)Sq − σ − µ λ(L∗)S

0 σ −(ω + ψ + µ)


(9)

Evaluating Equation (9) at the DFE, we obtain;

J(Z0) =

−(µ+ v) −λ(L∗)q Λ
(µ+v)

−λ(L∗) Λ
(µ+v)

0 λ(L∗)q Λ
(µ+v)

− σ − µ λ(L∗) Λ
(µ+v)

0 σ −(ω + ψ + µ)


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(10)

To investigate the stability of the DFE, we compute the eigenvalues of Equation (10).

From Equation (10),

λ = −(µ+ v) (11)

is an eigenvalue. To determine the remaining eigenvalues, the following reduced matrix is considered;

JR =

(
λ(L∗)q Λ

(µ+v)
− σ − µ λ(L∗) Λ

(µ+v)

σ −(ω + ψ + µ)

)
(12)

The trace of the Matrix (12) will be negative iff λ(L∗)q Λ
(µ+v)

< σ + µ . That is

λ(L∗)qΛ

(µ+ v)(σ + µ)
< 1 (13)

Note that the left hand side of Equation (13) is the first part of Rc0 . The determinant of Equation
(12) is given by

DetJR =

(
λ(L∗)q

Λ

(µ+ v)
− σ − µ

)(
− (ω + ψ + µ)

)
− λ(L∗)σ

Λ

(µ+ v)
(14)

Equivalently, this is written as

DetJR = (σ + µ)(ω + ψ + µ)−

(
λ(L∗)q

Λ

(µ+ v)
(ω + ψ + µ) +

λ(L∗)σΛ

(µ+ v)

)
(15)

But using Equation (7),(
λ(L∗)q

Λ

(µ+ v)
(ω + ψ + µ) +

λ(L∗)σΛ

(µ+ v)

)
= (σ + µ)(ω + ψ + µ)Rc0 (16)

Substituting Equation (16) into Equation (15)and simplifying gives

DetJR = (σ + µ)(ω + ψ + µ)(1−Rc0) (17)

Equation (17) is positive if and only if (iff) Rc0 < 1 . That is, the determinant is always positive
wheneverRc0 < 1 .

When Rc0 < 1 , inequality (13) holds. We therefore conclude that the trace of JR is negative.

The Routh Hurwitz criterion of a negative trace and a positive determinant which guarantee
the existence of eigenvalues with negative real part has been met. Hence, the DFE is locally
asymptotically stable whenever Rc0 < 1 .

3.3 Global Stability Analysis of the Disease Free Equilibrium

To prove the global asymptotic stability, Comparison method [19] is used.

Definition 3.1. A matrix of the form P = ϑI − T , with T ≥ 0 (and I is an identity matrix), is
said to have Z sign pattern. These are matrices whose entries off the main diagonal are negative or
0. If in addition ϑ ≥ ρ(T ) , then P is called an M-matrix
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Lemma 3.1. If F is nonnegative and V is nonsingular M-matrix, then R0 = ρ(FV −1) < 1 iff all
the eigenvalues of (F-V) have negative real parts.

The proof of this lemma is found in [19].

For the model (6), take K = V − F and rewrite the model as

dx

dt
= −(V − F )x−

(
λ(L∗)(S0 − S)I + λ(L∗)q(S0 − S)E

0

)
,

dS

dt
= Λ− λ(L∗)SI − λ(L∗)SqE − µS − vS (18)

where

x =

(
E
I

)
(19)

Using equation (8),

V − F =

(
(σ + µ)− λ(L∗)qΛ

µ+v
−λ(L∗)Λ
µ+v

−σ ω + ψ + µ

)
(20)

It can clearly be seen that (V-F) is a nonsingular M-matrix whenever Rc0 < 1 . Consequently,
to prove global asymptotic stability for Rc0 < 1 , we show that S ≤ S0 . The total population
N∗ = S + E + I satisfies the equation

dN∗

dt
= Λ− µN∗ − ψI ≤ Λ− µN∗ (21)

so that N∗(t) = S0 − (S0 −N∗(0))e−µt with S0 = Λ
µ+v

. If N∗(0) ≤ S0 , then S(t) ≤ N∗(t) ≤ S0

for all t. When N∗(0) > S0 , N
∗(t) decays exponentially to S0 and either S(t) → S0 or there

is some time T after which S(t) < S0 . Thus, from time T onwards, the function x(t) is bounded
above in each component by e−(t−T )(V−F )x(T ) which decays exponentially to 0.

4 Stability Analysis of the Endemic Equilibrium

Definition 4.1. The endemic equilibrium state refers to the persistence of an infection within a
given population.

Theorem 4.1. A positive endemic equilibrium point Z∗ exists for all time t > 0 provided Rc0 < 1

Proof. The positive endemic equilibrium of model (6) is given by

Z∗ = (S∗, E∗, I∗) (22)

To get Z∗ , we equate the right hand side of model (6) to zero and solve for the state variables
explicitly using elementary row operations. This gives us the following results;

S∗ =
(µ+ σ)(ω + ψ + µ)

λ(L∗)

(
σ + q(ω + ψ + µ)

)
,

=
Λ

(µ+ v)Rc0
,

E∗ =
Λλ(L∗)σ + Λqλ(L∗)(ω + ψ + µ)− (µ+ v)(µ+ σ)(ω + ψ + µ)

λ(L∗)(µ+ σ)

(
σ + q(ω + ψ + µ)

)
,
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=
1

λ(L∗)(µ+ σ)

(
σ + q(ω + ψ + µ)

)(Rc0 − 1

)
,

I∗ =
Λσ

(µ+ σ)(ω + ψ + µ)
− (µ+ v)σ

λ(L∗)

(
σ + q(ω + ψ + µ)

) ,

=
σ(µ+ v)

λ(L∗)

(
σ + q(ω + ψ + µ)

)(Rc0 − 1

)
(23)

Clearly from this set of three equations given by Equation (23), E∗ > 0 and I∗ > 0 provided
Rc0 > 1 . This ends the proof.

4.1 Local Stability Analysis of the Endemic Equilibrium

In this section, the local stability of the Endemic Equilibrium is investigated using the lemma below.

Lemma 4.1. A Matrix M ∈ Mn(R) is stable if and only if these conditions are met: 1. The
second additive compound matrix M [2] is stable 2. (−1)ndet(M) > 0

Theorem 4.2. If Rc0 > 1 , then the Ebola Endemic Equilibrium point Z∗ = (S∗, E∗, I∗) is locally
asymptotically stable.

Proof. Note that Z∗ is stable if and only if the corresponding Jacobian matrix J(Z∗) is stable.
J(Z∗) is given by

J(Z∗) =

−λ(L∗)I∗ − λ(L∗)qE∗ − µ− v −λ(L∗)S∗q −λ(L∗)S∗

λ(L∗)I∗ + λ(L∗)qE∗ λ(L∗)S∗q − σ − µ λ(L∗)S∗

0 σ −(ω + ψ + µ)


(24)

and its second additive compound matrix is

J(Z∗)[2] =

C λ(L∗)S∗ λ(L∗)S∗

σ −λ(L∗)I∗ − λ(L∗)qE∗ −N −λ(L∗)S∗q
0 λ(L∗)I∗ + λ(L∗)qE∗ λS∗q −H

 (25)

where C = −λ(L∗)I∗ − λ(L∗)qE∗ − 2µ − v + λ(L∗)qS∗ − σ,H = (σ + ω + ψ + 2µ) and N =
(v + ω + ψ + 2µ) .

Det[J(Z∗)] = C

[
(λ(L∗)S∗q − σ − µ)(ω + ψ + µ)

]
+

[(
λ(L∗)2qI∗S∗ + (λ(L∗)2q2E∗S∗

)

(ω+ψ+ µ)

]
−

(
λ(L∗)I∗ + λ(L∗)qE∗ + µ+ v

)
λ(L∗)qS∗ − [λ(L∗)]2σS∗I∗ − [λ(L∗)]2qσS∗ which is

less than 0.

Hence the condition (−1)3(DetM) > 0 of the lemma above is satisfied. This also implies that
Σ1Σ2Σ3 < 0 where Σi, i = 1, 2, 3 is an eigenvalue of the matrix (24). Thus, either R(Σi) < 0 for
i = 1, 2, 3 or R(Σ1) < 0 ≤ R(Σ2) ≤ R(Σ3) where R(Σ) indicates the real part of Σ . The trace of
matrix (24) is given by −λ(L∗)I∗ − λ(L∗)qE∗ − µ− v + λ(L∗)S∗q − σ − µ− (ω + ψ + µ) which is
less than 0 since λ(L∗)S∗q < (σ + µ) . This implies that R(Σ1) +R(Σ2) +R(Σ3) < 0 and thus we
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have R(Σ1 +Σ2) < 0 and R(Σ1 +Σ2) < 0 .

The eigenvalues of the second additive compound matrix (25) are (Σ1 +Σ2), (Σ1 +Σ3) and (Σ2 +
Σ3) .

Using the same procedure as used above, it is established that all the eigenvalues of J(Z∗)[2] have
negative real parts. This shows that the first part of the lemma above has been satisfied. This
completes the proof.

4.2 Global Stability Analysis of the Endemic Equilibrium

Theorem 4.3. If Rc0 > 1 , then Z∗ = (S∗, E∗, I∗) is globally asymptotically stable.

Proof. By making change of variables and using Lyapunov method, define the function

Y =M∗2 +Π∗2 +O∗2 (26)

where

M∗ = S − Λ

λ(L∗)I + λ(L∗)qE + µ+ v
,

Π∗ = E − λ(L∗)SI

σ + µ− λ(L∗)qS
,

O∗ = I − σE

ω + ψ + µ
(27)

Considering Equation(26), it is clear that Y (0, 0, 0) = (0, 0, 0) and Y (M,N,O) > 0 for all
(M,N,O) in the region Ω . In other words, Y is positive definite.

The derivative of Y with respect to time is given by

dY

dt
= 2

[
S − Λ

λ(L∗)I + λ(L∗)qE + µ+ v

](
dS

dt

)
+ 2

[
E − λ(L∗)SI

σ + µ− λ(L∗)qS

](
dE

dt

)

+ 2

[
I − σE

ω + ψ + µ

](
dI

dt

)
(28)

where dM∗

dt
= dS

dt
, dΠ

∗

dt
= dE

dt
, dO

∗

dt
= dI

dt
. Substituting dS

dt
, dE
dt

and dI
dt

with their corresponding
expressions from system (6) into Equation (28) gives

dY

dt
= 2

[
S − Λ

λ(L∗)I + λ(L∗)qE + µ+ v

](
Λ− S[λ(L∗)I + λ(L∗)qE + µ+ v]

)

+ 2

[
E − λ(L∗)SI

σ + µ− λ(L∗)qS

](
λ(L∗)SI − E[σ + µ− λ(L∗)Sq]

)

+ 2

[
I − σE

ω + ψ + µ

](
σE − I[ω + ψ + µ]

)
(29)

which is equivalent to

dY

dt
= −2

[
S − Λ

λ(L∗)I + λ(L∗)qE + µ+ v

]2(
λ(L∗)I + λ(L∗)qE + µ+ v

)

− 2

[
E − λ(L∗)SI

σ + µ− λ(L∗)qS

]2(
σ + µ− λ(L∗)Sq

)
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− 2

[
I − σE

ω + ψ + µ

]2(
ω + ψ + µ

)

< −2

[
S − Λ

λ(L∗)I + λ(L∗)qE + µ+ v

]2(
λ(L∗)I + λ(L∗)qE + µ+ v

)

− 2

[
E − λ(L∗)SI

σ + µ− λ(L∗)qS

]2(
σ + µ

)

− 2

[
I − σE

ω + ψ + µ

]2(
ω + ψ + µ

)
(30)

Equation (30) shows that dY
dt

is negative definite.

At the point Z∗ given by Equation (23), Equation (30) becomes

dY

dt
< −2

[
S∗ − Λ

λ(L∗)I∗ + λ(L∗)qE∗ + µ+ v

]2(
λ(L∗)I∗ + λ(L∗)qE∗ + µ+ v

)

− 2

[
E∗ − λ(L∗)S∗I∗

σ + µ− λ(L∗)qS∗

]2(
σ + µ− λ(L∗)qS∗

)

− 2

[
I∗ − σE∗

ω + ψ + µ

]2(
ω + ψ + µ

)
(31)

From Equation (31), dY
dt

< 0 since S∗, E∗ and I∗ are all greater than 0. Therefore, the Endemic
Equilibrium point Z∗ is Globally asymptotically stable.

5 Sensitivity Analysis

In this section, the sensitivity indices at the baseline parameter values are obtained. The sensitivity
indices of the reproduction number are computed using Chitni’s approach [20] as follows:

Γ
Rc

0
Λ =

∂Rc0
∂Λ

× Λ

Rc0
= 1

Γ
Rc

0
q =

∂Rc0
∂q

× q

Rc0
= 1

Γ
Rc

0
σ =

∂Rc0
∂σ

× σ

Rc0
=

σ
(
(σ + µ)− σ

)
q(σ + µ)(ω + ψ + µ+ σ)

Γ
Rc

0
µ =

∂Rc0
∂µ

× µ

Rc0
= − µ(ω + ψ + µ)

ω + ψ + µ+ σ
−
µ

[
(σ + 2µ+ v)(ω + ψ + µ) + (σ + µ)(µ+ v)

]
(σ + µ)(µ+ v)(ω + ψ + µ)

Γ
Rc

0
v =

∂Rc0
∂v

× v

Rc0
= − v(ω + ψ + µ)

(µ+ v)(ω + ψ + µ+ σ)
− σv

q(µ+ v)(ω + ψ + µ+ σ)

Γ
Rc

0
ψ =

∂Rc0
∂ψ

× ψ

Rc0
=

−σψ
q(ω + ψ + µ)(ω + ψ + µ+ σ)

Γ
Rc

0
ω =

∂Rc0
∂ω

× ω

Rc0
=

−σω
q(ω + ψ + µ)(ω + ψ + µ+ σ)
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Γ
Rc

0
L∗ =

∂Rc0
∂L∗ × L∗

Rc0
=

b

(L∗) + b

(
qΛ(ω + ψ + µ) + σΛ

qΛ(ω + ψ + µ+ σ)

)

The parameters in Table 1 are used to calculate the sensitivity indices.

Table 1. Sensitivity indices

Parameter Value Units Sensitivity Index

Λ 0.6321 peopleperday 1

q 0.5 day−1 1

µ 0.0099 day−1 -0.010126956

v 0.5 day−1 -1.187732576

σ 0.083 day−1 0.04502415

ω 0.1 day−1 -0.136334096

ψ 0.2 day−1 -0.272668192

L∗ 8460.054 day−1 0.014150023

From the table of sensitivity index, it is clear that the reproductive number Rc0 is directly proportional
to the parameters σ and L∗ in that increasing each one of them increases the reproduction number.
On the other hand, v , µ , ω , and ψ are inversely proportional to Rc0 . These parameters are
considered more sensitive as opposed to the parameters with positive sensitivity index. Among
these, the most sensitive is v (the rate of vaccination). The sensitivity index of Rc0 with respect to
v is -1.187732576 implying that increasing (or decreasing) v by 10% decreases (or increases)Rc0 by
11.8773257%. This means that the enhancement of the administration of an effective Ebola virus
vaccine would reduce Ebola transmission in the population.

6 Numerical Simulation and Discussion

In this section, numerical simulation is done using the parameter values given in Table 2 to explore
the transmission dynamics of the model (6) with time. The results are as given by Fig. 1 to Fig. 7.

From these numerical simulations, Fig. 1 shows the stability of the DFE. It is seen that no matter
the initial number of the susceptibles, the solutions converge to the point where S0 = Λ

(µ+v)
= 64 .

This agrees with the analysis done above on the local and global stability of the DFE. In this case,
the basic reproduction number is less than unity and the disease will ultimately be wiped out of
the population.

The dynamics between the viral load and the number of infected individuals is depicted in Fig.
2. It is observed that as the number of virions increase, the number of infected individuals also
increases upto a particular point then they begin to decrease as the number of virions remain
constant. When the viral load within infected individuals increases, the average viral load in the
population also increases and this affects the transmission of the disease positively. That is why
there is corresponding rise in the number of infected individuals as the virions increases. However,
this increase in the viral load reaches a maximum point where it cannot exceed. When that happens,
we see the number of infected individuals beginning to decrease. This decrease can be attributed
to the death of the Infected individuals due to high viral load.
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Table 2. Parameter values for the model

Parameter Relevant Biological Description Units Value source

a Maximum transmission rate of virus Mlday−1 0.0025 [15]
b Half saturation constant of virus day−1 100 [14]
Λ Rate of recruitment peopleperday 0.6321 [17]
λ Transmission rate day−1 0.05 varies
q Reduced Transmission rate day−1 (0 ≤ q ≤ 1) varies
µ Natural death rate day−1 0.0099 [6]
v Rate of vaccination day−1 (0 ≤ v ≤ 1) varies
σ Infectious rate day−1 0.083 [9]
ω Recovery rate day−1 0.1 [7]
ψ Disease induced death rate day−1 0.2 Assumed

Fig. 1. The stability of DFE

Fig. 2. Temporal variations between Virions and Infected individuals

The effect of the coupling function λ(L∗) on the number of Exposed and the infected individuals
is depicted by Figs. 3 and 4 respectively. It can be seen that as L∗ increases (meaning λ(L∗) is
also increasing since λ(L∗) is an increasing function of L∗ ), the number of exposed individuals
and the number of infected individuals also increases respectively. At a particular value of L∗ ,
the number of exposed individuals is always higher than the number of infected individuals. As
explained earlier, this variation in the number of exposed individuals and infected individuals in the
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population as L∗ varies is a consequence of the variation of the average viral load in the population.
This shows us that the viral load within an individual does affect the transmission dynamics of EVD
between hosts. The variations in the viral load L∗ used here were arrived at by varrying the efficacy
of treatment ρ . It was realised that the viral load L∗ and the efficacy of treatment are inversely
proportional to one another. These two graphs have similar shapes because both the exposed and
infected classes have infections and therefore behave in a similar manner.
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Fig. 3. Temporal variations of λ(L∗) on Exposed Individuals
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Fig. 4. Temporal variations of λ(L∗) on Infected individuals

The effect of σ , the progression rate from exposed class to infected class, on the number of exposed
individuals has been shown in Fig. 5. We see that when σ = 0.5 , the number of exposed individuals
rises to about 110 in day 30 and then begins to drop. However, when it is very low e.g σ = 0.01 ,the
number of exposed individuals rises to about 350 in day 50 then begins to reduce. When σ is high,
many exposed people move to the infected class within a short period of time and when σ is lower,
fewer people progress to the infected class over a longer period of time. This is also illustrated by
Fig. 6.
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Fig. 5. Effect of σ on Exposed individuals with time

Fig. 6. Effect of σ on Infected individuals with time

The relationship between the number of exposed individuals and infected individuals is depicted by
Fig. 7. It can be seen that the number of exposed individuals are always higher than the number of
infected individuals. This means that the exposed (or asymptomatic) individuals contribute more
infections than the symptomatic individuals. This may be due to the fact that the asymptomatic
infected individuals interact freely with other healthy people since they don’t show signs of Ebola
virus disease as opposed to symptomatically infected individuals who are likely to be quarantied
and treated. The two variables are also directly proportional to each other as can be seen on the
graph. This agrees with reality since when you increase the number of infected individuals, the
number of people who come into contact with them also increases.

From the foregoing discussion, we see that effort should be focussed on identifying and treating the
exposed individuals. These are people who are not showing the obvious signs of EVD and yet they
are infectious and from these simulations, we have seen that they are always more than the infected
individuals. It will also be prudent to put in strategies to prevent the susceptible individuals from
being exposed to the virus. This can be done through vaccination, quarantine, isolation and safe
burials.
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Fig. 7. Graph of I(t) as a function of E(t)

7 Conclusion

We have derived a coupled SEIR mathematical model describing EVD dynamics. This model has
two infection routes, i.e infection by the Exposed Individuals and by Infected Individuals.The model
has been analysed with regards to the stability of the equilibrium points. The basic reproduction
number was determined and proved that the disease dies out when Rc0 < 1 and persists when
Rc0 > 1 . We also performed simulations where we focussed on the stability of the DFE, effect of
viral load, as a result of varying efficacy of treatment, on the exposed and infected population, the
effect of transfer rate σ on the number of exposed and infected individuals and the relationships
between exposed and infected individuals. Sensitivity analyses of the parameters has also been
done. From the analysis and numerical simulations, it has been shown that viral load, which is a
within host parameter affects the between host dynamics of EVD. These results are in agreement
with the study conducted by Alexis E. S Almocera and Esteban A.H Vargas [15]. Therefore we
recommend that individuals be put on treatment immediately they are diagnosed with EVD to
reduce the average viral load in the population. We also recommend implementation of effective
mass vaccination of individuals in a susceptible population. In this study, the vaccination was
considered to be 100 % effective. Further study on this can explore a vaccination strategy that is
not 100% effective.
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