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ABSTRACT

The exposition of the two-world background of the special theory of relativity started in the first part
of this paper is continued in this second part. The negative sign of mass in the negative universe
is derived from the generalized mass expression in special relativity (SR) in the two-world picture.
Four-dimensional inversion is shown to be a special Lorentz transformation in the two-world picture.
Also by starting with the negativity of spacetime dimensions (that is, negativity of distances in space
and of intervals of time) in the negative universe, derived in part one of this paper, and requiring the
symmetry of natural laws between the positive and negative universes, the signs of mass and other
physical parameters and physical constants in the negative universe are derived and tabulated.
The invariance of natural laws, including the fundamental interactions, in the negative universe is
demonstrated. The derived negative sign of mass in the negative universe is a conclusion of a
century and a score years of efforts toward the incorporation of the concept of negative mass into
physics. It is shown that the anti-particles observed in our universe originate from the negative
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universe, and conversely, but how a particle can make transition across the event horizon
separating the universes without hitting singularity in the Lorentz transformation is as yet
unexplained. Experimental test of the two-world picture depends on the possibility of exchange
of particles between the two universes without hitting the singularity in LT at the point of making
transition across the universes.

Keywords: Negative mass in negative universe; Four-dimensional inversion as special Lorentz trans-
formation in two-world; signs of physical parameters and physical constants in negative
universe; invariance of natural laws in negative universe; anti-particles originate from
negative universe.

1 DERIVING THE SIGN OF
MASS IN THE NEGATIVE
UNIVERSE FROM THE
GENERALIZED MASS
EXPRESSION IN SPECIAL
RELATIVITY IN THE TWO-
WORLD PICTURE

This second part of this paper is a direct
continuation of the first part [1]. This section

should have been section 7 of the first part. The
literature review done under the Introduction of
the first part covers this second part.

Now the particle’s primed intrinsic affine frame
(∅x̃ ′,∅c∅t̃ ′) contains the intrinsic rest mass
∅m0 of the particle at rest relative to it and
the particle’s primed affine frame (x̃ ′, ỹ ′, z̃ ′, ct̃ ′)
contains the rest mass m0 of the particle at rest
relative to it, in the positive universe in Figs. 8a
and 8b and their inverses, Figs. 9a and 9b, of the
first part of this paper [1]. However only Fig. 8a of
that paper is required to be reproduced as Fig. 1
for the purpose of discussions in this paper.

Fig. 1. The diagram (Fig. 8a of [1]) used to derive partial intrinsic Lorentz transformations and
partial Lorentz transformations with respect to 3-observers in the Euclidean 3-spaces in the

positive and negative universes in [1].

35



Joseph; PSIJ, 24(9): 34-67, 2020; Article no.PSIJ.62992

The question arises: what are the signs
of the intrinsic rest mass and rest mass
of the symmetry-partner particle contained
in the symmetry-partner particle’s primed
intrinsic affine frame (−∅x̃ ′∗,−∅c∅t̃ ′∗) and
symmetry-partner particle’s primed affine frame
(−x̃ ′∗, −ỹ ′∗, −z̃ ′∗, ct̃ ′∗) respectively in the
negative universe? The negative sign already
attached to the mass and intrinsic mass of
the symmetry-partner particle in the negative
universe in Fig. 1, in an ad-hoc manner, as
discussed the in the sixth paragraph before
Fig. 8a of [1], must be disregarded at this point.

The answer to the question in the preceding
paragraph shall be sought from the the
generalized intrinsic mass expression in the
context of the intrinsic special theory of relativity

(∅SR) and from the corresponding generalized
mass expression in the context of the special
theory of relativity (SR) in the two-world picture
in this section.

The forms of intrinsic Lorentz transformation (the
intrinsic Lorentz boost) (∅LT) and its inverse
in which they can be applied in all the four
quadrants of the spacetime hyperplane formed
by the combined spacetimes of our (or positive)
universe and the negative universe and the four
quadrants of the underlying intrinsic spacetime
hyperplane formed by the combined intrinsic
spacetimes of our (or positive) universe and the
negative universe, in Fig. 7 of [1], reproduced
as Fig. 2 of this article, have been derived and
presented as systems (42) and (43) of that article.
They shall be reproduced here as follows

Fig. 2. Combined flat four-dimensional spacetimes and underlying combined flat
two-dimensional intrinsic spacetimes of the positive and negative universes (Fig. 7 of [1]).

∅c∅t̃ ′ = sec∅ψ(∅c∅t̃−∅x̃ sin∅ψ) ;
∅x̃ ′ = sec∅ψ(∅x̃−∅c∅t̃ sin∅ψ) (1)

and

∅c∅t̃ = sec∅ψ(∅c∅t̃ ′ +∅x̃ ′ sin∅ψ) ;
∅x̃ = sec∅ψ(∅x̃ ′ +∅c∅t̃ ′ sin∅ψ) ; (2)

for ∅ψ in the concurrent open intervals, (−∅π/2,∅π/2) and (∅π/2, 3∅π/2).

The 3-observers in the proper Euclidean 3-space Σ′ of the positive universe can formulate intrinsic
special relativity (∅SR) and, hence special relativity (SR), and indeed observe SR for intrinsic angles
∅ψ in the range (−∅π/2,∅π/2). However as Fig. 10a of [1], reproduced as Fig. 3a of this article
shows, 3-observers in Σ′ in the positive universe can construct ∅SR and, hence SR, relative to
themselves for all intrinsic angles ∅ψ in the concurrent open intervals (−∅π/2,∅π/2) and (∅π/2, 3∅π/2),
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by using the generalized ∅LT and its inverse of systems (1) and (2) and obtaining the LT and its
inverse as the outward manifestations on flat four-dimensional spacetime of the ∅LT on flat two-
dimensional intrinsic spacetime, as done in [1], although they can observe special relativity for intrinsic
angles ∅ψ in (−∅π/2,∅π/2) in Fig. 3a of this article only. The forms of systems (1) and (2) in the
negative universe are also presented as systems (44) and (45) in [1]. Figures 10a and 10b of [1] are
reproduced as Figs. 3a and 3b of this article.

Fig. 3. The concurrent open intervals (−∅π/2,∅π/2) and (∅π/2, 3∅π/2) within which the
intrinsic angle ∅ψ can take on values: (a) with respect to 3-observers in 3-space in the

positive universe and (b) with respect to 3-observers in 3-space in the negative universe
(Figs. 10a and 10b of [1]).

There is the corresponding intrinsic mass
expression in the form in which it can be applied
in all the four quadrants of the intrinsic spacetime
hyperplane formed by the combined intrinsic
spacetimes of our universe and the negative
universe, that is, for intrinsic angle ∅ψ in the
concurrent open intervals, (−∅π/2,∅π/2) and
(∅π/2, 3∅π/2), by 3-observers in the proper
Euclidean 3-spaces Σ′ of our universe and −Σ′∗

of the negative universe, in Figs. 3a and 3b. It is
deduced below.

The mass expression on the flat four-dimensional
spacetime in the context of SR in the existing
one-world picture, in Scheme I of Table I of [1], is
equally valid in the two-world picture in Scheme
II of Table I of that paper. It is the following

m = m0

(
1− v2/c2

)−1/2
. (3)

The corresponding intrinsic mass expression on
the flat two-dimensional intrinsic spacetime in the
context of the intrinsic special theory of relativity
(∅SR), to be obtained by simply introducing the

symbol ∅ used to denote intrinsic coordinates
and intrinsic parameters in the present two-world
picture in Eq. (3) is

∅m = ∅m0

(
1−∅v2/∅c2

)−1/2
. (4)

The masses, m0 and m, in the three-dimensional
proper Euclidean space Σ′ are the outward
manifestations of the lines of intrinsic masses,
∅m0 and ∅m, respectively, in the one-
dimensional proper intrinsic metric space ∅ρ ′,
as illustrated in Fig. 6(a) of [1]. Figures 6a and 6b
of [1] are reproduced as Figs. 4a and 4b of this
article.

Using the relations, sec∅ψ=(1 − ∅v2/∅c2)−1/2

and secψ=(1 − v2/c2)−1/2, derived and
presented as Eqs. (17) and (30) respectively of
[1], Eqs. (3) and (4) can be written respectively
as

m = m0 secψ (5)

and
∅m = ∅m0 sec∅ψ . (6)
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Fig. 4. (a) The flat 4-dimensional spacetime and its underlying flat 2-dimensional intrinsic
spacetime with the inertial masses of three objects scattered in the Euclidean 3-space and
their intrinsic inertial masses aligned along the one-dimensional isotropic intrinsic space
with respect to observers in spacetime. (b) The flat 2-dimensional intrinsic spacetime with

respect to observers in spacetime in (a) is a flat four-dimensional intrinsic spacetime
containing intrinsic inertial masses of particles and objects in 3-dimensional intrinsic space
with respect to hypothetical intrinsic-mass-observers in intrinsic spacetime (Figs. 6a and 6b

of [1]).

Equations (5) and (6) are the generalized forms
of the mass expression and the intrinsic mass
expression in the contexts of SR and ∅SR
respectively, in the two-world picture. They can
be applied for all intrinsic angles ∅ψ in the range
[0, 2∅π], except that ∅ψ=∅π/2 and ∅ψ=3π/2
must be avoided.

1.1 Showing that Four-dimensio-
nal Iinversion of Affine
Spacetime and Two-
dimensional Inversion of
Intrinsic Affine Spacetime
are Special Lorentz Transfor-
mation and Special Intrinsic
Lorentz Transformation

We shall assume that the particle’s primed
intrinsic affine frame (∅x̃ ′,∅c∅t̃ ′) in the positive
universe is continuously accelerated relative to
the ‘stationary’ observer Peter in the proper
Euclidean 3-space Σ′, such that its intrinsic affine
coordinates, ∅x̃ ′ and ∅c∅t̃ ′, are continuously
rotated by increasing intrinsic angle ∅ψ relative
to their projective unprimed intrinsic affine
coordinates, ∅x̃ and ∅c∅t̃, (of the particle’s
unprimed intrinsic affine frame (∅x̃,∅c∅t̃)) in
Fig. 1 of this article (in the sense of positive
rotation by ∅ψ in Fig. 3a of this article). We

shall assume that ∅ψ increases from zero to
∅π/2 − ∅ϵ, dodges ∅ψ = ∅π/2 and then
increases from ∅ψ = ∅π/2 +∅ϵ to ∅ψ = ∅π. In
other words, we shall allow ∅ψ to increase from
zero to ∅π while avoiding ∅π/2. We shall not be
concerned with how this can be accomplished in
this paper.

Then by virtue of the prescribed perfect
symmetry of state between the positive and
negative universes in [1], the symmetry-partner
particle’s primed intrinsic affine frame (−∅x̃ ′∗,
−∅c∅t̃ ′∗) in the negative universe is identically
accelerated simultaneously relative to the
symmetry-partner ‘stationary’ observer* Peter*
in −Σ′∗, such that the intrinsic affine coordinates,
−∅x̃ ′∗ and −∅c∅t̃ ′∗, of the symmetry-
partner particle’s primed intrinsic affine frame
(−∅x̃ ′,−∅c∅t̃ ′∗), are continuously rotated in
Fig. 1 (in the sense of positive rotation by ∅ψ
in Fig. 3b), relative to their projective unprimed
intrinsic affine coordinates, −∅x̃ ∗ and −∅c∅t̃ ∗,
of the symmetry-partner particle’s unprimed
intrinsic affine frame (−∅x̃ ∗,−∅c∅t̃ ∗) in the
negative universe, by increasing intrinsic angle
∅ψ from ∅ψ = 0 to ∅ψ = ∅π, while avoiding
∅ψ = ∅π/2.

In deriving intrinsic Lorentz transformation with
respect to the ‘stationary’ observer Peter in Σ′ in
the positive universe for the scenario described
in the penultimate paragraph, we must apply the
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generalized intrinsic Lorentz transformation of
system (1). We must let ∅ψ = ∅π in that system
to have

∅c∅t̃ ′ =−∅c∅t̃ ≡−∅c∅t̃ ∗ ; ∅x̃ ′ = −∅x̃≡−∅x̃ ∗

(7a).
However ∅ψ = ∅π implies, sin∅ψ = ∅v/∅c =
0, hence ∅v = 0. This means that the primed
and unprimed intrinsic affine frame are the same
at ∅ψ = ∅π. We must therefore replace the
unprimed intrinsic affine coordinates, −∅c∅t̃ ∗
and −∅x̃ ∗, with the primed intrinsic affine
coordinates, −∅c∅t̃ ′∗ and −∅x̃ ′∗, respectively

in system (7a) to have

∅c∅t̃ ′ = −∅c∅t̃ ′∗ and ∅x̃ ′ = −∅x̃ ′∗ . (7b)

The implication of system (7b) is that rotation
by ∅ψ = ∅π transforms the intrinsic affine
coordinates, ∅x̃ ′ and ∅c∅t̃ ′, of the particle’s
primed intrinsic affine frame at rest relative to
the observer in the positive universe, into the
intrinsic affine coordinates, −∅x̃ ′∗ and −∅c∅t̃ ′∗,
of the particle’s primed intrinsic affine frame at
rest relative to the symmetry-partner observer in
the negative universe. In other words,

(∅x̃′,∅c∅t̃′) (−∅x̃ ′∗,−∅c∅t̃ ′∗) .-rot. by ∅ψ=∅π (7c)

Once (∅x̃ ′, ∅c∅t̃ ′) has transformed into (−∅x̃ ′∗,−∅c∅t̃ ′∗) by virtue of intrinsic rotation by ∅ψ =
∅π, according to the transformation scheme (7c), then the particle’s primed intrinsic affine frame
(−∅x̃ ′∗,−∅c∅t̃ ′∗) formed in the negative universe will be made manifested in the particle’s primed
affine frame (−x̃ ′∗,−ỹ ′∗,−z̃ ′∗,−ct̃ ′∗) in the negative universe. Thus, although the affine coordinates,
x̃ ′, ỹ ′, z̃ ′ and ct̃ ′, are not rotated along with the intrinsic affine coordinates, ∅x̃ ′ and ∅c∅t̃ ′, in the
positive universe, the transformation (7c) in intrinsic spacetime will automatically be made manifested
in the following in spacetime

(x̃′, ỹ′, z̃′, ct̃′) (−x̃′∗,−ỹ′∗,−z̃′∗,−ct̃′∗)-int. rotation by ψ=π (7d)

In obtaining the correspondence of system (7d) in the negative universe, we must write the ∅LT (1)
in terms of the negative intrinsic affine coordinates, −∅x̃ ′∗, −∅c∅t̃ ′∗, −∅x̃ ∗ and −∅c∅t̃ ∗, of the
negative universe and let ∅ψ=∅π in the resulting ∅LT in the negative universe to have

−∅c∅t̃ ′∗ = ∅c∅t̃ ∗ ≡ ∅c∅t̃ ; −∅x̃ ′∗ = ∅x̃ ∗ ≡ ∅x̃ (8a) .

Again, ∅ψ = ∅π implies sin∅ψ = ∅v/∅c = 0, hence ∅v = 0. This means that the primed intrinsic
affine frame and the unprimed intrinsic affine frame are the same at ∅ψ = ∅π. We must replace
the unprimed intrinsic affine coordinates, ∅c∅t̃ and ∅x̃, with the primed intrinsic affine coordinates,
∅c∅t̃ ′ and ∅x̃ ′, respectively in the last displayed system to have

−∅c∅t̃ ′∗ = ∅c∅t̃ ′ and −∅x̃ ′∗ = ∅x̃ ′ , (8b)

or

(−∅x̃′∗,−∅c∅t̃′∗) (∅x̃′,∅c∅t̃′)-rot. by ∅ψ=∅π (8c)

The transformation scheme (8c) states that the primed intrinsic affine frame (−∅x̃ ′∗,−∅c∅t̃ ′∗) at
rest relative to the ‘stationary’ observer* Peter* in −Σ ′∗ in the negative universe, forms the primed
intrinsic affine frame (∅x̃ ′,∅c∅t̃ ′) at rest relative to the symmetry-partner ‘stationary’ observer Peter
in Σ ′ in our universe, upon rotating its intrinsic affine coordinates, −∅x̃ ′∗ and −∅c∅t̃ ′∗, by ∅ψ = ∅π
relative to Peter*.

The transformation scheme (8c) is then made manifested outwardly in the following in our universe

(−x̃′∗,−ỹ′∗,−z̃′∗,−ct̃′∗) (x̃′, ỹ′, z̃′, ct̃′)-intr. rot. by ψ=π (8d)
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What must be concluded from Eq. (7b) and the
implied transformation schemes (7c) and (7d)
in the positive universe and the corresponding
Eq. (8b) and the implied transformation schemes
(8c) and (8d) in the negative universe is that,
the intrinsic rotations of the intrinsic affine
coordinates, ∅x̃ ′ and ∅c∅t̃ ′, by intrinsic angle,
∅ψ = ∅π (assuming that rotation by ∅ψ =
∅π/2 can be avoided), in the positive universe,
transforms the primed particle’s intrinsic affine
frame (∅x̃ ′,∅c∅t̃ ′) and the primed particle’s
affine frame (x̃ ′, ỹ ′, z̃ ′, ct̃ ′) in the positive
universe, into the symmetry-partner primed
particle’s intrinsic affine frame (−∅x̃ ′∗,−∅c∅t̃ ′∗)
and symmetry-partner primed particle’s affine
frame (−x̃ ′∗,−ỹ ′∗,−z̃ ′∗,−ct̃ ′∗) respectively, in
the negative universe.

The simultaneous intrinsic rotations of the
intrinsic affine coordinates, −∅x̃ ′∗ and −∅c∅t̃ ′∗,
of the symmetry-partner particle’s intrinsic
affine frame (−∅x̃ ′∗,−∅c∅t̃ ′∗) by intrinsic
angle, ∅ψ = ∅π, while avoiding ∅ψ =
∅π/2, in the negative universe, transforms
the symmetry-partner primed particle’s intrinsic
affine frame (−∅x̃ ′∗,−∅c∅t̃ ′∗) and the
symmetry-partner primed particle’s affine
frame (−x̃′∗,−ỹ ′∗,−z̃ ′∗,−ct̃ ′∗) in the negative
universe, into the primed particle’s intrinsic
affine frame (∅x̃ ′,∅c∅t̃ ′) and primed particle’s
affine frame (x̃ ′, ỹ ′, z̃ ′, ct̃ ′) respectively, in the
positive universe.

Now the transformation schemes (7c) and
(7d) are intrinsic affine spacetime inversion
and affine spacetime inversion in our (or
positive) universe, likewise the corresponding
transformation schemes (8c) and (8d) in the
negative universe. What must be concluded
from the preceding two paragraphs and the
derivations that lead to them is that, four-
dimensional affine spacetime inversion and two-
dimensional intrinsic affine spacetime inversion,
are special Lorentz transformation and special
intrinsic Lorentz transformation respectively, in
each of our universe and the negative universe.

It is to be noted however that the conclusion
reached in the preceding paragraph does
not apply to the intrinsic metric spacetimes,
(∅ρ′,∅c∅t′) and (−∅ρ′∗,−∅c∅t′∗), and the
metric spacetimes, (Σ′, ct′) and (−Σ′∗,−ct′∗),

of our universe and the negative universe. This
is so, because the intrinsic metric spacetime
coordinates are not rotated in the context of ∅SR.

It has been concluded in the context of the
existing one-world background of the special
theory of relativity (or in the one-world picture
in Scheme I of Table I of [1]) that, four-
dimensional inversion (7d) is impossible as actual
transformation of the coordinates of a frame of
reference. This, as discussed on page 39 of
[2], for example, is due to the fact that four-
dimensional inversion carries the (affine) time
coordinate from the future light cone into the
past light cone, which is impossible without
going through regions of spacelike geodesics
that requires the introduction of imaginary (affine)
spacetime coordinates.

The light cone concept does not exist in the two-
world picture, as deduced in sub-section 4.7 of
[1]. Consequently continuous rotation of intrinsic
affine spacetime coordinates of the particle’s
primed intrinsic affine frame (∅x̃ ′,∅c∅t̃ ′)
relative to the intrinsic affine spacetime
coordinates of the particle’s unprimed intrinsic
affine frame (∅x̃, ∅c∅t̃ ), in the generalized
intrinsic Lorentz transformation (1), through all
intrinsic angles ∅ψ in the range [0, 2∅π], while
avoiding ∅ψ=∅π/2 and ∅ψ=3∅π/2, is possible
(granting that how ∅ψ=∅π/2 and ∅ψ=3∅π/2
can be avoided shall be explained), without going
into regions of spacelike geodesics in the two-
world picture. Thus the intrinsic two-dimensional
inversion (7c), obtained by letting ∅ψ = ∅π in
the generalized intrinsic Lorentz transformation
(1), is a special intrinsic Lorentz transformation in
the two-world picture.

The four-dimensional inversion (7d), which does
not involve actual rotation of the primed affine
spacetime coordinates of the primed affine frame
(x̃ ′, ỹ ′, z̃ ′, ct̃ ′) relative to the unprimed affine
spacetime coordinates of the unprimed affine
frame (x̃, ỹ, z̃, ct̃), is the outward manifestation in
the four-dimensional spacetime of intrinsic two-
dimensional inversion that involves actual rotation
of intrinsic affine spacetime coordinates. It is
consequently a special Lorentz transformation in
the two-world picture.
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1.2 Signs of Mass and Intrinsic
Mass in the Negative
Universe

After the relevant digression in the preceding sub-
section, let us resume the development of the
topic of the section. Now letting ∅ψ = ∅π in the
generalized intrinsic mass expression (6) in the
context of ∅SR in the positive universe gives

∅m = −∅m0 ≡ −∅m∗
0 . (9a)

But ∅ψ = ∅π implies sin∅ψ = ∅v/∅c =
0, hence ∅v = 0. This means that the
primed intrinsic affine frame containing ∅m0 and
the unprimed intrinsic affine frame containing,
∅m = ∅γ∅m0, are the same at ∅ψ = ∅π, as
mentioned earlier. We must therefore replace
∅m by ∅m0 in Eq. (9a) to have

∅m0 = −∅m∗
0 . (9b)

The outward manifestation in spacetime of
Eq. (9b) in intrinsic spacetime, which also follows
by letting ψ = π in the mass expression (5) is

m0 = −m∗
0 . (9c)

Equations (7c) and (9b) state that the rotations of
the intrinsic affine coordinates, ∅x̃ ′ and ∅c∅t̃ ′,
of the particle’s primed intrinsic affine frame
(∅x̃ ′, ∅c∅t̃ ′) along with the line of intrinsic
rest mass ∅m0 of the particle in ∅x̃ ′, to be
denoted by (∅x̃ ′, ∅c∅t̃ ′;∅m0), in the positive
universe, by intrinsic angle, ∅ψ = ∅π (assuming
that rotation by ∅ψ = ∅π/2 can be avoided),
transforms (∅x̃ ′, ∅c∅t̃ ′;∅m0) in the positive
universe into (−∅x̃ ′∗,−∅c∅t̃ ′∗; −∅m∗

0) in the
negative universe, according to the following
transformation scheme,

(∅x̃′, ∅c∅t̃′;∅m0) (−∅x̃′∗,−∅c∅t̃′∗;−∅m∗
0)-rot. by ∅ψ=∅π

(10a)
The transformation scheme (10a) in intrinsic spacetime will be automatically made manifested in the
following in spacetime

(x̃′, ỹ′, z̃′, ct̃′;m0) (−x̃′∗,−ỹ′∗,−z̃′∗,−ct̃′∗;−m∗
0)-intr. rot. by ψ=π

(10b)
The transformation scheme (10b) is also implied by the transformation scheme (7d) along with
letting ψ = π in Eq. (5). Although the affine coordinates, x̃ ′, ỹ ′, z̃ ′ and ct̃ ′, of the affine frame
(x̃ ′, ỹ ′, z̃ ′, ct̃ ′), containing the rest mass m0 are not rotated, the transformation scheme (10a) implied
by actual rotations of ∅x̃ ′ and ∅c∅t̃ ′ by ∅ψ = ∅π, is automatically made manifested in the transforma-
tion scheme (10b) in the two-world picture.
The correspondences in the negative universe of the intrinsic transformation schem (10a) and the
transformation scheme (10b) in the positive universe, obtained by simply reversing the direction of
the arrows in the transformation schemes (10a) and (10b) are the following

(−∅x̃′∗,−∅c∅t̃′∗;−∅m∗
0) (∅x̃ ′,∅c∅t̃ ′;∅m0)-rot. by ∅ψ=∅π

(11a)and

(−x̃′∗,−ỹ′∗,−z̃′∗,−ct̃′∗;−m∗
0) (x̃′, ỹ′, z̃′, ct̃′;m0)-intr. rot. by ψ=π

(11b)
What can be concluded from the intrinsic transformations of primed intrinsic affine coordinates and

intrinsic rest mass implied by (10a) in the positive universe and the simultaneous corresponding
transformations implied by (11a) in the negative universe is that, the positive intrinsic rest mass
∅m0 of a particle or body in the primed intrinsic affine frame (∅x̃ ′, ∅c∅t̃ ′) (or (∅x̃ ′, ∅c∅t̃ ′;∅m0))
in the positive universe, corresponds to the negative intrinsic rest mass −∅m∗

0 of the symmetry-
partner particle or body in the symmetry-partner primed intrinsic affine frame (−∅x̃ ′∗,−∅c∅t̃ ′∗) (or
(−∅x̃ ′∗,−∅c∅t̃ ′∗;−∅m∗

0)) in the negative universe.
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And what can be concluded from the transformations of primed affine coordinates and rest mass
implied by (10b) in the positive universe and the corresponding transformation implied by (11b) in
the negative universe is that, the positive rest mass m0 of a particle or body in the primed affine
frame (x̃ ′, ỹ ′, z̃ ′, ct̃) (or (x̃ ′, ỹ ′, z̃ ′, ct̃ ′;m0)) in the positive universe, corresponds to negative rest
mass −m∗

0 of the symmetry-partner particle or body in the symmetry-partner primed affine frame
(−x̃ ′∗,−ỹ ′∗,−z̃ ′∗,−ct̃ ′∗) (or (−x̃ ′∗,−ỹ ′∗,−z̃ ′∗,−ct̃ ′∗;−m∗

0)) in the negative universe.

Now letting ∅m0 → −∅m∗
0 implies letting ∅m (= ∅γ∅m0) → −∅m∗ (= −∅γ∅m∗

0) and letting
m0 → −m∗

0 implies m (= γ m0) → −m∗ (= −γ m∗
0), with transition from the positive to the negative

universe. Thus the negation of intrinsic rest mass and rest mass in the negative universe concluded in
the preceding two paragraphs is equally true of the special-relativistic intrinsic mass ∅m (= ∅γ∅m0)
and special-relativistic mass m (= γ m0).

The negation of inertial mass mi and intrinsic inertial mass ∅mi and the negation of passive gravita-
tional mass mp and intrinsic passive gravitational massive mass ∅mp in the negative universe, follow
from the equivalences of the mass concepts: m0 = mi = mp and, consequently, ∅m0 = ∅mi =
∅mp, in classical mechanics in our (or positive) universe [3]. These become −m∗

0 = −m∗
i = −m∗

p

and −∅m∗
0 = −∅m∗

i = −∅m∗
p in the negative universe. The situation with the active gravitational

mass ma and intrinsic active gravitational mass ∅ma, shall be deferred until further development
of the two-world picture elsewhere. We must have begun to glimpse the confirmation of Schuster’s
contemplation in 1898 of a universe with negative mass [3].

2 RE-DERIVATION OF THE
SIGN MASS AND DERIVA-
TION OF THE SIGNS
OF OTHER PHYSICAL
PARAMETERS AND PHYSI-
CAL CONSTANTS IN THE
NEGATIVE UNIVERSE
BY APPLICATION OF
SYMMETRY OF LAWS
BETWEEN THE POSITIVE
AND NEGATIVE UNIVERSES

Four-dimensional inversion is the transformation
of the positive (affine) spacetime coordinates
of a frame in the positive universe into the
negative (affine) spacetime coordinates of the
symmetry-partner frame in the negative universe,
as systems (7d) in our universe shows, or
conversely, as system (8d) shows. Thus the
simultaneous negation of spacetime coordinates
in the classical or special-relativistic form of a
natural law in our universe, amounts to writing
that law in the negative universe.

Now the prescribed perfect symmetry of state
between the positive and negative universes
discussed in sub-section 4.1 of [1], will be
impossible unless there is also a perfect
symmetry of laws between the two universes.
That is, unless natural laws take on identical
forms in the two universes. Perfect symmetry of
laws between the positive and negative universes
is immutable, as shall be demonstrated shortly
in this article. It is to be recalled that Lorentz
invariance in the negative universe (which is an
important component of the invariance of laws in
the negative universe), has been validated from
the derived LT and its inverse in the negative
universe of systems (36) and (37) of [1].

The simultaneous negation of space and time
dimensions in a natural law in the positive
universe, in the process of writing it in the
negative universe, will change the form of
that law in general unless physical parameters
and physical constants, such as mass, electric
charge, temperature, flux, specific heat capacity,
thermal conductivity, etc, which also appear in
the law (usually as differential coefficients in
the local instantaneous differential laws), are
given the appropriate signs. By combining
the simultaneous negation of space and time
dimensions with the invariance of laws, the
signs of physical quantities and constants in
the negative universe can be derived. The
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derivations of the signs of the fundamental
quantities namely, mass, electric charge and
absolute temperature in the negative universe
shall be done below. The signs of all derived
(or non-fundamental) physical quantities and
physical constants can then be inferred from their
dimensions, as shall be demonstrated.

Consider a body of constant mass m to be
accelerated by a force F⃗ directed along the
positive X−axis of the frame attached to it. In the
positive universe, Newton’s second law of motion
for this body is the following

F⃗ = m
d2x

dt2
î (12)

Since the dimensions of 3-space of the
negative universe is inversion in the origin
of the dimensions of 3-space of the positive
universe, the dimensions, unit vector and
force, (x, y, z, t; î; F⃗ ), in the positive universe
correspond to (−x∗, −y∗,−z∗, −t∗; −î∗; −F⃗ ∗)
in the negative universe. Thus in the negative
universe, we must let x → −x∗, t → −t∗, î →
−î∗ and F⃗ → −F⃗ ∗, while leaving m unchanged
meanwhile in Eq. (12) to have

− F⃗ ∗ = m
d2(−x∗)
d(−t∗)2 (−î∗) = m

d2x∗

dt∗2
î∗ (13)

While Eq. (12) states that a body pushed in the
positive x− direction by a force F⃗ , moves along
the positive x−direction (away from the force), in
the positive universe, Eq. (13) states that a body
pushed in the −x∗− direction by a force −F⃗ ∗,
moves in the +x∗−direction, with unit vector +î∗

(toward the force), in the negative universe. This
implies that Newton’s second law of motion is
different in the negative universe, contrary to
the required invariance of natural laws in that
universe.

In order for Eq. (13) to retain the form of Eq. (12),
so that Newton’s second law of motion remains
unchanged in the negative universe, we must let
m→ −m∗ in it to have as follows

− F⃗ ∗ = −m∗ d
2x∗

dt∗

2

(̂i∗) = m∗ d
2x∗

dt∗

2

(−î∗), (14)

which is of the form of Eq. (12) upon canceling
the signs. The fact that we must let m→ −m∗ in
Eq. (13) to arrive at Eq. (14) implies that mass is
a negative quantity in the negative universe.

Newton second law in free space has
been chosen because it involves spacetime
coordinates and mass and no other physical
quantity or constant. However the negation
of mass in the negative universe does not
depend on the natural law adopted; it follows
from any chosen law once the signs in the
negative universe of the other physical quantities
and physical constants that appear in that law
have been correctly substituted, in addition to
the simultaneous negation of space and time
dimensions in the law.

The negation of mass also follows from the
invariance of the metric tensor with reflection
of spacetime dimensions. For if we consider
the Schwarzschild metric in empty space at the
exterior of a spherically symmetric gravitational
field source, for example, then the non-trivial
components of the metric tensor are, g00 =
−g−1

11 =1 − 2GM/rc2. By letting r → −r∗, we
must also let M → −M∗ in order to preserve
the metric tensor in the negative universe. It can
be verified that this is true for all other metric
tensors in general relativity. Thus negative mass
derived from the generalized mass expression
in the special theory of relativity in the two-
world picture in section one of this paper, has
again been re-derived from the requirement of
symmetry of natural laws between the positive
and negative universes.

For electric charge, the electrostatic field E⃗
emanating from a particle (assumed spherical in
shape), with net electric charge q in the positive
universe, is given at radial distance r from the
center of the particle as

E⃗ =
qr⃗

4πϵor3
. (15)

The symmetry-partner electrostatic field
emanating from the symmetry-partner particle
in the negative universe is inversion in the origin
of the electrostatic field in the positive universe.
Hence the electrostatic field in the negative
universe points in opposite direction in space
as its symmetry-partner field E⃗ of Eq. (15) in the
positive universe. This implies that the symmetry-
partner electrostatic field in the negative universe
is −E⃗∗. By letting r → −r∗, r⃗ → −r⃗ ∗ and
E⃗ → −E⃗∗ in Eq. (15), while retaining q and ϵo
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meanwhile we have

− E⃗∗ =
q(−r⃗ ∗)

4πϵo(−r∗)3
=

qr⃗ ∗

4πϵor∗3
. (16)

In order for Eq. (16) to retain the form of Eq. (15),
so that Coulomb’s law remains unchanged in the
negative universe, we must let q/ϵo → −(q∗/ϵ∗o)
to have

− E⃗∗ = − q∗r⃗ ∗

4πϵ∗or∗3
, (17)

which is of the form of Eq. (15) upon canceling
the signs.

The negative sign of −(q∗/ϵ∗o) is associated with
the electric charge, while the electric permittivity
of free space in our (or positive) universe, retains
its positive sign in the negative universe. This
can be ascertained from the relation for the
divergence of electric field

∇⃗ · E⃗ = ϱ/ϵo . (18)

In the negative universe, we must let ∇⃗ →
−∇⃗∗, E⃗ → −E⃗∗, ϱ → ϱ∗ (since ϱ= q/V →
−q∗/(−V ∗)= q∗/V ∗ = ϱ∗), while retaining ϵo
meanwhile in (18) to have

− ∇⃗∗ · (−E⃗∗) = ϱ∗/ϵo . (19)

In order for (19) to retain the form of Eq. (18),
we must let ϵo → ϵ∗o, which confirms the
positivity of the electric permittivity of free space
in the negative universe. The conclusion then
is that the electric charge of a particle in the
negative universe has opposite sign as the
electric charge of its symmetry-partner in
the positive universe.

The magnetic permeability of empty space (or
vacuum) is likewise positive in the negative
universe, like in our universe. This follows from
the relation, c2 = 1/ϵoµo, with ϵo positive in the
negative universe.

Let us consider the energy stored in a uniform
electric field E⃗ in a parallel plate capacitor,
say, and in a uniform magnetic field B⃗ in an
electromagnet, say. These are given as follows
in the positive universe

εE = ϵo |E⃗ |2V ; (20a)

εB = |B⃗ |2V/µo , (20b)

where V is the volume of empty space (or
vacuum) occupied by the uniform electric field

within the capacitor and by the uniform magnetic
field within the electromagnet.

Volume of space (meter3 ) is a negative quantity
in the negative universe and electric field and
magnetic field in the negative universe are
inversions of their symmetry-partners in the
positive universe. Consequently in writing
Eqs. (20a) and (20b) in the negative universe, we
must let V → −V ∗, E⃗ → −E⃗∗, B⃗ → −B⃗∗,
ϵo → ϵ∗o and µo → µ∗

o, while leaving εE and εB ,
meanwhile to have

εE = ϵ∗o |− E⃗∗|2(−V ∗) = − ϵ∗o |E⃗∗|2V ∗(21a)

εB = |− B⃗∗|2(−V ∗)/µ∗
o = − |B⃗∗|2V ∗/µ∗

o

(21b)

In order for Eqs. (21a) and (21b) to retain the
forms of Eqs. (20a) and (20b), so that the
expressions for energy stored in electric and
magnetic fields are invariant in the negative
universe, we must let εE → −ε∗E and εB → −ε∗B
in Eqs. (21a) and (21b) to have

−ε∗E = − ϵo |E⃗∗|2V ∗ (22a)

−ε∗B = − |B⃗∗|2V ∗/µo (22b)

Equations (22a) and (22b) are in the forms of
Eqs. (20a) and (20b) upon canceling the signs.
The transformations, εE → −ε∗E and εB → −ε∗B ,
which converts Eqs. (21a) and (21b) to Eqs. (22a)
and (22b), imply that energy stored in electric
field and energy stored in magnetic field are
negative in the negative universe. Indeed most
energy are negative in the negative universe.
For example kinetic energy, rest energy and total
are negative by virtue of negative mass, but
gravitational potential energy is positive in the
negative universe.

We are now left to determine the sign in the
negative universe of the last fundamental quantity
namely, absolute temperature. It has been found
impossible to determine the sign of absolute
temperature in the negative universe in a unique
manner from consideration of the equations
of thermodynamics, kinetic theory of gas and
transport phenomena. It has been necessary to
make recourse to the more fundamental notions
of the “arrow of entropy” and “arrow of time” in
order to propagate. These notions have been
made tangible by the works of [4].
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We know that entropy always increases or always
“flows” along the positive direction of the ‘entropy
axis’ S in our (or positive) universe, even as
time always increases or always “flows” into
the future direction, that is, along the positive
time axis ct in our universe. Thus the arrow
of time and the arrow of entropy lie parallel to
each other in our universe. Or in the words
of Prigogine, “[positively directed] arrow of time
is associated with [positively directed] arrow of
entropy” [4]. Thus absolute entropy and change
in entropy are positive quantities in our (or
positive) universe, just as time and intervals of
time are positive quantities in our (or positive)
universe.

The arrow of time and the arrow of entropy
should likewise lie parallel to each other in the
negative universe. We then infer from this that
‘entropy axis’ is negatively directed and, hence
that entropy is a negative quantity in the negative
universe, since time is negatively directed and
is hence a negative quantity in the negative
universe.

Having determined the sign of absolute entropy in
the negative universe from the above reasoning,
it is now an easy matter to determine the sign
of absolute temperature in the negative universe.
For let us write the following fundamental relation
for absolute entropy in our universe,

S = k lnW , (23)

where k is the Boltzmann constant and W
is the number of micro-states in an ensemble
in the quantum-mechanical formulation [5]. In
the negative universe, we must let S → −S∗

and W → W ∗ (since being a dimensionless
number, W retains its positive sign in the
negative universe, as shall be discussed for all
dimensionless numbers shortly), while retaining
k meanwhile to have

− S∗ = k lnW ∗ . (24)

In order for Eq. (24) to retain the form of Eq. (23)
we must let k → −k∗ (in Eq. (24)) to have

− S∗ = −k∗ lnW ∗ , (25)

which is of the form of Eq. (23) upon canceling the
signs. Thus the Boltzmann constant is a negative
quantity in the negative universe.

The average energy ε of a molecule, for one
degree-of-freedom motion of a diatomic molecule
in a gas maintained at thermal equilibrium at
temperature T is

ε =
2

3
kT , (26)

where, again, k is the Boltzmann constant. In
the negative universe, we must let ε → −ε∗,
(since the kinetic energy 1

2
mv2 of molecules, like

mass m, is a negative quantity in the negative
universe), and also let k → −k∗ in Eq. (26), while
retaining T meanwhile to have

− ε∗ =
2

3
(−k∗)T , (27)

which is of the form of Eq. (26) upon canceling the
signs. The transformation, T → T ∗, required to
convert Eq. (27) to Eq. (26), implies that absolute
temperature is a positive quantity in the negative
universe.

In summary, the fundamental quantities namely,
mass m, electric charge Q and absolute tem-
perature T , transform between the positive and
negative universes as, m → −m∗;Q → −Q∗

and T → T ∗. Thus by writing various natural
laws in terms of negative spacetime dimensions,
negative mass, negative electric charge and
positive absolute temperature, and requiring the
laws to retain their usual forms in the positive
universe, the signs of other physical quantities
and constants in the negative universe can be
derived. However a faster way of deriving the
signs in the negative universe of derived (or non-
fundamental) physical quantities and constants
is to check the signs of their dimensions in the
negative universe, as demonstrated for a few
quantities and constants below.

Let us consider the Boltzmann constant k
and absolute entropy S, whose negative signs
in the negative universe have been deduced
above. They both have the unit, Joule/Kelvin,
or dimension ML2

T2Θ
in the positive universe,

where M represents mass ‘dimension’, L
represents length dimension, T represents
time dimension and Θ represents absolute
temperature ‘dimension’. In the negative
universe, we must let, M→ −M∗, L→ −L∗, T→
−T ∗ and Θ → Θ∗, to have the dimensions of
Boltzmann constant and absolute entropy in the
negative universe as, −M∗(−L∗)2

(−T∗)2Θ∗ = − M∗L∗2

T∗2Θ∗ .
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The Boltzmann constant and absolute entropy
are negative quantities in the negative universe,
since their common dimension is negative in the
negative universe.

The Planck constant has the unit Joule/second
and dimension ML2

T3 in the positive universe.
In the negative universe, it has dimension
−M∗(−L∗)2

(−T∗)3 , which is positive. Hence the Planck
constant is a positive quantity in the negative
universe.

The specific heat capacity has the unit Joule
Kg.Kelvin

and dimension L2

T2Θ
in the positive universe. In

the negative universe it has dimension (−L∗)2

(−T∗)2Θ∗ ,
which is positive. Hence specific heat capacity is
a positive quantity in the negative universe.

The electric permittivity of vacuum ϵo has the
unit of Joule·metre / Coulomb2 and dimension
ML3

T2C2 in the positive universe, where C is
used to represent the charge ‘dimension’.
In the negative universe, it has dimension
(−M∗)(−L∗)3

(−T∗)2(−C∗)2=
M∗L∗3

T∗2C∗2 , which is positive. Hence
the electric permittivity of vacuum is a positive
quantity in the negative universe. This fact has
been derived earlier in the process of deriving the
sign of electric charge in the negative universe.
Likewise magnetic permeability of vacuum µo

has dimension ML
C2 in the positive universe and

dimension, −M∗(−L∗)
(−C∗)2 =M∗L∗

C∗2 , in the negative
universe. It is hence a positive quantity in both
the positive and negative universes, as has also
been derived above.

An angular measure in space in the positive
universe has the same sign as the symmetry-
partner angular measure in the negative
universe. This follows from the fact that an arc
length, s= rθ (metre), in the positive universe
corresponds to a negative arc length, s∗ = −
(r∗θ∗) (−metre∗), in the negative universe. In
other words, an arc length in the positive universe
and its symmetry-partner in the negative universe
transform as, rθ → −(r∗θ∗). But the radii of the

symmetry-partner arcs transform as, r → −r∗.
It follows from these two transformations that an
angular measure in space in the positive universe
has the same sign as its symmetry-partner in
the negative universe, that is, ±θ → ±θ∗ and
±φ→ ±φ∗, etc.

Angular momentum L⃗ (= mv⃗ × r⃗) and intrinsic
spin s have unit Joules·Second and dimension
ML2

T
in the positive universe. Their dimension is,

−M ∗(−L∗)
(−T ∗) = M ∗L∗2

T ∗ , in the negative universe.

Hence angular momentum L⃗∗ and intrinsic spin
s∗ of a particle* in the negative universe have
the same signs as the angular momentum L⃗ and
intrinsic spin s of the symmetry-partner particle
in the positive universe.

The magnetic moment, µ = qh/2mc, of a particle
in the positive universe corresponds to magnetic
moment, µ∗ = (−q)h/2(−m∗)c = qh/2m∗c, of
the symmetry-partner particle in the negative
universe. Hence the signs of the magnetic
moments of a particle in the positive universe and
its symmetry-partner in the negative universe are
the same.

Finally, a dimensionless quantity or constant in
the positive universe necessarily has the same
sign as its symmetry-partner in the negative
universe, as follows from the above. Examples
of dimensionless constants are the dielectric
constants, ϵr and µr, and the number of micro-
states in an ensemble W in Eq. (23).

Table 1. gives a summary of the signs of
some physical quantities and physical constants,
along with their intrinsic counterparts, in the
positive and negative universes. The signs in the
positive and negative universes of other physical
quantities and constants that are not included in
Table I can be easily determined from the signs
of their dimensions in the negative universe. The
appropriateness of the names positive universe
and negative universe is made clearer by Table
1.
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Table 1. The signs of spacetime/intrinsic spacetime dimensions, some physical
parameters/intrinsic parameters and some physical constants/intrinsic constants in the

positive and negative universes

Physical quantity and Symbol Intrinsic quantity and Sign
constant constant positive negative

universe universe
Distance/dimension
of space dx ; x d∅x ; ∅x + −
Interval/dimenion
of time dt ; t d∅t ; ∅t + −
Mass m ∅m + −
Electric charge Q ∅Q + or − − or +
Absolute entropy S ∅S + −
Absolute temp. T ∅T + +
Energy
(kinetic) E ∅E + −
(potential) U ∅U + or − − or +
Radiation energy hν h∅ν + −
Electrostatic pot. ΦE ∅ΦE + or − + or −
Gravitational pot. Φg ∅Φg − −
Gravi. field g⃗ ∅g − or + + or −
Electric field E⃗ ∅E + or − − or +
Magnetic field B⃗ ∅B + or − − or +
Planck constant h h + +
Boltzmann constant k ∅k + −
Thermal conductivity k ∅k + −
Specific heat cap. cp ∅cp + +
speed v ∅v + +
Electric permittivity ϵo ∅ϵo + +
Electric flux Q/ϵo ∅Q/∅ϵo + or − − or +
Magnetic permeability µo ∅µo + +
Angular measure θ, φ ∅θ,∅φ + or − + or −
Parity Π ∅Π + or − − or +
Angular momentum L⃗ ∅L + or − + or −
Intrinsic spin s ∅s + or − + or −
Magnetic moment µ ∅µ + or − + or −
...

...
...

...
...

3 DEMONSTRATING THE INVARIANCE OF THE NATURAL LAWS
IN THE NEGATIVE UNIVERSE

It shall be shown in this section that the simultaneous negations of spacetime dimensions and mass,
along with simultaneous reversal of the sign of electric charge, retention of the positive sign of
absolute temperature and substitution of the signs of other physical quantities and physical constants
in the negative universe, summarized in column 5 of Table I in its complete form, render all natural
laws unchanged. However only the invariance of a few laws in the negative universe namely, mechanics
(classical and special-relativistic), quantum mechanics, electromagnetism and propagation of light,
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the theory of gravity, cosmology and fundamental interactions in elementary particle physics, shall be
demonstrated for examples.

3.1 Invariance of Classical Mechanics, Classical Gravitation and Spe-
cial Relativity in the Negative Universe

Demonstrating the invariance of classical mechanics in the negative universe consists essentially in
showing that Newton’s laws of motion for an object under an impressed force and due to interaction
of an object with an external force field are invariant under the simultaneous operations of inversion
of all coordinates (or dimensions) of 3-space (parity inversion), time reversal and negation of mass.
The laws are given respectively as follows in the positive universe

F⃗mech = m
d2r

dt2
r̂ (28)

and
F⃗field = m(−∇Φ)k̂ , (29)

where r̂ and k̂ are unit vectors in the directions of the forces F⃗mech and F⃗field respectively.

In the negative universe, we must let F⃗mech → −F⃗ ∗
mech, F⃗field → −F⃗ ∗

field, m → −m∗, r → −r∗,
t → −t∗, ∇ → −∇∗, Φ → Φ∗ (for gravitational and elastic potentials), r̂ → −r̂∗ and k̂ → −k̂∗, in
Eqs. (28) and (29) to have

− F⃗ ∗
mech = −m∗ d

2(−r∗)
d(−t∗)2 (−r̂

∗) = m∗ d
2r∗

dt∗2
(−r̂∗) (30)

and

−F⃗ ∗
field = −m∗ (−(−∇∗)(Φ∗)) (−k̂∗)

= m∗ (∇∗Φ∗) (−k̂∗) (31)

Equations (30) and (31) are the same as Eqs. (28) and (29) respectively upon canceling the signs.

The invariance in the negative universe of the classical laws of motion (28) and (29) in the positive
universe, imply that a body of negative mass −m∗ in the negative universe moves along a trajectory,
when impressed upon by an external mechanical force −F⃗ ∗

mech, or when it is moving within a force
field with potential function Φ∗ in the negative universe, which is identical to the trajectory followed by
the symmetry-partner body of positive mass m in the positive universe, which is impressed upon by
an external symmetry-partner mechanical force F⃗mech, or which is moving within a symmetry-partner
force field with potential function Φ in the positive universe.

The invariance in the negative universe of the trajectories of a body implied by the invariance in the
negative universe of the differential classical laws of motion (28) and (29) for the body, established
above can be alternatively formulated as the invariance in the negative universe of the variational
formula of Maupertuis. In the positive universe, this is given as follows

δ

∫ P2

p1

(
2

m
(E − U)

)1/2

dt = 0 . (32)

In the negative universe, we must let m→ −m∗, E → −E∗, U → −U∗ and dt→ −dt∗ in Eq. (32) to
have

δ

∫ p∗2

p∗1

(
2

−m∗ (−E∗ − (−U∗))

)1/2

(−dt∗) = 0
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or

δ

∫ p∗2

p∗1

(
2

m∗ (E∗ − U∗)

)1/2

dt∗ = 0 . (33)

The summary of the above is that, although inertial mass, kinetic energy, distances in space and
periods of time are negative in the negative universe, material particles in the negative universe
perform identical motions under impressed forces and external force fields as their symmetry-partners
perform under symmetry-partner impressed forces and external force fields in the positive universe.
Thus outward external forces lead to outward motions of bodies both in the positive and negative
universes. Attractive gravitational field in the positive universe correspond to symmetry-partner repulsive
gravitational field in the negative universe, but they both give rise to attractive motions of particles
(toward the field sources) in both universes (as shown below). The transformation of classical
mechanics in the positive universe into the negative universe does not give rise to strange motions
and associated strange phenomena.

Demonstrating the invariance of classical gravitation (or classical gravitational interaction) in the
negative universe, consists in showing the invariance in the negative universe of Newton law of gravity
in differential form and the implied Newton law of universal gravity namely,

∇⃗ · g⃗ = − 4πGϱ , (34)

or
∇2Φ = 4πGϱ (35)

and
F⃗ = mg⃗ = −GMmr⃗

r3
, (36)

where

ϱ = m/V ; (mass density) (37)

Φ = −GM/r ; (38)

g⃗ = −GMr⃗/r3 . (39)

In writing Eqs. (37) – (39) in the negative universe, we must let m → −m∗; M → −M∗; r → −r ∗

and V → −V ∗ (volume of m) to have

m/V → −m∗/(−V ∗) = m∗/V ∗ ⇒ ϱ→ ϱ∗ ;

(40)

−GM
r
→ −G(−M∗)

(−r∗) = −GM
∗

r∗
⇒ Φ→ Φ∗ (41)

and

−GMr⃗

r3
→ −G(−M)(−r⃗ ∗)

(−r∗)3 =
GM∗r⃗ ∗

r∗3
⇒ g⃗ → −g⃗ ∗ . (42)

By using the transformations (40) – (42) along with ∇⃗ → −∇⃗∗ in Eqs. (34) – (36) we have

(−∇⃗∗) · (−g⃗ ∗) = − 4πGϱ∗ ,

∇⃗∗ · g⃗ ∗ = − 4πGϱ∗ , (43)

or

(−∇∗)2Φ∗ = 4πGϱ∗ ,

∇∗2Φ∗ = 4πGϱ∗ (44)
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and
F⃗ ∗ = (−m∗)(−g⃗ ∗) = −G(−M∗)(−m∗)(−r⃗ ∗)

(−r∗)3 ,

or
F⃗ ∗ = m∗g⃗∗ = −GM∗m∗r⃗ ∗/r∗3 . (45)

A comparison of Eqs. (34) – (36) in the positive universe with the corresponding Eqs, (43) – (45) in
the negative universe, shows that Newton law of gravity in differential form and the implied Newton
law of universal gravity are invariant in the negative universe. The invariance of classical gravitation
(or classical gravitational interaction) in the negative universe has thus been demonstrated. This
is true despite the fact that gravitational potential does not change sign, while gravitational field (or
gravitational acceleration) changes sign in the negative universe, according to Eqs. (41) and (42).

Demonstrating the invariance of the special theory of relativity in the negative universe consists in
demonstrating the invariance of Lorentz transformation, time dilation and length contraction formulas
and the special-relativistic expressions for mass and other parameters in that universe. Now for
motion at speed v of a particle of rest mass m0 along the x−axis of the coordinate system attached
to it relative to the observer in the positive universe, the Lorentz transformation of the primed affine
spacetime coordinates, (x̃ ′, ỹ ′, z̃ ′, ct̃ ′), of the particle’s primed affine frame into the unprimed affine
spacetime coordinates, (x̃, ỹ, z̃, ct̃), of the particle’s unprimed affine frame, has been written as
system (31) in the first part of this paper [1]. The special-relativistic mass is given in the positive
universe by the usual expression (5) of this paper.

In the negative universe, we must let, (x̃ ′, ỹ ′, z̃ ′, ct̃ ′; m0) → (−x̃ ′∗,−ỹ ′∗,−z̃ ′∗,−ct̃ ′∗;−m∗
0), and

(x̃, ỹ, z̃, ct̃;m) → (−x̃ ∗, −ỹ ∗, −z̃ ∗, −ct̃ ∗; −m∗). Consequently the Lorentz transformation of the
affine spacetime coordinates of the frame of reference attached to the symmetry-partner particle in
motion relative to the symmetry-partner 3-observer* in the negative universe, written as system (36)
in [1], shall be re-written here as

−t̃ ′∗ = γ
(
−t̃ ∗− v

c2
(−x̃ ∗)

)
;

−x̃ ′∗ = γ
(
−x̃ ∗ − v(−t̃ ∗)

)
; (46)

−ỹ ′∗ = −ỹ ∗ ; −z̃ ′∗ = −z̃ ∗ ;

while the expression for special-relativistic mass in the negative universe becomes the following

−m∗ = −γm∗
0 . (47)

The expressions for time dilation and length contraction in the negative universe are similarly given
respectively as

−t̃ ∗ = γ(−t̃ ′∗) = (1− v2/c2)−1/2(−t̃ ′∗) ; (48)

−x̃ ∗ = γ−1(−x̃ ′∗) = (1− v2/c2)1/2(−x̃ ′∗) . (49)

Although the negative signs must be retained in (46), (47), (48) and (49) in the negative universe,
mathematically they cancel, thereby making Lorentz transformation and the other equations of special
relativity written above, as well as others not written, in the negative universe, to retain their usual
forms in the positive universe. Thus Lorentz invariance obtains in the negative universe.

3.2 Invariance of Quantum Mechanics in the Negative Universe
The time-dependent Schrödinger wave equation is the following in the positive universe

H(r⃗, t, m, q)|Ψ(r⃗, t, m, q)⟩ = i~ ∂
∂t
|Ψ(r⃗, t, m, q)⟩ (50)
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Writing Eq. (50) in the negative universe, while leaving Ψ unchanged meanwhile gives

−H∗(−r⃗ ∗, −t∗, −m∗, −q∗)|Ψ(r⃗, t, m, q)⟩ = i~∗ ∂

∂(−t∗) |Ψ(r⃗, t, m, q)⟩ , (51)

where the fact that the Boltzmann constant transforms as ~ → ~∗ between the positive and negative
universes in Table I has been used.

Now the wave function should transform between the positive and negative universes either as

Ψ(r⃗, t, m, q)→ Ψ∗(−r⃗ ∗, −t∗, −m∗, −q∗) = Ψ∗(r⃗ ∗, t∗, m∗, q∗) , (52)

or
Ψ(r⃗, t, m, q)→ −Ψ∗(−r⃗ ∗, −t∗, −m∗, −q∗) = −Ψ∗(r⃗ ∗, t∗, m∗, q∗) . (53)

The parity of the wave function is conserved in Eq. (52) but inverted in Eq. (53). The phase of the
wave function, being a dimensionless number, remains unchanged in the negative universe.

Let us consider the following wave function in the positive universe,

Ψ(r⃗, t) = A sin
(
k⃗ · r⃗ − ωt

)
. (54)

The symmetry-partner wave function in the negative universe is obtained by letting r⃗ → −r⃗ ∗, k⃗ →
−k⃗∗, ω → −ω∗, t→ −t∗ and A→ −A∗ in Eq. (54) yielding

Ψ∗(r⃗, t) = −A∗ sin
(
−k⃗∗ · (−r⃗ ∗)− (−ω∗)(−t∗)

)
= −A∗ sin(k⃗∗ · r⃗ ∗ − ω∗t∗) . (55)

The transformation A → −A∗ is necessary, since inversion in the origin of the coordinates of a
Euclidean 3-space inverts the amplitude of a wave in that space. On the other hand, the phase of
a wave function, being a dimensionless number, does not change sign in the negative universe, as
mentioned above.

Thus the transformation (53), and not (52), is the correct transformation of the wave function between
the positive and negative universes. This is obviously so since Eq. (53) is a parity inversion situation,
which is in agreement with the natural parity inversion (x→ −x∗, y → −y ∗, z → −z ∗) (or Π→ −Π),
between the positive and negative universes included in Table I. By incorporating the transformation
(53) into Eq. (51) we have the following

−H∗(−r⃗∗,−t∗,−m∗,−q∗)| −Ψ∗(−r⃗∗,−t∗,−m∗,−q∗)⟩ = −i~∗ ∂

∂t∗
| −Ψ∗(−r⃗ ∗,−t∗,−m∗,−q∗)⟩ ,

or
H∗(r⃗ ∗, t∗,m∗, q∗)|Ψ∗(r⃗ ∗, t∗,m∗, q∗)⟩ = i~∗ ∂

∂t∗
|Ψ∗(r⃗ ∗, t∗,m∗, q∗)⟩ . (56)

This is of the form of Eq. (50).

The invariance of the Schrödinger wave equation in the negative universe has thus been established.
It is straight forward to similarly demonstrate the invariance in the negative universe of the Dirac’s
equation for the electron and of the Gordon’s equation for bosons.

3.3 Invariance of Maxwell Equations in the Negative Universe
The Maxwell equations in a medium with the presence of electric charge density ϱ and electric current
density J⃗ , as sources, are given in the positive universe as

∇⃗ · E⃗ = ϱ/ϵ ; ∇⃗ · B⃗ = 0 ;

∇⃗ × B⃗ = µJ⃗ + ϵµ
∂E⃗

∂t
; ∇⃗ × E⃗ = −∂B⃗

∂t
. (57)
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Now, ϱ = charge
volume

, is the electric charge density of the medium in the positive universe. The charge
density of the symmetry-partner medium in the negative universe is the positive quantity, −charge∗

−volume∗

= charge∗

volume∗ = ϱ∗. The magnitude of an electric current is, I = charge
time

, or I = ϱvA, in the positive
universe and the magnitude of its symmetry-partner in the negative universe is the positive quantity,
−charge∗

−time∗ = charge∗

time∗ = I∗, or ϱ∗vA∗ = I∗, since speed v, charge density ϱ and area A, do not change
sign in the negative universe. Similarly the magnitude of an electric current density of a medium in the
positive universe is, J = current

area
, and the magnitude of the current density of the symmetry-partner

medium in the negative universe is, current∗

area∗ = J∗.

Thus in obtaining the Maxwell equations in the negative universe, we must let, E⃗ → −E⃗∗, B⃗ →
−B⃗∗, ϱ→ ϱ∗, J⃗ → J⃗∗, ∇⃗ → −∇⃗∗, ϵ→ ϵ∗, µ→ µ∗ and t→ −t∗, in system (57) to have

−∇⃗∗ · (−E⃗∗) = ϱ∗/ϵ∗ ; −∇⃗∗ · (−B⃗∗) = 0 ;

−∇⃗∗ × (−B⃗∗) = µ∗J⃗∗ + ϵ∗µ∗ ∂(−E⃗∗)

∂(−t∗) ; (58)

−∇⃗∗ × (−E⃗∗) = −∂(−B⃗
∗)

∂(−t∗) .

System (58) with the negative signs is the form in which the Maxwell equations are written by
physicists* in the negative universe. The signs cancel mathematically thereby making system (58)
to retain the form of system (57) and thereby establishing the invariance of Maxwell equations in the
negative universe.

The law of propagation of electromagnetic waves derived from Maxwell equations remain invariant in
the negative universe as a consequence of the above. The equations are given with the assumption
of spatially uniform sources, ϱ and J⃗ , time-independent J⃗ and space-independent and time-indepen-
dent µ and ϵ in the medium, in the positive universe as

∇2E⃗ =
1

V 2

∂2E⃗

∂t2
; ∇2B⃗ =

1

V 2

∂2B⃗

∂t2
, (59)

where, V = 1/
√
µϵ, is the speed of light in the medium. While in the negative universe, the

electromagnetic wave equations are

(−∇∗)2(−E⃗∗) =
1

V 2

∂2(−E⃗∗)

∂(−t∗)2 ; (−∇∗)2(−B⃗∗) =
1

V 2

∂2(−B⃗∗)

∂(−t∗)2 . (60)

Thus as electric field and magnetic field, E⃗ and B⃗, propagate as electromagnetic wave at a speed V
through a medium in the positive universe, the symmetry-partner fields, −E⃗∗ and −B⃗∗, propagate as
the identical symmetry-partner electromagnetic wave at the speed V through the symmetry-partner
medium in the negative universe. Consequently, although electric charge and electric and magnetic
fields change signs in the negative universe, the law of propagation of electric and magnetic fields
(electromagnetism) and the law of propagation of electromagnetic waves remain invariant in the
negative universe.

3.4 Invariance of General Relativity and Cosmology in the Negative
Universe

Since system of coordinates does not enter the covariant tensor formulation of Einstein’s field equations,
the equations are equally valid for the negative dimensions of the negative universe. The most general
form of Einstein field equations in the positive universe is the following

Rν
µ −

1

2
Rgνµ + Λgνµ = −8πG

c2
T ν
µ , (61)
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where the energy-momentum tensor T ν
µ is

T ν
µ = (p+ ϱ)uνuµ − pgνµ , (62)

Λ is the cosmological constant, p and ϱ are the pressure and mass-density of the universe respectively,
while the other quantities in Eqs. (61) and (62) are as defined in the theory. Λ is usually set to
zero when considering local gravitational problems in general relativity, but retained in cosmological
problems.

For the static exterior field of a spherical body, we must let Λ=T ν
µ =0 in Eq. (61) and require the

vanishing of the Ricci tensor to have
Rµν = 0 . (63)

Adopting a metric with signature (+ − −−), the solution to the Einstein free space field equations
(63) first derived by K. Schwarzschild (in 1916) is

ds2 = c2dt2
(
1− 2GM/rc2

)
− dr2

(1− 2GM/rc2)
− r2

(
dθ 2 + sin2 θdφ2) (64)

Letting t → −t∗, r → −r∗, θ → θ∗, φ → φ∗ and M → −M∗ in Eq. (64), we find that the
Schwarzschild line element or metric tensor remains invariant in the negative universe. Other forms of
exterior line elements or metric tensors in general relativity, such as the Kerr’s line element and metric
tensor, the interior line elements and metric tensors, etc, remain invariant in the negative universe as
well. This is so because ds2 is quadratic in intervals, cdt, dr, rdθ and r sin θdφ, and the components
of the metric tensor are dimensionless. This concludes the invariance of general relativity in the
negative universe.

Now the metric of spatially homogeneous universe in co-moving coordinates is the Robertson-Walker
metric associated with the line element

ds2 = c2dt2 −R(t)2
(
du2 + u2

(
dθ2 + sin2 θdφ2

)
(1 + (k/4)u2)2

)
, (65)

where, u = r/r0 and the constant k is −1, 0 or +1, corresponding to spherical universal 3-space,
Euclidean universal 3-space or pseudo-spherical universal 3-space respectively, in pages 400 –406
of [6], for instance. Assuming that the universe is filled with perfect fluid, the field equation (61) along
with the energy-momentum tensor (62), have been cast in the following forms from which various
cosmological models have been derived in general relativity, as can be found in [6] and other standard
texts on general relativity,

8πGϱ

c2
= −Λ +

[
3k

R(t)2
+

3Ṙ(t)2

c2R(t)2

]
; (66)

8πG

c2

( p
c2

)
= Λ−

[
k

R(t)2
+

Ṙ(t)2

c2R(t)2
+

2R̈(t)

c2R(t)

]
;

(67)

R(t) = R0 exp(Ht), R0 = R(t = 0) , (68)

where R(t) is the “radius” of the universe, H is the Hubble constant given by

H =
Ṙ(t)

R(t)
=

1

R(t)

dR(t)

dt
, (69)

and the cosmological constant Λ is related to Hubble constant H as

Λ = 3H2/c2 . (70)
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The parameters that appear in cosmological
model, that is, in Eqs. (66) through (68), are
the global time t, the “radius” of the universe
R(t), the mass-density of the universe ϱ, the
pressure of the universe p, the Hubble constant
H and the cosmological constant Λ. Also the rate
of expansion Ṙ(t), as well as the acceleration
R̈(t), of the expanding universe, enter into the
equations. In the negative universe, we must let
t → −t∗, R(t) → −R∗(−t∗), ϱ → ϱ∗, p →
p∗, H → −H∗, Λ → Λ∗, Ṙ(t) → Ṙ∗(−t∗)
and R̈(t) → −R̈∗(−t∗), in Eqs. (66) – (68).
Doing this, we find that the equations remain
unchanged, so that physicists* in the negative
universe formulate identical cosmological models
as those formulated by physicists in the positive
universe. Consequently observers* (or peoples*)
in the negative universe make observation of that
universe, which are identical to the observation
made of the positive universe by observers (or
peoples) in the positive universe at all times.

It is easy and straight forward to demonstrate the
invariance of the kinetic theory of gas, the laws
of propagation of heat (conduction, convection
and radiation) in continuous media, transport
phenomena and the other macroscopic laws
of physics, by following the procedure used to
demonstrate the invariance of some macroscopic
natural laws above, with the aid of the complete
form of Table I.

3.5 Invariance of Fundamental
Interactions in the Negative
Universe

In a formal sense, the invariance in the negative
universe of quantum chromodynamics, quantum
electrodynamics, the electro-weak theory and
quantum gravity, must be demonstrated with the
aid of the complete form of Table I, in order to
show the invariance in the negative universe of
strong, electromagnetic, weak and gravitational
interactions among elementary particles, as has
been done for the macroscopic natural laws
in this section. However we shall not attempt
this. Rather we shall make recourse to the CPT
theorem to demonstrate the invariance of the
strong, electromagnetic and weak interactions in
this section.

The CPT theorem, in a simplified form on page
712 of [7], for instance, states that any hermitian
interaction relativistically invariant, commutes
with all products of the three operators C (charge
conjugation), P (parity inversion), and T (time
reversal) in any order. Even if an interaction is not
invariant under one or two of the three operations,
it is invariant under CPT. The invariance of strong,
weak and electromagnetic interactions under
CPT is a well established fact in elementary
particle physics [7].

Now the spacetime dimensions, −x∗,−y∗,−z∗
and −ct∗ (in the Cartesian system of the dimen-
sions of 3-space), of the third quadrant (or of the
negative universe), are the products of natural
parity inversion operation (P) and time reversal
operation (T) (or of natural operation PT), on
the spacetime dimensions, x, y, z and ct of
the first quadrant (or of the positive universe),
in Fig. 2. These imply, for instance, that the
parity of a Schrodinger wave in the negative
universe is natural inversion of the parity of
the symmetry-partner Schrodinger wave in the
positive universe, as found earlier in sub-section
3.2.

It is premature and, indeed, impossible at this
point to formally incorporate intrinsic parity
into the present picture in which the flat four-
dimensional spacetimes of our universe and
the negative universe containing the masses of
symmetry-partner material particles and bodies,
are underlay by flat two-dimensional intrinsic
spacetimes containing the intrinsic masses of
the symmetry-partner particles and bodies, in
the two-world picture. It shall simply be noted
that, while parity in quantum mechanics pertains
to the physical Euclidean 3-spaces Σ′ and −Σ′∗,
intrinsic parity in intrinsic quantum pertains to
the one-dimensional intrinsic spaces ∅ρ ′ and
−∅ρ ′∗ in the two universes. Natural parity
inversion, x′ → −x′∗, y ′ → −y ′∗, z ′ → −z ′∗,
corresponds to natural intrinsic parity inversion,
∅x′ → −∅x′∗, between the positive and negative
universes.

The natural parity inversion of classical quantum-
mechanical waves between the positive and
negative universes shown in sub-section 3.2,
equally applies to intrinsic parities of intrinsic
quantum mechanical waves in of intrinsic
quantum mechanics in intrinsic spacetime.
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These shall, by the principle of sufficient reason,
be considered to be equally valid in relativistic
quantum mechanics and quantum field theories.

As also derived earlier in this article and included
in Table I, the electric charge Q of a particle in
the positive universe, corresponds to an electric
charge of equal magnitude but of opposite sign
−Q∗, of the symmetry-partner particle in the
negative universe. Thus the electric charge of a
particle in the negative universe is the product of
natural charge conjugation operation (C) on the
electric charge of its symmetry-partner particle in
the positive universe.

It follows from the foregoing three paragraphs that
strong, weak and electromagnetic interactions
among elementary particles in the negative
universe are the products of natural operations
of parity inversion P, time reversal T and
charge conjugation C, in any order (or of
natural operation CPT), on strong, weak and
electromagnetic interactions among elementary
particles in the positive universe. The invariance
of strong, weak and electromagnetic interactions
among elementary particles in the negative
universe follow from this and the CPT theorem.

The invariance of classical gravitation and the
general theory of relativity (or of gravitational
interaction), at the macroscopic level in the
negative universe has been demonstrated
earlier in this section. The invariance
of macroscopic electromagnetic interaction
between the positive and negative universes
established in sub-section 3.3 and the invariance
of electromagnetic interaction among elementary
particles between the positive and negative
universes, established by CPT theorem in this
sub-section, should obtain for the gravitational
interaction counterparts. The invariance in the
negative universe of gravitational interaction
among elementary particles shall be considered
to follows from this.

This section shall be ended with a remark
that, all natural laws, including the fundamental
interactions among elementary particles, take
on the same forms in the positive and negative
universes, and this is perfect symmetry of
(natural) laws between the positive and negative
universes.

4 ON THE CONCEPT OF
NEGATIVE MASS IN
PHYSICS

The concept of negative mass is not new in
physics. The earliest speculations include the
elaborate theory of negative mass by Föppl in
1897 and Schuster’s contemplation of a universe
with negative mass in 1898 [3] . However, as
mentioned in [3], the fundamental modern paper
on negative mass can be deemed to begin with
[8]. As also stated in [3], Bondi pointed out
that the mass in classical mechanics actually
consists of three concepts namely, inertial mass,
mi, passive gravitational mass mp, and active
gravitational mass ma. In the Newtonian
mechanics (including Newton theory of gravity),
mi = mp = ma. Also in the general theory
of relativity, the principle of equivalence requires
that mi = mp, but ma may be different [3].
Although all three mass concepts are usually
taken to be positive in physics, the theories do
not compel this, as noted in [3].

Several papers on negative mass listed in [3]
have appeared after [8]. As noted in [3], most
of those papers investigate the interaction and
possible co-existence of particles with masses of
both signs. The paper [3] stands as a reappraisal
of the concept of negative mass in the more
recent time.

In his analysis, Bonnor starts with the assumption
mi,mp > 0, ma < 0. He arrives at
the result that either mi < 0,mp < 0 and
ma < 0 for all particles and bodies or mi >
0,mp > 0 and ma > 0 for all particles and
bodies. He then chooses to work with the
former case, that is, all three mass concepts
are negative in an hypothetical universe. He
substitutes negative mass, including negative
rest mass, into mechanics, relativity, gravitation
and cosmology and finds that observers located
in the hypothetical universe would observe
strange phenomena, such as pebbles or sand
falling on a stretched membrane producing
tension and not compression of the membrane,
and a push on a trolley causing it to accelerate
toward the person who pushed it, etc. It is certain
that this universe of ours is not the hypothetical
universe containing negative mass in [3].

55



Joseph; PSIJ, 24(9): 34-67, 2020; Article no.PSIJ.62992

The hypothetical universe containing negative
mass in [3] is not the negative universe isolated
in the two parts of this paper either. This
is so, because only mass is made negative,
while space and time dimensions, as well as
other physical parameters and physical constants
are inherently assumed to retain their signs
(in our universe) in the hypothetical universe
of [3]. This inherent proviso leads to the
deduced observation of strange phenomena in
the hypothetical universe.

On the other hand, the negative universe being
isolated in the first part of this paper and this
second part, contains negative mass (all mass
concepts), along with the negation of space
and time dimensions, as well as the signs of
other physical parameters and physical constants
summarized in column 5 of Table I. (It is
noted that the active gravitational mass may
be negative in our universe and positive in the
hypothetical universe in [3].) As demonstrated
in the preceding section, the natural laws retain
their usual forms in the negative universe,
and observers located in the negative universe
observe phenomena in their universe that are
identical to the phenomena observed in our (or
positive) universe. There are consequently no
strange phenomena in the negative universe of
the two parts of this paper.

This section is perhaps the conclusion of about
a century and a score years of efforts to
incorporate the concept of negative mass into
physics. Schuster’s speculation in 1898 of a
universe containing negative mass must have
now been realized.

5 Showing how antiparticles
in our universe can
originate from the
negative universe and
conversely

As developed in section 4 of [1], the intrinsic
affine spacetime coordinates, ∅x̃ ′ and ∅c∅t̃ ′,
of the proper (or primed) particle’s intrinsic affine
frame (∅x̃ ′,∅c∅t̃ ′) attached to the particle’s
line of intrinsic rest mass ∅m0 in our universe,

are simultaneously rotated anticlockwise by
equal intrinsic angle ∅ψ relative to their
projective relativistic (or unprimed) intrinsic affine
coordinates, ∅x̃ and ∅c∅t̃, of the particle’s
unprimed intrinsic affine frame (∅x̃,∅c∅t̃ ),
containing the relativistic intrinsic mass ∅γ∅m0

of the particle. These happen as a consequence
of the intrinsic motion of the the intrinsic rest
mass ∅m0 (and the relativistic intrinsic mass
∅γ∅m0) at intrinsic speed ∅v relative to the
‘stationary’ 3-observer in the proper Euclidean
3-space Σ′ in our universe.

As done in [1], we shall be considering the flat
four-dimensional proper metric spacetime in the
Newtonian gravitational field, usually denoted by
(x0′, x1′, x2′, x3′), but uniformly being denoted by
(Σ ′, ct′) for brevity in this monograph. The Σ ′

in our notation is the three-dimensional proper
Euclidean space with dimensions, x1′, x2′ and
x3′.

The rotations of ∅x̃ ′ and ∅c∅t̃ ′ relative
to their projections, ∅x̃ and ∅c∅x̃, with
respect to the ‘stationary’ 3-observers
in Σ ′ in our universe and the identical
simultaneous rotations of the symmetry-
partner intrinsic affine spacetime coordinates,
−∅x̃ ′∗ and −∅c∅t̃ ′∗, relative to their pro-
jections, −∅x̃ ∗ and −∅c∅t̃ ∗, with respect to
the symmetry-partner ‘stationary’ 3-observers* in
−Σ′∗ in the negative universe, are illustrated in
Fig. 1 in the two-world picture.

Let us, as done in section one of this paper,
consider the primed intrinsic affine spacetime
coordinates, ∅x̃ ′ and ∅c∅t̃ ′, of the primed
particle’s intrinsic affine frame attached to the
intrinsic rest mass ∅m0 of the particle in our
universe, represented by (∅x̃′,∅c∅t̃′;∅m0) in
sub-section 1.2, to be rotated by continuously
increasing intrinsic angle ∅ψ relative to their
projective intrinsic affine coordinates, ∅x̃ and
∅c∅t̃, of the unprimed particle’s intrinsic affine
frame, containing the relativistic intrinsic mass
∅γ∅m0 of the particle (∅x̃,∅c∅t̃ ;∅γ∅m0),
due to the continuously increasing intrinsic
speed ∅v of ∅m0 (and ∅γ∅m0) relative to the
‘stationary’ 3-observer in Σ ′. Let us consider this
alongside the simultaneous identical symmetry-
partner intrinsic event in the negative universe,
as illustrated in Fig. 1.
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We shall as done in section 4 of [1], consider
the intrinsic angle ∅ψ of the continuously
increasing rotations of the primed intrinsic affine
coordinates relative to their projective unprimed
intrinsic affine coordinates, with respect to the
‘stationary’ 3-observers in the Euclidean 3-
spaces, Σ ′ and −Σ ′∗, of our universe and the
negative universe, mentioned in the preceding
paragraph, to increase from ∅ψ = 0 to ∅ψ = ∅π,
with the proviso that attainment of rotation by,
∅ψ = ∅π/2, be avoided (or ‘dodged’) in the
process. Rotation by ∅ψ = ∅π/2 must be
avoided, because it makes the generalized form
of the intrinsic Lorentz transformation (∅LT) and
its inverse in the two-world picture, presented as
systems (42) and (43) of [1] and reproduced as
systems (1) and (2) of this paper singular.

The explanation of how rotation by intrinsic
angle ∅ψ in the range [0,∅π] can be achieved
without attaining (or passing through) rotation by
∅ψ = ∅π/2, shall not be of concern in this article.
It shall be regarded as an outstanding problem
in this article and explored elsewhere with further
development of the two-world picture.

As explained in sub-section 4.4 of [1], with the aid
of Figs. 10a and 10b of that article, reproduced
as Figs. 3a and 3b of this article, along with
the generalized forms of the intrinsic Lorentz
transformation (∅LT) and its inverse in the two-
world picture (Eqs. (42) and (43) of that article),
or Eqs. (1) and (2) of this article, along with
the generalized intrinsic mass expression in the
context of ∅SR in the two-world picture, given
by Eq. (6) of this article, continuous rotation
by intrinsic angle ∅ψ from ∅ψ = 0 through
∅ψ = ∅π, with the proviso that attainment

of rotation by ∅ψ = ∅π/2 be avoided, will
carry the primed particle’s intrinsic affine frame
(∅x̃ ′,∅c∅t̃ ′;∅m0) from our universe into the
negative universe to become primed particle’s
intrinsic affine frame (−∅x̃ ′∗,−∅c∅t̃ ′∗;−∅m∗

0).
This is expressed by the transformation scheme
(10a).

Now rotation by intrinsic angle, ∅ψ = ∅π,
corresponds to zero intrinsic speed (∅v = 0)
of the particle’s intrinsic rest mass ∅m0 (and
also the particle’s relativistic intrinsic mass
∅γ∅m0) relative to the ‘stationary’ 3-observer
in Σ ′ in our universe. This follows from the
derived relation, sin∅ψ = ∅v/∅c, in the two-
world picture in [1], presented as Eq. (16) of
that article. Thus the primed particle’s intrinsic
affine frame (−∅x̃ ′∗,−∅c∅t̃ ′∗;−∅m∗

0) formed
on the flat two-dimensional proper intrinsic metric
spacetime (−∅ρ ′∗,∅c∅t ′∗) in the negative
universe in the transformation scheme (10a) is at
rest relative to the symmetry-partner ‘stationary’
3-observer* in −Σ′∗ in the negative universe.

Once the primed particle’s intrinsic affine frame
(−∅x̃ ′∗,−∅c∅t̃ ′∗;−∅m∗

0) has been formed
on the flat proper intrinsic metric spacetime
(−∅ρ ′∗,∅c∅t′∗) in the negative universe,
at rest relative to the symmetry-partner 3-
observer* in −Σ ′∗, in the transformation
scheme (10a), it is made manifested
outwardly in the primed particle’s affine
frame (−x̃ ′∗,−ỹ ′∗,−z̃ ′∗,−ct̃′∗;−m∗

0) on the
flat four-dimensional proper metric spacetime
(−Σ ′∗,−ct′∗) of the negative universe, at rest
relative to the symmetry-partner 3-observer* in
−Σ ′∗.

In effect, the outward manifestation of the transformation scheme (10a), presented as Eq. (10b), and
re-written more instructively as follows obtains

(x̃′, ỹ′, z̃′, ct̃′;m0)

(our universe)
(−x̃′∗,−ỹ′∗,−z̃′∗,−ct̃′∗;−m∗

0)

(negative universe)

-intr. rot. by ψ=π

(71)
Although the rotations of the affine coordinates, x̃ ′, ỹ ′, z̃ ′ and ct̃′, relative to their projections, x̃, ỹ, z̃
and ct̃ (which would be the rotations of x̃ ′ and ct̃′ relative to x̃ and ct̃), by angle ψ, do not exist, as
supported by argument in sub-section 4.4 (in the paragraph leading to Eq. (28)) of [1], the transforma-
tion scheme (10a) nevertheless implies the transformations scheme (10b) re-written as Eq. (71)
above.

As shown from the generalized mass and generalized intrinsic mass expressions in the context of
∅SR and SR in the two-world picture in section one of this paper, presented as Eqs. (5) and (6) of
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this paper, and also from the requirement of perfect (unbroken) symmetry of natural laws between
our universe and the negative universe in section 2 of this paper, the sign of the intrinsic rest mass
and rest mass (and the other intrinsic mass concepts and mass concepts) is negative in the negative
universe. This derived fact is contained in Table I of this article.

Now the identical simultaneous relative rotations of the primed and unprimed intrinsic affine coordinates
in our universe and the negative universe, illustrated in Fig. 1, which is mandated by the unbroken
symmetry of state between our universe and the negative universe, when considered along with
the fact that mass concepts are negative in the negative universe, stated in the preceding paragraph,
imply that the transition of particle from our universe into the negative universe, stated by the transforma-
tions scheme (10a) and (10b) or (71), occur simultaneously with the transition of the symmetry-
partner particle from the negative universe into our universe, stated by the following transformation
schemes, re-written from systems (11a) and (11b) of this paper.

(−∅x̃′∗,−∅c∅t̃′∗;−∅m∗
0)

(negative universe)

(∅x̃ ′,∅c∅t̃ ′;∅m0)

(our universe)

-rot. by ∅ψ=∅π

(72)

and

(−x̃′∗,−ỹ′∗,−z̃′∗,−ct̃′∗;−m∗
0)

(negative universe)

(x̃′, ỹ′, z̃′, ct̃′;m0)

(our universe)

-intr. rot. byψ = π

(73)

The primed particle’s intrinsic affine frame
(∅x̃ ′,∅c∅t̃ ′;∅m0) formed on the flat 2-
dimensional proper intrinsic metric spacetime
(∅ρ ′,∅c∅t′) and the primed particle’s affine
frame (x̃ ′, ỹ ′, z̃ ′, ct̃ ′;m0) formed on the flat
four-dimensional proper metric spacetime
(Σ′, ct′) in our universe, in the trans-
formation schemes (72) and (73), are at rest
relative to the ‘stationary’ 3-observer in Σ ′ in our
universe.

As follows from the foregoing, a particle with
positive intrinsic rest mass ∅m0 and positive
rest mass m0 in our universe, makes transition
into the negative universe through the second
quadrant of the spacetime/intrinsic spacetime
hyperplane of the combined spacetimes/intrinsic
spacetimes of our universe and the negative
universe in Fig. 2 and Fig. 1, with respect to the
‘stationary’ 3-observer in Σ ′ in our universe, in
the transformation schemes (10a) and (71), and
an identical particle with positive intrinsic rest
mass ∅m0 and positive rest mass m0, appears
simultaneously from the negative universe,
through the fourth quadrant, to replace the lost
particle, in the transformation schemes (72) and
(73), with respect to the ‘stationary’ 3-observer in
Σ′ in our universe.

In symmetry, the symmetry-partner particle*
with negative intrinsic rest mass −∅m∗

0 and
negative rest mass −m∗

0, in the negative
universe, simultaneously makes transition into
our universe through the fourth quadrant, with
respect to the symmetry-partner ‘stationary’ 3-
observer* in −Σ ′∗ in the negative universe,
in the transformation schemes (72) and (73),
and an identical particle* with negative intrinsic
rest mass −∅m∗

0 and negative rest mass −m∗
0,

appears simultaneously from our universe,
through the second quadrant, to replace the
lost particle*, with respect to the ‘stationary’ 3-
observer* in −Σ ′∗ in the negative universe, in the
transformations schemes (10a) and (71).

As follows from the preceding two paragraphs,
the 3-observer in Σ ′ in our universe cannot
distinguish between the particle that made
transition into the negative universe and the
particle that appeared from the negative universe
to replace it. The 3-observer* in −Σ ′∗ in the
negative universe can likewise not distinguish
between the particle* that made transition into
our universe and the particle* that appeared from
our universe to replace it.

The preceding paragraph is so, because intrinsic
rest mass and rest mass are the only intrinsic
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parameter and parameter of material particles
(and bodies) considered so far. We shall
now add the intrinsic electric charges and the
electric charges of the particles and investigate
any possible difference this may make on the
conclusion reached in the preceding paragraph.

The relative signs of the intrinsic electric
charges and electric charges of symmetry-
partner particles in our universe and the negative
universe have been derived as a consequence
of the perfect symmetry of natural laws between
our universe and the negative universe in section
2 of this article. The sign of the intrinsic electric
charge and the electric charge of a particle* in
the negative universe is opposite the sign of the
intrinsic electric charge and the electric charge of
the symmetry-partner particle in our universe, as
derived in section 2 and included in Table I of this
article.

Now electric charge is Lorentz-invariant (in the
context of SR), as known. It follows that intrinsic
electric charge is intrinsic-Lorentz-invariant (in
the context of ∅SR). These imply that the net
proper (or primed) intrinsic electric charge ∅q ′

of the intrinsic rest mass ∅m0 in the proper
(or primed) particle’s intrinsic affine frame, to
be represented by (∅x̃ ′,∅c∅t̃ ′; ∅m0; ∅q ′), is
the same as the net relativistic (or unprimed)
intrinsic electric charge ∅q of the relativistic
intrinsic mass ∅γ∅m0 in the projective relativistic
(or unprimed) particle’s intrinsic affine frame
(∅x̃,∅c∅t̃; ∅γ∅m0; ∅q), at all intrinsic angles

∅ψ of rotations of the the intrinsic affine
coordinates, ∅x̃ ′ and ∅c∅t̃ ′, relative to their
projections, ∅x̃ and ∅c∅t̃, or at all intrinsic
speeds ∅v of the intrinsic rest mass the particle
relative to the ‘stationary’ 3-observer in Σ ′ in our
universe.

It likewise follows that the net primed
electric charge q ′ of the rest mass m0 of
the particle in the primed particle’s affine
frame (x̃ ′, x̃ ′, x̃ ′, ct̃ ′; m0; q

′), is the same
as the net relativistic (or unprimed) electric
charge q of the relativistic mass γm0 in the
relativistic (or unprimed) particle’s affine frame
(x̃, x̃, x̃, ct̃; γm0; q), at all angles ψ of ‘rotations’
of the the affine coordinates, x̃ ′ and ct̃ ′, relative
to their projections, x̃ and ct̃, or at all speeds
v of the rest mass the particle relative to the
‘stationary’ 3-observer in Σ′ in our universe.

The fact stated in the preceding two paragraphs
shall be presented explicitly as intrinsic Lorentz
invariance of intrinsic electric charge (in the
context of ∅SR) and Lorentz invariance of electric
charge (in the context of SR) as

∅q = ∅q ′ and q = q ′ . (74)

On the other hand, intrinsic mass is not intrinsic-
Lorentz-invariant and mass is not Lorentz-
invariant. These follow from the non-trivial mass
relation in SR given by Eq. (48) and intrinsic mass
relation in ∅SR by Eq. (49) of [1], reproduced as
Eqns. (5) and (6) of this article, which shall yet be
re-written more fully as

∅m = ∅m0 sec∅ψ = ∅m0(1−∅v2/∅c2)−1/2 ;

(75a)

m = m0 secψ = m0(1− v2/c2)−1/2 . (75b)

Equation (75a) states the explicit dependence of the intrinsic mass of the particle on the intrinsic
angle ∅ψ of rotations of the intrinsic affine coordinates, ∅x̃ ′ and ∅c∅t̃ ′, of the proper (or primed)
particle’s intrinsic affine frame (∅x̃ ′,∅c∅t̃ ′; ∅m0; ∅q ′), relative to the projective intrinsic affine co-
ordinates, ∅x̃ and ∅c∅t̃, of the relativistic (or unprimed) particle’s intrinsic affine frame (∅x̃,∅c∅t̃;
∅γ∅m0; ∅q), and on the intrinsic speed ∅v of the intrinsic rest mass ∅m0 (and also the relativistic
intrinsic mass ∅γ∅m0) of the particle relative to the ‘stationary’ 3-observer in Σ ′, and Eq. (75b) states
the explicit dependence of mass of the particle on the angle ψ and speed v of the rest mass m0

(and the relativistic mass γm0) of the particle relative to the ‘stationary’ 3-observer in Σ ′.

On the other hand, system (74) states the independence of intrinsic electric charge on the intrinsic
angle ∅ψ or the intrinsic speed ∅v and the independence of electric charge on the angle ψ or the
speed v, with respect to the ‘stationary’ 3-observer in Σ ′.
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Let us include the assumed positive intrinsic electric charge ∅q ′ and the implied positive electric
charge q ′ of the particle in our universe in the transformation schemes (10a) and (71) to have

(∅x̃′, ∅c∅t̃′;∅m0;∅q′)
(our universe)

(−∅x̃′∗,−∅c∅t̃′∗;−∅m∗
0;∅q′∗)

(negative universe)

-rot. by ∅ψ=∅π

(76)

and

(x̃′, ỹ′, z̃′, ct̃′;m0; q
′)

(our universe)

(−x̃′∗,−ỹ′∗,−z̃′∗,−ct̃′∗;−m∗
0; q

′∗)

(negative universe)

-‘rot’. by ψ=π

(77)

The intrinsic rest mass and rest mass change sign with rotation through ∅ψ = ∅π and ψ = π in
the transformations schemes (76) and (77), by virtue of relations (75a) and (75b) for ∅ψ = ∅π and
ψ = π. Whereas intrinsic electric charge and electric charge are unchanged in magnitude or sign
with rotation by ∅ψ = ∅π and ψ = π in the transformations schemes (76) and (77), because ∅q is
independent of ∅ψ and q is independent of ψ in system (74).

Let us also include the implied negative intrinsic electric charge −∅q ′∗ and negative electric charge
−q ′∗ of the symmetry-partner particle* in the negative universe (from Table I) in the transfor-
mation schemes (72) and (73), knowing that, −∅q ′∗ and ∅q ′ are equal in magnitude and −q ′∗ and
q ′ are equal in magnitude to have

(−∅x̃′∗,−∅c∅t̃′∗;−∅m∗
0;−∅q′∗)

(negative universe)

(∅x̃ ′,∅c∅t̃ ′;∅m0;−∅q′)
(our universe)

-rot. by ∅ψ=∅π

(78)

and

(−x̃′∗,−ỹ′∗,−z̃′∗,−ct̃′∗;−m∗
0;−q′∗)

(negative universe)

(x̃′, ỹ′, z̃′, ct̃′;m0;−q′)

(our universe)

-intr. rot. by ψ=π

(79)

As follows from transformation schemes (76) –
(79), a particle with positive intrinsic rest mass
and positive intrinsic electric charge (∅m0; ∅q ′)
and with positive rest mass and positive electric
charge (m0; q

′) in our universe, makes transition
into the negative universe, through the second
quadrant of the spacetime/intrinsic spacetime
hyperplane of the combined spacetimes/intrinsic
spacetimes of our universe and the negative
universe, with respect to the ‘stationary’
3-observer in Σ′ in our universe, in the
transformation schemes (76) and (77), and a
particle with positive intrinsic rest mass and
negative intrinsic electric charge (∅m0;−∅q ′)
and with positive rest mass and negative electric
charge (m0;−q ′), appears simultaneously from
the negative universe through the fourth quadrant
to replace the lost particle, in the transformation

schemes (78) and (79), with respect to the
‘stationary’ 3-observer in Σ′ in our universe.

In symmetry, the symmetry-partner particle*
with negative intrinsic rest mass and negative
intrinsic electric charge (−∅m∗

0; −∅q ′∗) and
with negative rest mass and negative electric
charge (−m∗

0; −q ′∗), in the negative universe,
simultaneously makes transition into our universe
through the fourth quadrant, with respect to
the symmetry-partner ‘stationary’ 3-observer*
in −Σ′∗ in the negative universe, in the
transformation schemes (78) and (79), and a
particle* with negative intrinsic rest mass and
positive intrinsic electric charge (−∅m∗

0; ∅q ′∗)
and with negative rest mass and positive electric
charge (−m∗

0; q
′∗), appears simultaneously from

our universe, through the second quadrant, to
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replace the lost particle*, with respect to the
‘stationary’ 3-observer* in −Σ′∗ in the negative
universe.

As follows from the penultimate paragraph, the
particle that made transition into the negative
universe from our universe and the particle that
appeared from the negative universe to replace it,
both have positive rest mass and positive intrinsic
rest mass, but opposite signs of electric charge
and opposite signs of intrinsic electric charge.
Consequently, the particle that appeared from the
negative universe (through the fourth quadrant)
into our universe is the antiparticle of the particle
that made transition from our universe into the
negative universe (through the second quadrant).

As also follows from the penultimate paragraph,
the particle* that made transition into our
universe from from the negative universe and
the particle* that appeared from our universe
to replace it, both have negative rest mass and
negative intrinsic rest mass, but opposite signs of
electric charge and opposite signs of intrinsic
electric charge. Consequently, the particle*
that appeared in the negative universe from our
universe (through the second quadrant) is the
antiparticle* of the particle* that made transition
from the negative universe into our universe
(through the fourth quadrant) to become the
antiparticle in our universe.

Now let the particle that made transition into
the negative universe from our universe in the

discussions above be proton with positive rest
mass m0p and positive unit electric charge
+e, to be represented by p : (m0p ,+e). Then
the particle which appeared from the negative
universe to replace the lost proton has positive
rest mass m0p but negative unit electric charge
−e. Let us represent this particle by p̄:(m0p, −e).
This particle is the antiproton, since it differs from
proton p:(m0p, +e) by opposite sign of its electric
charge.

The particle* that made transition into our
universe from the negative universe is the
symmetry-partner proton* with negative rest
mass −m∗

0p and negative unit electric charge
−e, to be represented by p∗ :(−m∗

0p, −e), while
in the negative universe. Then the particle*
which appeared from our universe to replace the
lost proton* has negative rest mass −m∗

0p but
positive unit electric charge +e. Let us represent
this particle by p̄∗ : (−m∗

0p, +e). This particle
is the antiproton*, since it differs from proton*
p∗ : (−m∗

0p, −e) by opposite sign of its electric
charge.

The events of transition of a particle from our
universe into the negative to be replaced by
its antiparticle from the negative universe and
simultaneous transition of the symmetry-partner
particle* from the negative universe into our
universe to be replaced by its antiparticle*
described above, are summarized in Table 2. for
proton and proton* as the particle and particle*.

Table 2. Proton in our universe and symmetry-partner proton* in the negative universe make
transitions simultaneously into the negative universe and our universe and are replaced by

antiproton from the negative universe and antiproton* from our universe respectively

Negative universe Positive universe
anti-proton* proton
p̄∗ : (−m∗

0p, +e) ← p : (m0p, +e)
(appears) (disappears)
proton* anti-proton
p∗ : (−m∗

0p, −e) → p̄ : (m0p, −e)
(disappears) (appears)

The particle p∗ is the symmetry-partner proton in the negative universe (referred to as proton* in
Table I), while p̄∗ is the symmetry-partner anti-proton in the negative universe (referred to as anti-
proton* in Table I). Thus observations are identical in the positive and negative universes: proton
disappears and anti-proton appears to replace it in each universe.
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Another parameter used to characterize particles and anti-particles is the magnetic moment µ. For
an elementary particle of electric charge q and mass m, the magnetic moment is defined as

µ =
q~
2mc

. (80)

For the electron, q = −e and m = me, and for the positron, q = +e and m = me, from which it
is clear that the electron and the positron have magnetic moments of equal magnitude but opposite
signs. This is equally true for proton and anti-proton and for every other particle and anti-particle pair
[7].

Now for a proton p:(m0p, +e) in the positive universe and its symmetry-partner proton* p∗ : (−m∗
0p,−e)

in the negative universe, the magnetic moments are the following respectively

µp =
+e~
2mp c

and µ∗
p =

−e~
2(−m∗

p)c
=

e~
2m∗

pc
.

Hence proton in the positive universe and its symmetry-partner proton* in the negative universe have
identical magnetic moments (of the same magnitude and the same positive sign), according to the
two-world picture.

Upon the proton* making transition into the positive universe, it becomes the anti-proton p̄ : (m0p, −e)
with positive mass mp and negative electric charge −e. Likewise upon the proton making transition
into the negative universe, it becomes the anti-proton* p̄∗ = (−m∗

0p, +e) with negative mass −m∗
p

but positive electric charge +e. Hence magnetic moments change signs according to the following
scheme with transitions of proton from the positive to the negative universe and simultaneous transition
of proton* from the negative to the positive universe.

Negative universe Positive universe

+µ∗
p = −e~/2(−m∗

p)c → −µp = −e~/2mp c
(proton* disappears) (anti-proton appears)
−µ∗

p = e~/2(−m∗
p)c ← +µp = e~/2mp c

(anti-proton* appears) (proton disappears)

Thus the two-world picture (or symmetry) is
consistent with the known fact in particle physics
that, a particle and its anti-particle have the
same magnitude but opposite signs of magnetic
moments.

Finally let us investigate the consequence on
conservation of electric charge in the positive
and negative universes of the event of the
disappearance of a proton and simultaneous
appearance of an anti-proton in the positive
universe, which occur simultaneously with the
disappearance of a proton* and simultaneous
appearance of an anti-proton* in the negative
universe. In the positive universe, a charge +e of
a proton is lost and a charge −e of an anti-proton
is gained. Thus the change in electric charge of
the positive universe, to be denoted by ∆Q is

∆Q = −e− (+e) = −2e . (81)

And in the negative universe, a charge −e of
proton* is lost and a charge +e of an anti-proton*
is gained. Thus the change in electric charge of
the negative universe, to be denoted by ∆Q∗ is

∆Q∗ = +e− (−e) = +2e . (82)

Electric charge is neither conserved in the
positive universe nor in the negative universe
according to Eqs. (81) and (82). It is not clear
if this will prevent inter-universe transition of
particles described in this section.

However by adding Eqs. (81) and (82) we obtain
the change in electric charge of the two universes
as

∆Q+∆Q∗ = 2e− 2e = 0 . (83)

The change in electric charge of the two
universes is zero according to Eq. (83). Hence
the events described conserve the electric
charge of the two universes as a whole. Indeed
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it is conservation of electric charge within the
two universes that we should worry about,
since the events occur on the larger spacetime
of combined positive and negative universes.
The baryon number of each universe and,
consequently, the baryon number of the two
universes, are conserved.

One crucial fact that emerges from the
description of how an antiproton, or any
antiparticle for that matter, in our universe
can originate from the negative universe in
this section is that, it makes transition into
our universe (first and fourth quadrants of the
spacetime hyperplane in Fig. 2) through the
fourth quadrant with negative (or time reversal)
dimension −ct∗ of our universe in that figure (and
not from the past time axis of the past light cone
of the existing picture in one-world). For as long
as the antiparticle remains in the fourth quadrant
during its transition into our universe, it dwells
in the four-dimensional spacetime (Σ,−ct∗)
with natural time reversal without natural parity
inversion.

This section should have been entitled as,
“Antiparticles in our universe originate from
the negative universe and conversely”, but for
the outstanding problem of explaining how a
particle in our universe can make transition into
the negative universe and its symmetry-partner
in the negative universe can simultaneously
make transition into our universe without
encountering singularities in the intrinsic Lorentz
transformation and the Lorentz transformation at
the point of crossing the event horizons along
the time dimensions, ct and −ct∗, during their
transitions.

The requirement for (or explanation of) not
encountering singularities in ∅LT and LT
mentioned in the preceding paragraph, deduced
in the first part of this paper [1] and mentioned
earlier in this section, is the rotations of the
intrinsic affine coordinates, ∅x̃ ′ and ∅c∅t̃ ′, of
the particle’s proper (or primed) intrinsic affine
frame (∅x̃ ′,∅c∅t̃ ′;∅m0;∅q ′) relative to the
intrinsic affine coordinates, ∅x̃ and ∅c∅t̃, of the
particle’s relativistic (or unprimed) intrinsic affine
frame (∅x̃,∅c∅t̃;∅γ∅m0;∅q), from ∅ψ = 0
to ∅ψ = ∅π (in Fig. 1), without attaining (or
passing through) ∅ψ = ∅π/2 exactly, that is,
upon attaining ∅ψ = ∅π/2 − ∅ϵ at the point of

making transition from our universe, where ∅ϵ
is a small positive intrinsic angle, along with the
simultaneous symmetry-partner intrinsic event in
the negative universe.

The requirement is the same as saying that
the intrinsic rest masses ∅m0 of a particle in
our universe and its symmetry-partner −∅m∗

0

in the negative universe, must attain speed
∅v relative to the ‘stationary’ 3-observers in
Σ ′ and the symmetry-partner ‘stationary’ 3-
observer* in −Σ ′∗ respectively (in Fig. 1), which
is slightly lower that the intrinsic speed of light,
(∅v . ∅c) (or ∅v = ∅c − ∅δ, where ∅δ is a
small positive intrinsic speed), in the context of
∅SR, corresponding to, v = c − δ, in the context
of SR, at the point of ∅m0 making transition
into the negative universe through the second
quadrant and −∅m∗

0 making transition into our
universe through the fourth quadrant. Meeting
this requirement implies the compactification of
SO(3,1) as discussed in the next section.

Now once a particle has attained the speed
v = c − δ and made transition into the negative
universe relative to an observer in our universe,
it has done so relative to all observers in our
universe, lest it will make transition into the
negative universe with respect to one observer
and yet remain in our universe with respect
to other observers in our universe, which is
impossible. Thus another outstanding issue
associated with inter-universe transition of
particles is that, it must be shown that the intrinsic
speed, ∅v = ∅c−∅δ, and the speed, v = c−δ, at
which a particle in our universe and its symmetry-
partner particle* in the negative universe make
transition into the negative universe and our
universe respectively, are the same relative to
all observers.

Once the outstanding problem discussed in the
penultimate paragraph has been resolved, then
the explanation of the origin of antiparticles in the
two-world picture presented in this section should
be another theory of the origin of antiparticles
in our universe. It shall not be compared with
the existing theories of the origin of antiparticles
in this paper, but comparison should merit
investigation upon resolving the outstanding
problem. The Diracs hole theory of the origin
of the positron [9], the Ernst Stueckelberg and
Richard Feynman theory of the origin of the

63



Joseph; PSIJ, 24(9): 34-67, 2020; Article no.PSIJ.62992

positron [10], and the theory of the origin of
antiparticles in general in the context of the
quantum field theory [11], are the existing
theories of the origin of antiparticles in our
universe. All the existing theories are based on
the existence of our universe only, along with
the existence of the past time furnished by the
past light-cone, in the case of the Stueckelberg-
Feynmann theory and the theory in the context of
the quantum field theory.

6 PROSPECT FOR MAKING
THE LORENTZ GROUP
COMPACT IN THE TWO-
WORLD PICTURE

The impossibility of making the Lorentz
group SO(3,1) compact in the context of the
Minkowski’s geometry in the one-world picture
is mentioned in section 3 of [1]. It arises from
the fact that the unbounded parameter space,
−∞ < α < ∞, of the Lorentz boost (the matrix
L(α) in Eq. (7) of [1]), in the one-world picture, is
unavoidable. The matrix L(α) is reproduced here
for convenience of propagation in this section.

L(α) =


coshα − sinhα 0 0
− sinhα coshα 0 0

0 0 1 0
0 0 0 1

 . (84)

Now the new intrinsic matrix ∅L(∅ψ) that
generates the intrinsic Lorentz boost, ∅x′ =
∅L(∅ψ)∅x, on the flat two-dimensional proper
intrinsic metric spacetime in Eq. (11) of [1],
reproduced as system (1) of this paper, in the
positive universe, or Eq. (21) of that paper in the
negative universe, in the two-world picture is the
following

∅L(∅ψ) =
(

sec∅ψ − tan∅ψ
− tan∅ψ sec∅ψ

)
, (85)

where the intrinsic angle ∅ψ takes on values
in the concurrent intervals (−∅π/2,∅π/2) and
(∅π/2, 3∅π/2) in the positive and negative
universes, as explained earlier and illustrated
in Figs. 3a and 3b.

The corresponding new matrix L(ψ) that
generates the Lorentz boost, x′ = L(ψ)x, on the

flat four-dimensional proper metric spacetime in
Eq. (26) of [1] in the positive universe or Eq. (34)
of that paper in the negative universe, in the two-
world picture, is the following

L(ψ) =


secψ − tanψ 0 0
− tanψ secψ 0 0

0 0 1 0
0 0 0 1

 , (86)

where the angle ψ takes on values in the
concurrent open intervals, (−π/2, π/2) and
(π/2, 3π/2), like ∅ψ, in the positive and negative
universes.

The matrix L(ψ) can be said to be the outward
manifestation on the flat four-dimensional proper
metric spacetime of SR of the intrinsic matrix
∅L(∅ψ) on the flat two-dimensional proper
intrinsic metric spacetime of ∅SR. It is to
be recalled however that, while the intrinsic
angle ∅ψ in Eq. (85) measures actual rotation
of intrinsic affine coordinates ∅x̃ ′ and ∅c∅t̃ ′
of the particle’s primed intrinsic affine frame
relative to the intrinsic affine coordinates ∅x̃
and ∅c∅t̃ of the particle’s unprimed intrinsic
affine frame in Fig. 1, in the context of ∅SR,
the angle ψ in Eq. (86) represents intrinsic (i.e.
non-observable or non-actual) rotation of affine
spacetime coordinates x̃′ and ct̃ ′ of the particle’s
primed affine frame relative to x̃ and ct̃ of the
particle’s unprimed affine frame.

The concurrent open intervals (−∅π/2 , ∅π/2)
and (∅π/2 , 3∅π) in which the intrinsic angle
∅ψ takes on values in the positive and negative
universes, constitute a bounded parameter space
for the intrinsic matrix ∅L(∅ψ) (the intrinsic
Lorentz boost) and the Lorentz boost L(ψ)
in the two-world picture. On the other hand,
the matrix L(α) of Eq. (84) that generates the
Lorentz boost in the Minkowski’s one-world
picture is unbounded, because the parameter
α in that matrix takes on values in the unbounded
parameter space (−∞,∞).

Also letting ∅ψ → ∅π/2 and ∅ψ → −∅π/2
or 3∅π/2 in the intrinsic matrix ∅L(∅ψ) we
have, sec∅ψ = tan∅ψ → ∞ and sec∅ψ =
tan∅ψ → −∞ respectively, which shows
that ∅L(∅ψ) (the intrinsic Lorentz boost) and,
hence, the Lorentz boost L(ψ), in the two-
world picture, are not closed. This is so
because the values of some entries of ∅L(∅ψ)
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and L(ψ) are outside the concurrent intervals
(−∅π/2,∅π/2) and (∅π/2, 3∅π/2) over which
intrinsic angle ∅ψ takes on values. Whereas
as α → ∞, coshα → ∞, sinhα → ∞, and
as α → −∞, coshα → ∞, sinhα → −∞ in
the matrix L(α), which implies that the Lorentz
boost in the Minkowski’s one-world picture is
closed (since no entry of L(α) is outside the
range (−∞,∞) of the parameter α) [12]. Thus
the range of α is unbounded but L(α) is closed,
while the ranges of ∅ψ and ψ are bounded but
∅L(∅ψ) and L(ψ) are not closed. The matrices
L(α), L(ψ) and the intrinsic matrix ∅L(∅ψ) are
therefore non-compact.

It is required that the ranges of ∅ψ and ψ be
bounded and the intrinsic matrix and matrix
∅L(∅ψ) and L(ψ) be closed over the bounded
ranges of ∅ψ and ψ, for ∅L(∅ψ) and L(ψ) to
be compact (the Heine-Borel theorem)[12]. It
follows from this and the foregoing paragraphs
that making the the intrinsic Lorentz boost (85)
and, consequently the Lorentz boost (86), in the
two-world picture compact has not been achieved
in this article and its first part [1]. As deduced in
sub-section 1.1 of that paper, making the Lorentz
boost compact implies making SO(3,1) compact.
Thus SO(3,1) has yet not been made compact
in the two-world picture, since the Lorentz boost
has not been made compact.

There is prospect for making SO(3,1) compact
in the two-world picture however. This is
so because the intrinsic matrix ∅L(∅ψ) and,
consequently, the matrix L(ψ) (the intrinsic
Lorentz boost and the Lorentz boost in the
two-world picture), will become compact by
justifiably replacing the concurrent open intervals
(−∅π/2,∅π/2) and (∅π/2, 3∅π/2), in which the
intrinsic angle ∅ψ takes on values in ∅L(∅ψ)
by the concurrent closed intervals [−(∅π/2 −
∅ϵ),∅π/2 − ∅ϵ] and [∅π/2 + ∅ϵ, 3∅π/2 −
∅ϵ], where ∅ϵ is a small non-zero positive
intrinsic angle. This will make ∅L(∅ψ) and,
consequently, L(ψ), to be closed over the
bounded intervals [−(∅π/2 − ∅ϵ),∅π/2 − ∅ϵ]
and [∅π/2 + ∅ϵ, 3∅π/2 − ∅ϵ] and, hence to
be compact. It will certainly require further
development of the two-world picture than in this
article and its first part to make SO(3,1) compact
in two-world — if it will be possible.

Let us shine more light on the discussion in the
preceding paragraph. Expressing the rotations
of intrinsic affine spacetime coordinates ∅x̃ ′ and
∅c∅t̃ ′ relative to their projections ∅x̃ and ∅c∅t̃
in terms of the trigonometric ratios sec and tan
of the intrinsic angle ∅ψ, in the intrinsic Lorentz
transformation (∅LT) in our universe of Eq. (11)
and its inverse of Eq. (14) of [1], reproduced as
systems (1) and (2) of this paper, in the context
of ∅SR in the two-world picture, is the first
step toward making the intrinsic Lorentz boost
∅L(∅ψ) (85) above in the two-world compact.
The intrinsic length contraction and intrinsic
time dilation formulae implied by system (40)
of [1] with respect to a 3-observer in the proper
Euclidean 3-space Σ′, show explicitly that the
rotations of ∅x̃ ′ and ∅c∅t̃ ′ relative to ∅x̃ and
∅c∅t̃ respectively, are expressed in terms of the
trigonometric ratios of the intrinsic angle ∅ψ in
the context of ∅SR in the two-world picture.

The second step toward making the intrinsic
Lorentz boost ∅L(∅ψ) compact is to
justifiably replace the concurrent open intervals
(−∅π/2,∅π/2) and (∅π/2, 3∅π/2) within which
the intrinsic angle ∅ψ can take on values in
both the positive and negative universes, as
illustrated in Figs. 3a and 3b, with the concurrent
closed intervals, [−(∅π/2−∅ϵ),∅π/2−∅ϵ] and
[∅π/2+∅ϵ, 3∅π/2−∅ϵ], where ∅ϵ is a small non-
zero positive intrinsic angle, which expectedly will
depend on the particle in relative motion. In other
words, we must justify the rotations of the intrinsic
affine coordinates ∅x̃ ′ and ∅c∅t̃ ′ relative to
∅x̃ and ∅c∅t̃ and the rotations of −∅x̃ ′∗ and
−∅c∅t̃ ′∗ relative to −∅x̃ ∗ and −∅c∅t̃ ∗, over
the entire range [0, 2∅π] of the intrinsic angle ∅ψ
in the first cycle, while avoiding (or dodging) the
intrinsic angles ∅π/2 and 3∅π/2 in the diagram
of Fig. 1 (or in Figs. 3a and 3b).

Once the second step toward making ∅L(∅ψ)
compact described in the preceding paragraph
has been accomplished, then the rotations of
the intrinsic affine coordinates ∅x̃ ′ and ∅c∅t̃ ′
relative to ∅x̃ and ∅c∅t̃ in the positive universe
and the simultaneous rotations of −∅x̃ ′∗ and
−∅c∅t̃ ′∗ relative to −∅x̃ ∗ and −∅c∅t̃ ∗ in
the negative universe, in the context of ∅SR,
can take place over the entire range [0, 2∅π]
of ∅ψ, or over the entire intrinsic hyperplane
formed by the combined two-dimensional

65



Joseph; PSIJ, 24(9): 34-67, 2020; Article no.PSIJ.62992

intrinsic metric spacetimes, (∅ρ′,∅c∅t′) and
(−∅ρ′∗,−∅c∅t′∗), of our universe and the
negative universes in Fig. 2, without singularity
appearing in ∅L(∅ψ) (in Eq. (85)). The intrinsic
Lorentz boost ∅L(∅ψ) is then compact. The
Lorentz boost L(ψ) (in Eq. (86)), being the
outward manifestation of ∅L(∅ψ), is then
compact likewise. There is certainly a prospect
for making the Lorentz boost and, hence, the
Lorentz group SO(3,1), compact in the two-world
picture.

The prospect for making the intrinsic Lorentz
boost ∅L(∅ψ) and the Lorentz boost L(ψ) in the
two-world picture compact and, consequently,
for making SO(3,1) compact, is the same for a
particle of our universe to make transition into the
negative universe to become the antiparticle* and
for its symmetry-partner particle* in the negative
universe to simultaneously make transition
into our universe to become the antiparticle,
discussed in the preceding section. It must be
added that a less-developed form of this paper
has appeared in [13].

7 CONCLUSION

This article has enhanced the possibility of
the two-world picture started in its first part.
In particular, the preceding two sections have
exposed a prospective experimental test of
the picture. The possibility of experimental
verification of the two-world picture rests on
the possibility of exchange of elementary
particles between the two universes at high
energy, corresponding to the large speed c −
ϵ of the particle (usually proton) involved.
Experimental verification cannot be described
until the outstanding problem of the explanation
of how particles can make transition across the
universes without hitting the event horizons and
singularities in LT and ∅LT are resolved
however.
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