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Abstract

We provide the optimal bounds for the arithmetic mean in terms of harmonic, contra-harmonic
and new Seiffert-like means.
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1 Introduction

Seiffert [1, 2] introduced two means

P (a, b) =
a− b

2 arcsin [(a− b) / (a+ b)]
,

T (a, b) =
a− b

2 arctan [(a− b) / (a+ b)]
.
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These two means are called the first and second Seiffert means, respectively.

For two positive and unequal real numbers a and b, Witkowski [3] introduced the Seiffert-like mean
Mf (a, b) given by the formula

Mf (a, b) =
a− b

2f [(a− b) / (a+ b)]
, (1.1)

where the function f : (0, 1) 7→ R (called Seiffert function) satisfying

x

1 + x
≤ f (x) ≤ x

1− x
.

It was shown that every symmetric and homogeneous mean of two positive real numbers can be
represented in the form (1.1) and that every Seiffert function produces a mean. The correspondence
between means and Seiffert functions is given by the formula

f(x) =
x

Mf (1− x, 1 + x)
, where x =

|a− b|
a+ b

. (1.2)

Witkowski proved that the following conditions are equivalent:

Mf (a, b) < Mg(a, b) ⇔ f(x) > g(x). (1.3)

The Neuman-Sándor mean NS (a, b) and logarithmic mean L (a, b) are the Seiffert-like means.

NS (a, b) =
a− b

2arcsinh [(a− b) / (a+ b)]
:= Marcsinh (a, b) ,

L (a, b) =
a− b

2arctanh [(a− b) / (a+ b)]
:= Marctanh (a, b) ,

Certainly, the first and second Seiffert means P (a, b) and T (a, b) can be denoted Marcsin(a, b) and
Marctan(a, b). Further more, Witkowski extend the new Seiffert-like means by showing that also sine,
tangent, hyperbolic sine and hyperbolic tangent are Seiffert functions, they are given as follows:

Msin (a, b) =
a− b

2 sin [(a− b) / (a+ b)]
, Mtan (a, b) =

a− b

2 tan [(a− b) / (a+ b)]
, (1.4)

Msinh (a, b) =
a− b

2 sinh [(a− b) / (a+ b)]
, Mtanh (a, b) =

a− b

2 tanh [(a− b) / (a+ b)]
, (1.5)

In recent years, these Seiffert-like means and their inequalities have attracted attention of several
researchers [3, 4, 5, 6]. Undoubtedly, the Seiffert-like means are studied always compared with some
well-known symmetric and homogeneous means of positive arguments.

Let p ∈ R and a, b > 0 with a ̸= b, the pth Hölder mean Hp (a, b) are defined by

Hp (a, b) =

{ (
ap+bp

2

)1/p

, p ̸= 0,
√
ab, p = 0,

particularly

H−1 (a, b) =
2ab

a+ b
:= H(a, b), H0 (a, b) =

√
ab := G(a, b),

H1 (a, b) =
a+ b

2
:= A(a, b), H2 (a, b) =

√
a2 + b2

2
:= Q(a, b),

are the harmonic mean, geometric mean, arithmetic mean and quadratic mean, respectively.
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It is well-known that the Hölder mean Hp (a, b) is strictly increasing with respect to p ∈ R for fixed
a, b > 0 with a ̸= b, hence the following inequalities hold

H(a, b) < G(a, b) < A (a, b) < Q (a, b) < C (a, b)

where C(a, b) = (a2 + b2)/(a+ b) is contra-harmonic mean.

Let a > b > 0 and x = (a− b) / (a+ b) ∈ (0, 1), Witkowski [3, Lemma 3.1-3.2] proved the following
chains of inequalities

arctanh(x) > tan(x) > sinh(x) > x > arcsinh(x) > sin(x) > arctan(x) > tanh(x)

hold for all x ∈ (0, 1). From (1.3) the following chains inequalities of means

Marctanh (a, b) < Mtan (a, b) < Msinh (a, b) < A

< Marcsinh (a, b) < Msin (a, b) < Marctan (a, b) < Mtanh (a, b) (1.6)

hold for a, b > 0 with a ̸= b.

From the formula (1.2), we can get the Serffert functions of the harmonic, geometric, arithmetic,
quadratic and contra-harmonic means, they are listed as follows:

h (x) =
x

1− x2
, g (x) =

x√
1− x2

, a (x) = x, q (x) =
x√

1 + x2
. (1.7)

Note that

h (0)− arctanh(0) = 0, [h (x)− arctanh(x)]′ =
2x

(1− x2)2
> 0 ⇔ h (x) > arctanh(x),

cosh2 (x) >
(
1 + x2/2

)2
> 1 + x2 ⇔ 1

cosh2 (x)
<

1

1 + x2
⇔ tanh (x) >

x√
1 + x2

,

for x ∈ (0, 1).

Therefore,
H (a, b) < Marctanh (a, b) , Mtanh (a, b) < Q (a, b) , (1.8)

hold for all a, b > 0 with a ̸= b. From (1.6), (1.8) we obtain chains inequalities

H (a, b) < Marctanh (a, b) < Mtan (a, b) < Msinh (a, b) < A (a, b)

< Marcsinh (a, b) < Msin (a, b) < Marctan (a, b) < Mtanh (a, b) < Q (a, b) < C (a, b) , (1.9)

Y.-M.Chu [7] et al. find the greatest value α and the least value β such that the double inequality

αT (a, b) + (1− α)G (a, b) < A (a, b) < βT (a, b) + (1− β)G (a, b) , (1.10)

hold for all a, b > 0 with a ̸= b.

F.Yang [8] et al. find the greatest value α and the least value β such that the double inequality

αNS (a, b) + (1− α)H (a, b) < A (a, b) < βNS (a, b) + (1− β)H (a, b) , (1.11)

hold for all a, b > 0 with a ̸= b.

Motivated by inequalities (1.9)-(1.11), we will present the best possible parameters αi, βi ∈ R (i =
1, 2, 3, 4) such that the double inequalities

α1C (a, b) + (1− α1)Mtan (a, b) < A (a, b) < β1C (a, b) + (1− β1)Mtan (a, b) ,

α2C (a, b) + (1− α2)Msinh (a, b) < A (a, b) < β2C (a, b) + (1− β2)Msinh (a, b) ,

α3Msin (a, b) + (1− α3)H (a, b) < A (a, b) < β3Msin (a, b) + (1− β3)H (a, b) ,

α4Mtanh (a, b) + (1− α4)H (a, b) < A (a, b) < β4Mtanh (a, b) + (1− β4)H (a, b)

hold for all a, b > 0 with a ̸= b.
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2 Lemmas

In order to prove our main results we need some lemmas, which we present in this section.

Lemma 2.1. (See [5]) Let −∞ < a < b < +∞, and let f, g : [a, b] → R be continuous on [a, b] and
differentiable on (a, b), and g′ (x) ̸= 0 on (a, b). If f ′ (x) /g′ (x) is increasing (decreasing) on (a, b),
then so are

f (x)− f (a)

g (x)− g (a)
,
f (x)− f (b)

g (x)− g (b)
.

If f ′ (x) /g′ (x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.2. The function

f (x) =
tan(x)− x

(1 + x2) tan(x)− x

is strictly increasing from (0, 1) onto (1/4, [tan(1)− 1]/[2 tan(1)− 1]).

Proof. Let f1 (x) = tan(x)− x,f2 (x) = (1 + x2) tan(x)− x. Then elaborated computations lead to

f (x) =
f1 (x)

f2 (x)
=

f1 (x)− f1 (0)

f2 (x)− f2 (0)
,

f1
′ (x)

f2
′ (x)

=
tan2(x)

2x tan(x) + (x2 + 1)(1 + tan2(x))− 1
:= φ (x) , (2.1)

φ′(x) =
2 tan(x)(x2tan2(x)− tan2(x) + x2)

(x2tan2(x) + tan2(x) + 2x tan(x) + x2)2

=
2 tan(x)(x2 − sin2(x))

(x2tan2(x) + tan2(x) + 2x tan(x) + x2)2cos2(x)
> 0, (2.2)

and
f
(
0+

)
= 1/4, f

(
1−

)
= [tan(1)− 1]/[2 tan(1)− 1] = 0.2635 · · · . (2.3)

Therefore, Lemma 2.2 follows easily from (2.1)-(2.3) and Lemma 2.1 .

Lemma 2.3. The function

g (x) =
sinh(x)− x

(1 + x2) sinh(x)− x

is strictly decreasing from (0, 1) onto ([sinh(1)− 1]/[2 sinh(1)− 1], 1/7).

Proof. Let g1 (x) = sinh(x) − x,g2 (x) = (1 + x2) sinh(x) − x. Then elaborated computations lead
to

g (x) =
g1 (x)

g2 (x)
=

g1 (x)− g1 (0)

g2 (x)− g2 (0)
,

g′1 (x) = cosh(x)− 1, g′2 (x) = 2x sinh(x) + (x2 + 1) cosh(x)− 1, (2.4)

g1
′ (x)

g2′ (x)
=

g1
′ (x)− g1

′ (0)

g2′ (x)− g2′ (0)
, (2.5)

g1
′′ (x)

g2′′ (x)
=

sinh(x)

4x cosh(x) + 2 sinh(x) + (x2 + 1) sinh(x)

=
1

4x/ tanh(x) + 2 + (x2 + 1)
. (2.6)
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It follows from (2.4) C(2.6) and together with the fact that the function x 7→ x/ tanh (x) is positive
and strictly increasing on (0, 1), we clearly see that g1

′′ (x) /g2
′′ (x) is strictly decreasing on (0, 1).

Note that

g
(
0+

)
=

1

7
, g

(
1−

)
= [sinh(1)− 1]/[2 sinh(1)− 1] = 0.1297 · · · . (2.7)

Therefore, Lemma 2.3 follows easily from (2.7) and the monotonicity of g (x).

Lemma 2.4. The function

h (x) =
x2 sin(x)

x− (1− x2) sin(x)

is strictly decreasing from (0, 1) onto (sin(1), 6/7).

Proof. Let h1 (x) = x2 sin(x),h2 (x) = x− (1− x2) sin(x). Then simple computations lead to

h (x) =
h1 (x)

h2 (x)
=

h1 (x)− h1 (0)

h2 (x)− h2 (0)
,

h1
′ (x) = 2x sin(x) + x2 cos(x), h′

2 (x) = 1 + (x2 − 1) cos(x) + 2x sin(x), (2.8)

h1
′ (x)

h2
′ (x)

=
h1

′ (x)− h1
′ (0)

h2
′ (x)− h2

′ (0)
,

h1
′′ (x)

h2
′′ (x)

=
4x cos(x) + 2 sin(x)− x2 sin(x)

−(x2 − 1) sin(x) + 4x cos(x) + 2 sin(x)

=
1

1 + ϕ(x)
, (2.9)

where

ϕ(x) =
sin(x)

4x cos(x) + 2 sin(x)− x2 sin(x)
=

1

4x/ tan(x) + 2− x2
. (2.10)

It is easy to verify the function x 7→ x/ tan (x) is positive and strictly decreasing on (0, 1), which
imply that the function ϕ(x) is increasing on (0, 1). Follow from (2.8)-(2.9) lead to the conclusion
that h1

′′ (x) /h2
′′ (x) is strictly decreasing on (0, 1).

Note that

h
(
0+

)
=

6

7
, h

(
1−

)
= sin(x) = 0.8414 · · · . (2.11)

Therefore, Lemma 2.4 follows easily from (2.11) and Lemma 2.1 together with the monotonicity of
h(x).

Lemma 2.5. The function

k (x) =
x2

x/ tanh (x)− (1− x2)

is strictly increasing from (0, 1) onto (3/4, tanh(1)).

Proof. Let k1 (x) = x2,k2 (x) = x/ tanh (x)− (1− x2). Then elaborated computations lead to

k (x) =
k1 (x)

k2 (x)
=

k1 (x)− k1 (0)

k2 (x)− k2 (0+)
, (2.12)

k′
1 (x)

k′
2 (x)

=
2xsinh2(x)

2xcosh2(x) + cosh(x) sinh(x)− 3x
, (2.13)

Let k3 (x) = 2xsinh2(x), k4 (x) = 2xcosh2(x) + cosh(x) sinh(x)− 3x, one has

k1
′ (x)

k2
′ (x)

=
k3 (x)

k4 (x)
=

k3 (x)− k3 (0)

k4 (x)− k4 (0)
,
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k3
′ (x)

k4
′ (x)

=
2x cosh(x) sinh(x) + sinh2(x)

2x cosh(x) sinh(x) + 2sinh2(x)
= 1− 1

2x/ tanh(x) + 2
. (2.14)

By (2.14) and the function x 7→ x/ tanh (x) is positive and strictly increasing on (0, 1), we clearly
see that k′

1 (x) /k
′
2 (x) is strictly increasing on (0, 1). Note that

k
(
0+

)
=

3

4
, k

(
1−

)
= tanh(1) = 0.7615 · · · . (2.15)

Therefore, Lemma 2.5 follows easily from (2.15) and Lemma 2.1 together with the monotonicity of
k(x).

3 Main Results

Theorem 3.1. The double inequalities

α1C (a, b) + (1− α1)Mtan (a, b) < A (a, b) < β1C (a, b) + (1− β1)Mtan (a, b) , (3.1)

α2C (a, b) + (1− α2)Msinh (a, b) < A (a, b) < β2C (a, b) + (1− β2)Msinh (a, b) , (3.2)

hold for all a, b > 0 with a ̸= b if and only if α1 ≤ 1/4, β1 ≥ [tan (1)− 1] / [2 tan (1)− 1] =
0.2635 · · · , α2 ≤ [sinh(1)− 1] / [2 sinh(1)− 1] = 0.1297 · · · and β2 ≥ 1/7.

Proof. Since all the bivariate means concerned in Theorem 3.1 are symmetric and homogeneous
of degree one, we assume that a > b > 0. Let x = (a− b) / (a+ b) ∈ (0, 1). Then we making
use of (1.4)- (1.5) and (1.7) lead to the conclusion that inequalities (3.1) and (3.2) are respectively
equivalent to

α1 <
A (a, b)−Mtan (a, b)

C (a, b)−Mtan (a, b)
=

tan(x)− x

(1 + x2) tan(x)− x
:= f (x) < β1, (3.3)

α2 <
A (a, b)−Msinh (a, b)

C (a, b)−Msinh (a, b)
=

sinh(x)− x

(1 + x2) sinh(x)− x
:= g (x) < β2, (3.4)

where f (x) and g (x) are defined as in Lemmas 2.2 and 2.3.

Therefore, Theorem 3.1 follows easily from (3.3), (3.4) together with Lemmas 2.2 and 2.3.

Theorem 3.2. The double inequalities

α3Msin (a, b) + (1− α3)H (a, b) < A (a, b) < β3Msin (a, b) + (1− β3)H (a, b) , (3.5)

α4Mtanh (a, b) + (1− α4)H (a, b) < A (a, b) < β4Mtanh (a, b) + (1− β4)H (a, b) , (3.6)

hold for all a, b > 0 with a ̸= b if and only if α3 ≤ sin (1) = 0.8414 · · · , β3 ≥ 6/7, α4 ≤ 3/4 and
β4 ≥ tanh (1) = 0.7615 · · · .

Proof. Since all the bivariate means concerned in Theorem 3.2 are symmetric and homogeneous
of degree one, we assume that a > b > 0. Let x = (a− b) / (a+ b) ∈ (0, 1). Then we making
use of (1.4)- (1.5) and (1.7) lead to the conclusion that inequalities (3.5) and (3.6) are respectively
equivalent to

α3 <
A (a, b)−H (a, b)

Msin (a, b)−H (a, b)
=

x2 sin(x)

x− (1− x2) sin(x)
:= h (x) < β3, (3.7)

α4 <
A (a, b)−H (a, b)

Mtanh (a, b)−H (a, b)
=

x2

x/ tanh (x)− (1− x2)
:= k (x) < β4, (3.8)

where h (x) and k (x) are defined as in Lemmas 2.4 and 2.5.

Therefore, Theorem 3.2 follows easily from (3.7), (3.8) together with Lemmas 2.4 and 2.5.
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4 Conclusion

In this paper, we used mathematical analysis method and the monotonicity of the functions to
study the arithmetic mean of some Seiffert-like functions, and obtained some optimal bounds of
these arithmetical means.
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