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Abstract

Fractional calculus has been found to be a great asset in finding fractional dimension in chaos
theory, in viscoelasticity diffusion, in random optimal search etc. Various techniques have been
proposed to solve differential equations of fractional order. In this paper, the Laplace-Homotopy
Analysis Method (LHAM) is applied to obtain approximate analytic solutions of the nonlinear
Rosenau-Hyman Korteweg-de Vries (KdV), K(2, 2), and Burgers’ equations of fractional order
with initial conditions. The solutions of these equations are calculated in the form of convergent
series. The solutions obtained converge to the exact solution when α = 1, showing the reliability
of LHAM.
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1 Introduction

For a very long time, fractional calculus developed mainly as a field of mathematics that only
pure mathematicians find useful but in recent decades, researchers have shown its usefulness and
suitability in modeling and it has been used to model problems in biology [1], in fractional dimension
in chaos theory, viscoelasticity diffusion [2], viscoplasticity [3], probability [4], wave propagation in
porous media, in random optimal search, models of diffusion on fractal media, modeling oil pressure,
rheology, electrical networks, and electromagnetic theory [5, 6, 7, 8]. Fractional differential equations
has an advantage in modeling majorly because of its non-local property (it provides the possibility
of different values of α in dα

dxα forward or backward). Knowing that the next state of a non-Markov
systems depends on both the present and the past states is why the fractional calculus very popular
in science, technology and engineering [5].

Since there are no known methods of solutions for the exact solution of fractional differential
equations, several methods have been proposed, developed and applied by different researchers.
These methods include Adomian decomposition method [9, 10], Laplace transform method [11],
variational iteration method, differential transform method [12], homotopy perturbation method
[13], homotopy analysis method [14] etc. The homotopy analysis method (HAM) have been applied
to so many nonlinear problems and it has proved very successful in many cases. The advantages
of this method over other methods include the fact that many of the existing methods can be
derived from it. It is important to also note that HAM possesses a setback in that it often
requires the evaluation of some difficult quadratures. This setback is overcome when the method
is used alongside with Laplace Transform and this gives birth to the Laplace Homotopy Analysis
Method (LHAM). [15] presented an algorithm of the Laplace homotopy analysis method to obtain
approximate solutions for linear and nonlinear oscillator fractional differential equations for any
value of α (1 < α ≤ 2). With the LHAM, he constructed an analytic approximate solution for the
linear harmonic fractional equation and fractional Van Der Pol oscillator equation and the results
coincide with those of other methods. [16] applied LHAM to solve one-, two-, and three-dimensional
fractional heat-like equations, and one-, two-, and three-dimensional wave-like equations subject to
their respective initial conditions and then presented a procedure to construct the base function and
gave a high order deformation equation in simple form. [17] used LHAM to find the exact solution
to fractional biological population model with some given initial conditions. Mohamed et al. (2014)
solved nonlinear time fractional gas dynamics equation and some fractional time-space derivatives
nonlinear problem. [18] applied LHAM to systems of linear and nonlinear fractional differential
equations and their results coincided perfectly with other methods used for the same problems. [19]
applied the LHAM to get the solutions of a system of second-order boundary value problems and
concluded that the method is simple and highly accurate. Integro-differential equation with initial
conditions were solved using LHAM [20]. [21] applied LHAM to obtain approximate analytical
solutions of the linear and nonlinear partial differential equations. Many recent researches have
been carried out on the application and methods of solution of fractional derivatives in physical
applications [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]

The fractional KdV type of equations is a nonlinear evolution equation with numerous applications
in physical sciences and also in engineering fields [34, 35, 36]. [37] examined the KdV, the K(2, 2),
the Burgers and the cubic Boussinesq’s equations by using the variation iteration method. Studies
have been done on these partial differential equations but a detailed studies of their fractional order
are just beginning as [36] are the only ones to have applied HAM for their solutions. To the best
of our knowledge, LHAM has not been applied for the solution of fractional Rosenau-Hyman KdV,
K(2, 2) and Burgers’ equations using Laplace homotopy analysis method (LHAM). In this paper,
we develop the LHAM scheme for each of these equations and then apply the schemes to solve the
problems, and the fast convergence of the method is shown.
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2 Preliminary Definitions and Theorems

Some important definitions and theorems are stated in this section as preliminaries to main work.

Definition 2.1. The gamma function is defined as

Γ(z) =

∫ ∞

0

e−ttz−1dt, Re(z) > 0, z ∈ Z. (2.1)

Replacing z with z + 1 and then integrating by part gives

Γ(z + 1) =

∫ ∞

0

e−ttzdt = −e−ttz|t=∞
t=0 + z

∫ ∞

0

e−ttz−1dt = zΓ(z), (2.2)

and as s a consequence,
Γ(n+ 1) = n!, Γ (1/2) =

√
π.

Definition 2.2. Laplace transform of a function f (t) is defined as the improper integral

F (s) = L{f(t); s} =

∫ ∞

0

e−stf(t)dt, (2.3)

such that the integral converges and exist.

Definition 2.3. The differential operator is defined as

Dα
t =

{
dα

dtα
if α > 0,

1 if α = 0.

The most frequently used definitions forDα
t , α ∈ R are those given by Grünwald-Letnikov, Riemann-

Liouville and Caputo (Miller and Ross, 1993; Oldham and Spanier, 1974; Podlubny, 1999; Petráš,
2011).

Definition 2.4. [Podlubny, 1999] The Riemann-Liouville derivative of fractional order α > 0 is

Dα
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− τ)n−α−1f(τ)dτ.

The Riemann-Liouville fractional integral of f(x, t) with respect to t of order α is defined as

Iαf(x, t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(x, τ)dτ. t, α > 0.

where Γ is the Gamma function.

Definition 2.5. [Podlubny, 1999] Suppose that α > 0, t > 0, α, t ∈ R, the Caputo fractional
derivative of order α is defined as

Dα
t f (x, t) = In−αDnf (x, t) =

{
1

Γ(n−α)

∫ t

0

f(n)(τ)

(t−τ)α+1−n dτ n− 1 < α < n ∈ N
dn

dtn
f (t) α = n ∈ N

, (2.4)

The Caputo fractional derivative and Riemann-Liouville integral operator are related by the relations
[Özpinar, 2018]

Dα(Iαf(x, t)) = f(x, t) and

Iα(Dαf(x, t)) = Iα(In−αf (n)(x, t)) = Inf (n)(x, t) = f(x, t)−
n−1∑
k=0

f (k)(x, 0)
tk

k!
.
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Lemma 2.1. Suppose p > 0 and F (s) is the Laplace transform of f(t). The Laplace transform of
the Riemann-Liouville fractional derivative is given by

L{Dα
t f(t); s} = sαF (s)−

n−1∑
k=0

sk[Dα−k−1f(t)]t=0,

= sαF (s)−
n−1∑
k=0

sn−k−1[DkJn−αf(t)]t=0, n− 1 < α < n.

Lemma 2.2. [Zurigat, 2011] Suppose p > 0 and F (s) is the Laplace transform of f(t). The Laplace
transform of the Caputo fractional derivative of order α is given by

L{Dα
t f(t); s} = sαF (s)−

n−1∑
k=0

sα−k−1f (k)(0), n− 1 < α < n. (2.5)

3 Fractional Rosenau-Hyman and Burgers’ Equations

A generalised Korteweg-de Vries (KdV) equation with m,n > 1 is the equation [38]

ut + (um)x + (un)xxx = 0. (3.1)

The Rosenau-Hyman equation, named after the Rosenau and Hyman based on their study of
solitons, is a Korteweg-de Vries-like (KdV) equations having compacton solutions. The equation is
the special case of compactons with m = n in Eq. (3.1) so that it is written as

ut + a (un)x + (un)xxx = 0. (3.2)

The Burgers’ equation appears in fluid mechanics and it is a modified KdV (mKdV) equation
(m = 2, n = 1) [37, 39]. It is represented by the equation

ut +
1

2

(
u2)

x
− uxx = 0. (3.3)

By replacing the integer-order time derivatives with fractional derivatives, the fractional Rosenau-
Hyman KdV and K(2, 2) are given as

Dα
t u+ a

(
u2)

x
+ uxxx = 0, (3.4)

Dα
t u+ a

(
u2)

x
+
(
u2)

xxx
= 0, (3.5)

respectively, where a ̸= 0, t > 0 and 0 < α ≤ 1 [36, 37]. Replacing the integer time order derivatives
in Eq.(3.3) by fractional derivatives we have the fractional Burgers’ equation as

Dα
t u+

1

2
(u2)x − uxx = 0, t > 0, x ∈ R, 0 < α ≤ 1.

4 Methodology

4.1 Homotopy analysis method

Consider a fractional partial differential equation of the form

N (u(x, t)) = 0,

where N is a nonlinear partial fractional differential equation, x and t are independent variables
and u(x, t) is an unknown function. Construct the zero-order deformation as follows

(1− q)L∗[v(x, t; q)− u0(x, t)] = q~N [v(x, t; q)], (4.1)
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where q ∈ [0, 1] is the embedding parameter, ~ ̸= 0 is an auxiliary parameter, L∗ is a linear operator
and u0(x, t) is an initial guess of u(x, t), v(x, t; q) is an unknown function of independent variables
x, t, q. When q = 0 and q = 1, it holds that v(x, t; 0) = u0(x, t), v(x, t; 1) = u(x, t)respectively.
Thus as q increases from 0 to 1, v(x, t; q) varies from the initial guess u0(x, t) to the solution u(x, t).
Taylor’s expansion of v(x, t; q) with respect to q gives

v(x, t; q) = u0(x, t) +

∞∑
m=1

um(x, t)qm, (4.2)

where

um(x, t) =
1

m!

∂mv(x, t; q)

∂qm

∣∣∣∣
q=0

.

If the auxiliary linear operator, the initial guess, and the auxiliary parameter ~ are properly chosen,
then Eq.(4.2) converges at q = 1. Hence we have

u(x, t) = u0(x, t) +

∞∑
m=1

um(x, t),

Define a vector u⃗n(x, t) = {u0(x, t), . . . , un(x, t)}, differentiate (4.1) m times with respect to the
embedding parameter q, set q = 0 and dividing through by m! so that the mth-order deformation
of (4.1) is given by

L∗[um(x, t)− χmum−1(x, t)] = ~R(u⃗m−1(x, t)), (4.3)

where

R(u⃗m−1(x, t)) =
1

(m− 1)!

∂m−1N (v(x, t; q))

∂qm−1

∣∣∣∣
q=0

,

and

χm =

{
0, if m ≤ 1

1, if m > 1
.

4.2 Laplace homotopy analysis method

Consider the fractional differential equation

Dα
t u(t) = g(u(t), ux(t), uxx(t)), t ≥ 0, 0 < α ≤ 1. (4.4)

with the initial conditions:
u(0) = a, (4.5)

where Dα
t is Caputo’s derivative. Apply the Laplace transform to both sides of Eq.(4.4) and by the

linearity of Laplace transforms we get

L (Dα
t u (t)) = L (g (u (t) , ux (t) , uxx (t))) .

Using the initial condition (4.5), then we get

sαũ (s)− sα−1a = L (g (u (t) , ux (t) , uxx (t))) ,

and consequently,

ũ(s) =
a

s
+

1

sα
L (g (u (t) , ux (t) , uxx (t))) , (4.6)

where L (u (t)) = ũ (s). The zero-order deformation equation of the Laplace equation (4.6) has the
form

(1− q)[ϕ̃(s; q)− ũ0(s)] = q~
[
ϕ̃(s; q)− a

s
− 1

sα
L (g (u (t) , ux (t) , uxx (t)))

]
, (4.7)
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where q ∈ [0, 1] is an embedding parameter. When q = 0 and q = 1, we have

ϕ̃(s; 0) = ũ0(s) and ϕ̃(s; 1) = ũ(s)

respectively. Thus, as q increases from 0 to 1, ϕ̃(s; q) varies from ũ0(s) to ũ(s) and the Taylor’s
expansion of ϕ̃(s; q)

ϕ̃(s; q) = ũ0(s) +

∞∑
m=1

ũm(s)qm, (4.8)

where

ũm(s) =
1

m!

∂mϕ̃(s; q)

∂qm

∣∣∣∣
q=0

.

If the auxiliary parameter ~ and the initial guesses ũ0(s) are properly chosen, then (4.8) converges
at q = 1 and we have

ũ(s) = ũ0(s) +

∞∑
m=1

ũm(s).

Define the vector
⃗̃um(s) = {ũ0(s), ũ1(s), . . . , ũm(s)}.

Differentiating Eq.(4.7) m times with respect to q, setting q = 0, ~ = −1 and finally dividing
through by m!, we have the mth-order deformation equation

ũm(s) = χmũm−1(s)−Rm

(
⃗̃um−1(s)

)
, (4.9)

where

Rm

(
⃗̃um−1 (s)

)
= ũm−1 (s)−

a

s
(1− χm)

− 1

sα

(
1

(m− 1)!

∂m−1

∂qm−1

[
L(g(t, ϕ(t; q), d

dt
ϕ(t, q)))

]
q=0

)
, (4.10)

and

χm =

{
0, if m ≤ 1

1, if m > 1
.

Taking the inverse Laplace transform of (4.9) gives a power series solution

u(t) =

∞∑
i=0

ui(t). (4.11)

5 Implementation of LHAM for Rosenau-Hyman KdV,
K(2, 2) and Burgers’ Equations of Fractional Order

5.1 LHAM solution of fractional Rosenau-Hyman KdV equation

The fractional Rosenau-Hyman KdV equation

Dα
t u(x, t) + a(u2)x(x, t) + uxxx(x, t) = g(x, t), (5.1)

where a is a constant, 0 < α ≤ 1 and g(x, t) is a function of x and t with the initial condition

u(x, 0) = f(x). (5.2)

6



Ajibola et al.; ARJOM, 16(6): 1-14, 2020; Article no.ARJOM.56832

Applying Laplace transform to Eq.(5.1), dividing through by sα, substituting Eq.(5.2) and rearranging
gives

u(x, s)− f(x)

s
+

1

sα
L
(
a(u2)x(x, t) + uxxx(x, t)− g(x, t)

)
= 0. (5.3)

The zeroth-order deformation is

(1− q) [v(x, s; q)− u0(x, s)] = q~Nv(x, s; q), (5.4)

where

Nv(x, s; q) =

[
v(x, s; q)− f(x)

s
+

1

sα
L
(
a(u2)x(x, t) + uxxx(x, t)− g(x, t)

)]
,

q ∈ [0, 1] is the embedding parameter, ~ ̸= 0 an auxiliary parameter, and u0(x, s) is an initial guess
of u(x, s), v(x, s; q) is an unknown function and as q increases from 0 to 1, v(x, s; q) varies from the
initial guess u0(x, s) to the solution u(x, s) i.e.

v(x, s; 0) = u0(x, s), v(x, s; 1) = u(x, s).

The Taylor’s expansion of v (x, s; q) is

v(x, s; q) = u0(x, s) +
∞∑

m=1

um(x, s)qm, (5.5)

where

um(x, s) =
1

m!

∂mv(x, s; q)

∂qm

∣∣∣∣
q=0

.

For a proper choice of the auxiliary linear operator, initial guess, and auxiliary parameter ~, Eq.(5.5)
converges at q = 1. Hence we have

u(x, s) = u0(x, s) +

∞∑
m=1

um(x, s),

and define a vector u⃗n(x, s) = {u0(x, s), . . . , un(x, s)}, differentiate Eq.(5.4) m-times with respect
to q, set q = 0, ~ = −1 and finally dividing through by m! to obtain the mth-order deformation
equation

um (x, s) = χmum−1 (x, s) +

(
L
sα

g(x, t) +
f(x)

s

)
(1− χm)

−

[
um−1(x, s) +

L
sα

(
a

m−1∑
i=0

(uium−1−i)x (x, t) + (um−1)xxx (x, t)

)]
, (5.6)

where

χm =

{
0, if m ≤ 1

1, if m > 1
.

Applying the inverse Laplace transform to both sides of Eq.(5.6) then we have a power series solution

u(x, t) =

∞∑
i=0

ui(x, t).

Now consider

Dα
t u(x, t)− 3(u2)x + (u)xxx = 0, 0 < α ≤ 1, u(x, 0) = 6x, (5.7)

7
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where we have a = −3, g(x, t) = 0, u(x, 0) = f(x) = 6x. In this case Eq.(5.6) becomes

um(x, s) = χmum−1 (x, s) +
6x

s
(1− χm)− um−1 (x, s)

− 1

sα
L

(
−3

m−1∑
i=0

(uium−1−i)x (x, t) + (um−1)xxx (x, t)

)
,

with

u0(x, s) =
6x

s
.

Thus,

u1(x, s) =
63x

sα+1
, u2(x, s) =

2× 65x

s2α+1
, · · · ,

and so

u(x, s) =
6x

s
+

63x

sα+1
+

2× 65x

s2α+1

Taking the inverse Laplace transform, we get

u(x, t) = 6x+
63x

Γ(α+ 1)
tα +

2× 65x

Γ(2α+ 1)
t2α+ (5.8)

As a test case, set α = 1, and we have

u(x, t) = 6x
(
1 + 36t+ 362t2 + 363t3 + · · ·

)
, |36t| < 1,

which is the exact solution when α = 1. The solution for the fractional order problem is obtained
as

u (x, t) = 6x+
63x

Γ
(
19
10

) t 9
10 +

2× 65x

Γ
(
28
10

) t
18
10 ++ · · · , α = 0.9.

u (x, t) = 6x+
63x

Γ
(
18
10

) t 8
10 +

2× 65x

Γ
(
26
10

) t
16
10 ++ · · · . α = 0.8.

u (x, t) = 6x+
63x

Γ
(
17
10

) t 7
10 +

2× 65x

Γ
(
24
10

) t
14
10 ++ · · · , α = 0.7.

u (x, t) = 6x+
63x

Γ
(
16
10

) t 6
10 +

2× 65x

Γ
(
22
10

) t
12
10 ++ · · · , α = 0.6.

5.2 LHAM solution of fractional Rosenau-Hyman K(2, 2) equation

The K(2, 2) equation is given as

Dα
t u+

(
u2)

x
+
(
u2)

xxx
= 0, u(x, 0) = x, 0 < α ≤ 1. (5.9)

Taking the Laplace transform, we have

sαu (x, s)− sα−1u(x, 0) + L
((
u2)

x
(x, t) +

(
u2)

xxx
(x, t)

)
= 0,

and dividing through by sα, we obtain

u (x, s)− x

s
+

1

sα
L
((
u2)

x
(x, t) +

(
u2)

xxx
(x, t)

)
= 0.

The zeroth-order deformation equation is

(1− q) [v (x, s; q)− u0 (x, s)] = q~
[
v (x, s; q)− x

s
+

1

sα
L
((
u2)

x
(x, t) +

(
u2)

xxx
(x, t)

)]
, (5.10)

8
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where q ∈ [0, 1] is the embedding parameter, ~ ̸= 0 an auxiliary parameter, and u0(x, s) is an initial
guess of u(x, s), v(x, s; q) is an unknown function with the condition that

v(x, s; 0) = u0(x, s), v(x, s; 1) = u(x, s),

and as q increases from 0 to 1, v(x, s; q) varies from the initial guess u0(x, s) to the solution u(x, s).
Taylor’s expansion of v(x, s; q) is

v(x, s; q) = u0(x, s) +

∞∑
m=1

um(x, s)qm, (5.11)

where

um(x, s) =
1

m!

∂mv(x, s; q)

∂qm

∣∣∣∣
q=0

.

For a proper choice of the auxiliary linear operator, the initial guess, and the auxiliary parameter
~, Eq.(5.11) converges at q = 1 so that

u (x, s) = u0 (x, s) +

∞∑
m=1

um (x, s) .

Define a vector

u⃗n(x, s) = {u0 (x, s) , . . . , un (x, s)} .

Differentiate Eq.(5.10) m times with respect to q, set q = 0, ~ = −1 and finally dividing by m!, we
get the mth-order deformation equation

um(x, s) = χmum−1 (x, s)− um−1 (x, s) +
x

s
(1− χm)

− L
sα

(
m−1∑
i=0

(uium−1−i)x (x, t) +

m−1∑
i=0

(uium−1−i)xxx (x, t)

)
, (5.12)

where

χm =

{
0, if m ≤ 1

1, if m > 1
,

and

u0 (x, s) =
x

s
.

From Eq.(5.10), we have

u1 (x, s) = − 2x

sα+1
, u1 (x, s) =

−2x

sα
, u2(x, s) =

8x

s2α+1
, u3(x, s) = − 48x

s3α+1
.

Thus

u(x, s) =
x

s
− 2x

sα+1
+

8x

s2α+1
− · · · ,

and taking the inverse Laplace transform, we get

u(x, t) = x− 2x

Γ(α+ 1)
tα +

8x

Γ(2α+ 1)
t2α −+ · · · . (5.13)

As a test case, set α = 1, and we have

u(x, t) = x

[
lim

n→+∞

n∑
m=0

(−1)m (2t)m
]
=

x

1 + 2t
, |2t| < 1.

9
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and for fractional values of α,

u(x, t) = x− 2x

Γ
(
19
10

) t 9
10 +

8x

Γ
(
28
10

) t 18
10 −+ · · · , α = 0.9.

u(x, t) = x− 2x

Γ
(
18
10

) t 8
10 +

8x

Γ
(
26
10

) t 16
10 −+ · · · , α = 0.8.

u(x, t) = x− 2x

Γ
(
17
10

) t 7
10 +

8x

Γ
(
24
10

) t 14
10 −+ · · · , α = 0.7.

u(x, t) = x− 2x

Γ
(
16
10

) t 6
10 +

8x

Γ
(
22
10

) t 12
10 −+ · · · , α = 0.6.

u(x, t) = x− 2x

Γ
(
15
10

) t 5
10 +

8x

Γ
(
20
10

) t 10
10 − 48x

Γ
(
25
10

) t 15
10 + · · · , α = 0.5.

5.3 LHAM solution of fractional Burgers’ equation

The fractional Burgers’ equation is the modified KdV (mKdV) given as

Dα
t u+

1

2

(
u2)

x
− (u)xx = 0, u(x, 0) = x, 0 < α ≤ 1. (5.14)

Taking the Laplace transform of Eq.(5.14) and rearranging we have

u (x, s)− x

s
+

L
sα

(
1

2

(
u2)

x
(x, t)− (u)xx (x, t)

)
= 0, u (x, 0) = x.

The zero-order deformation equation is given by

(1− q) [v (x, s; q)− u0 (x, s)] = q~
[
v (x, s; q)− x

s
+

1

sα
L
(
1

2
(u2)x(x, t)− (u)xx(x, t)

)]
, (5.15)

where q ∈ [0, 1] is the embedding parameter, ~ ̸= 0 is an auxiliary parameter, and u0(x, s) is an
initial guess of u(x, s), v(x, s; q) is an unknown function. It follows that

v(x, s; 0) = u0(x, s), v(x, s; 1) = u(x, s).

Thus as q increases from 0 to 1, v(x, s; q) varies from the initial guess u0(x, s) to the solution u(x, s).
Taylor’s expansion of v(x, s; q) is

v(x, s; q) = u0(x, s) +

∞∑
m=1

um(x, s)qm, (5.16)

where

um(x, s) =
1

m!

∂mv(x, s; q)

∂qm

∣∣∣∣
q=0

.

Properly choosing the auxiliary linear operator, the initial guess, and the auxiliary parameter ~,
then Eq.(5.16) converges at q = 1 and we therefore have

u(x, s) = u0(x, s) +

∞∑
m=1

um(x, s).

Define a vector u⃗n(x, s) = {u0(x, s), . . . , un(x, s)}. Differentiating Eq.(5.15) m times with respect
to q, setting q = 0, and finally dividing by m!, we have the mth-order deformation equation as

10
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um(x, s) = χmum−1 (x, s)− um−1 (x, s) +
x

s
(1− χm)

− L
sα

(
1

2

m−1∑
i=0

(uium−1−i)x (x, t)− (um−1)xx (x, t)

)
, (5.17)

and

χm =

{
0, if m ≤ 1

1, if m > 1
.

The inverse Laplace transform of Eq.(5.17) gives

u(x, t) =
∞∑

m=0

um(x, t),

where

u0(x, s) =
x

s
.

Thus we have

u1(x, s) = − x

sα+1
, u2(x, s) =

2x

s2α+1
, u3(x, s) = − 6x

s3α+1
, · · · ,

and so

u(x, s) =
x

s
− x

sα+1
+

2x

s2α+1
− · · · ,

Taking the inverse Laplace transform, we have

u(x, t) = x− x

Γ(α+ 1)
tα +

2x

Γ(2α+ 1)
t2α− (5.18)

For a test case, let α = 1, then we have

u (x, t) = x

(
lim

n→+∞

n∑
m=0

(−1)m tm
)

=
x

1 + t
,

which coincides with the exact solution. Thus for fractional α, we have

u (x, t) =x− x

Γ
(
19
10

) t 9
10 +

2x

Γ
(
28
10

) t 18
10 −+ · · · α = 0.9.

u (x, t) =x− x

Γ
(
18
10

) t 8
10 +

2x

Γ
(
26
10

) t 16
10 −+ · · · α = 0.8.

u (x, t) =x− x

Γ
(
17
10

) t 7
10 +

2x

Γ
(
24
10

) t 14
10 −+ · · · α = 0.7.

u (x, t) =x− x

Γ
(
16
10

) t 6
10 +

2x

Γ
(
22
10

) t 12
10 −+ · · · α = 0.6.

6 Discussion of Results

Analytic approximate solutions of Rosenau-Hyman KdV,K(2, 2) and Burgers’ equations of fractional
order were obtained using Laplace Homotopy Analysis method. Results obtained are tested for the
analog integer order and the solutions are found to converge to the exact solution. Consequently,
the results obtained here can be extended to the fractional order.
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7 Conclusion

This work has verified the suitability of the Laplace homotopy analysis method for obtaining the
analytic approximate solutions of the fractional order Rosenau-Hyman KdV, K(2, 2) and Burgers’
equations. The results obtained in this paper can be extended other equations in this family of
equations. It will be useful to find out if this method will be able to examine these equations for
their soliton (i.e. traveling wave) solutions.
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