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Abstract 
 

Butterfly optimization algorithm (BOA) is widely applied in various complex problems because of its efficient 

performance. However, similar to other swarm intelligent optimization algorithms, the BOA also has the 

problem of easily falling into the local optimum. In order to solve the above problem, this paper proposes an 

improved BOA (IBOA) by balancing local search and global search. In the IBOA, the adaptive inertia weight 

and the dynamic switching probability are introduced, which enables the IBOA to significantly improve the 

exploration ability in the early stage and the exploitation ability in the later stage, so that the algorithm is able to 

effectively escape from the local optimum. The performance of the IBOA is verified on eight benchmark 

functions. Compared with the other four optimization algorithms, the IBOA has the strongest optimization 

ability. Finally, a new prediction model is proposed based on that the IBOA is used to determine the hyper-

parameters of support vector machine (SVM), which is called the IBOA-SVM model. Prediction experiments 
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are carried out in earthquake magnitude dataset and air quality index dataset to validate the performance of the 

IBOA-SVM. The comparative experimental results indicate that, in comparison to the SVM, GWO-SVM, PSO-

SVM, and BOA-SVM model, the values of MSE and MAE obtained by the IBOA-SVM model are the smallest, 

so our proposed model has higher prediction accuracy. 
 

 

Keywords: Butterfly optimization algorithm; adaptive inertia weight; dynamic switching probability; support 

vector machine. 
 

1 Introduction 
 

Inspired by nature, many bionic intelligent optimization algorithms are proposed, such as particle swarm 

optimization (PSO) [1], grey wolf optimizer (GWO) [2], grasshopper optimization algorithm (GOA) [3], genetic 

algorithm (GA) [4], moth-flame optimization (MFO) [5], sine cosine algorithm (SCA) [6], ant colony algorithm 

(ACA) [7], artificial bee colony (ABC) [8], salp swarm algorithm (SSA) [9], and butterfly optimization algorithm 

(BOA) [10]. The BOA is originally proposed by Arora and Singh [10]. The algorithm mimics the way butterflies 

search for food in nature. Butterflies can sense the smell of flowers. Unlike human beings, whose sense of smell 

depends on the nose, butterflies' sense of smell comes from tentacles. When the flower fragrance irritates the 

tentacle, the butterfly will move to the honey source to find food. The BOA searches the global optimal solution 

according to this characteristic. However, like other swarm intelligent optimization algorithms, the BOA also has 

two possible problems: slow convergence and susceptibility to fall into the local optimum. Therefore, it is 

necessary to explore an improved BOA with fast convergence and high optimization accuracy.  
 

The support vector machine (SVM) model relies on hyper-parameters optimization. A proper hyper-parameter 

setup can significantly enhance the SVM model’s prediction performance and yield superior prediction outcomes. 

The BOA shows strong optimization ability in solving optimization problems. Therefore, this paper considers 

using the improved BOA to optimize the hyper-parameters of the SVM model. 
 

This paper proposes a novel improved butterfly optimization algorithm called IBOA. We introduce the adaptive 

inertia weight and the dynamic switching probability to achieve a better balance between the global and local 

search. The effectiveness of the IBOA is verified on eight benchmark functions. Meanwhile, we use the IBOA to 

optimize the hyper-parameters of the SVM model to improve the prediction accuracy of the model, and propose a 

novel prediction model called IBOA-SVM model. The stronger prediction capability of the novel model is 

verified in earthquake magnitude dataset and air quality index dataset.  
 

The rest structure of this article is arranged as follows: Section 2 discusses the related works. The traditional BOA 

is presented in section 3. In section 4, we introduce the adaptive inertia weight and the dynamic switching 

probability and propose the IBOA. We discuss the performance of the IBOA in section 5. In section 6, we propose 

the IBOA-SVM and use the proposed IBOA-SVM to complete prediction tasks on two real datasets. We analyze 

the experimental data and elaborate on the details of the experiments. The relevant experimental results are 

analyzed and studied. In the final section of this paper, the significant conclusions are summarized. 
 

2 Related Works 
 

Many researchers have improved and promoted the BOA. Sharma et al. [11] proposed a variant of the BOA 

embedded with lagrange interpolation called mlBOA. By introducing adaptive parameters, lagrange interpolation 

formula, and levy flight, the exploration and exploitation capabilities of the algorithm are balanced. The fragrance 

generation scheme of the BOA is improved to further improve the performance of the algorithm. The superiority 

of the mlBOA is verified in experiments. Bendahmane et al. [12] used the crossover operator to propose an 

improved version of the BOA called xBOA. The crossover operator is embedded in the global exploitation phase 

of the BOA, enabling the algorithm to explore several areas in the solution space at the same time and find a more 

accurate solution. The xBOA is used to explore the unknown area of single robot and multi-robot. The results 

indicate that the xBOA has stronger robustness and higher exploration rate. In order to effectively prevent the 

algorithm from falling into local optimum, Long et al. [13] combined the dynamic inertia weight and the 

opposition learning strategy to solve this problem. The effectiveness of the improved algorithm is verified in 

several benchmark functions and datasets. Xia et al. [14] proposed a double-mutant BOA called DMBOA. They 

introduce the dynamic switching probability, which gradually converges from 0.8 to 0.5. It is beneficial for the 

algorithm to achieve the balance between the global and local search. In addition, the update equation of the 
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algorithm is modified, and the population reconstruction mechanism is established to improve the ability of the 

BOA to escape from the local optimum. The effectiveness of the DMBOA is verified on 12 classical benchmark 

functions, and the DMBOA shows better performance in blind source separation of signals. Zhang et al. [15] put 

forward an improvement in the update equation of the BOA, and introduced an operator named color perception 

rule to make the search behavior of the butterfly more in line with objective facts. In addition, the control 

parameters are updated by chaotic mapping, and the hybrid-flash BOA (HFBOA) is proposed. The processing 

results of benchmark functions and practical problems demonstrate that the HFBOA has better performance. In 

order to balance the search of the BOA, Zhou et al. [16] introduced gaussian distribution estimation strategy into 

the global update equation, and the new variant is called GDEBOA. The comparative experimental results 

indicate that the GDEBOA has the obvious effectiveness. The GDEBOA is also used to deal with the path 

planning problem. The simulation results show the superiority of the GDEBOA. Mortazavi et al. [17] proposed a 

variant of the BOA called FBOA that combines fuzzy decision strategy and virtual butterfly. The comparative 

experimental results on 21 benchmark functions indicate that the FBOA algorithm has the highest accuracy. Some 

of the more advanced improvements can be found in [18-22]. 
 

The BOA is widely used to optimize the parameters of complex models because of its stable performance, simple 

operation, and fast convergence. Jin et al. [23] used the improved version of BOA to find the optimal parameters 

of the depth belief network (DBN), and proposed an IBOA-DBN diagnosis model. In the original BOA, tent 

mapping is introduced to promote the global optimization ability. In addition, the adaptive inertia weight is added 

to the global search update equation, which greatly improves the search performance of the algorithm. The 

experimental results indicate that the IBOA-DBN model has higher recognition accuracy. Tang et al. [24] used an 

improved BOA to search the optimal hyper-parameters of extreme random forest (ERF) and proposed a fault 

detection model, which is called IBOA-ERF model. Here are four improvements to improve the BOA. First, 

chaotic mapping is used to generate the initial population. Second, an adaptive inertia weight is added in the 

iterative phase to modify the update equation. Third, the pigeon-inspired optimization (PIO) algorithm is used to 

further modify the local update equation. Fourth, the dynamic switching probability is introduced to achieve a 

balance between the global and local search. The experimental results indicate that the above improvements 

greatly enhance the optimization ability of the BOA, and the improved algorithm also shows satisfactory results in 

finding the optimal parameters of the ERF. Long et al. [25] combined enhanced adaptive BOA (EABOA) to 

propose a photovoltaic model. They added an adaptive guiding factor to the update equation of the BOA to adjust 

the exploration and exploitation performance. Finally, the unknown parameters of three PV models are optimized 

by the EABOA and the other compared algorithm, and the results indicate that the EABOA has superior 

optimization ability. In order to obtain more accurate structural identification results, Zhou et al. [26] introduced 

the improved BOA into structural identification. Firstly, chaotic sequence is introduced to optimize the iterative 

process. The randomness of chaotic sequence can prevent the algorithm from premature convergence. Secondly, 

the clustering competition learning mechanism is used to renew the population again. The comparative 

experimental results indicate that the improved BOA has higher accuracy of actual structural identification. 
 

3 Butterfly Optimization Algorithm 
 

The BOA assumes that butterflies can not only perceive fragrance, but also produce fragrance. This fragrance 

spreads in the air and can be perceived by other butterflies. This forms a network of information exchange within 

the space. Butterflies can communicate information with each other. When butterflies perceive the information 

spread by the butterfly with the highest fragrance concentration, they will move to it. This behavior is called 

global search. When butterflies cannot receive the scent information sent by other butterflies, they choose to 

wander randomly. This behavior is known as local search. During the iterative process, each butterfly represents a 

potential solution and updates its coordinates based on both the current solution and the fragrance concentration. 

The butterfly uses a switching probability
p

to decide whether to move towards the optimal solution or randomly. 
 

In the BOA, the butterfly is stimulated to sense and produce a fragrance. So the fragrance concentration of the 

butterfly is an expression that is affected by the stimulation intensity. The expression of the fragrance 

concentration is as follows: 
 

a
cIf = ,                                                      (1) 

 

where f is the fragrance concentration, I  is the stimulus intensity, a  is the power exponent and c  is the 

sensory modality. The value of c  is updated according to the following equation [27]: 
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where T  is the maximum number of iterations. 
 

In the global search phase, the search operator is close to the optimal solution, which can be represented by the 

following update equation: 
 

( )1 2t t t

i i i i
x x r g x f

+ 
= +  − ,                                  (3) 

 

where 
t

i
x  is the solution vector for the i th butterfly in the iteration number t  and 


g  denotes the optimal 

solution in the current iteration. i
f  denotes the fragrance concentration of the i th butterfly. r  denotes a random 

number between [0,1]. 
 

During local search process, the butterfly operator can't receive the fragrance from the surrounding butterflies, so 

it chooses to wander randomly, which is expressed as the following update equation: 
 

( )1 2t t t t

i i j k i
x x r x x f

+
= +  − ,                                      (4) 

 

where 
t

j
x  and 

t

k
x  are the j th and k th butterflies. r denotes the random number between [0,1]. 

 

The flow-process diagram of the BOA is presented in Fig. 1. 

 

 
 

Fig. 1. Flow-process diagram of the BOA 
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4 Improved Butterfly Optimization Algorithm 
 

It is difficult for the traditional BOA to escape from the local optimum. The research shows that effectively 

balancing the local search and global search can improve the performance of the BOA and effectively solve the 

optimization problems [28]. This section mainly introduces two improved methods. First, we introduce an 

adaptive inertia weight . Second, we introduce the dynamic switching probability
p

to get a better balance 

between the local search and global search. 

 

4.1 Adaptive inertia weight 
 

In this section, an adaptive inertia weight   is proposed.   is expressed as a function of the number of iterations
t . Our goal is to decrease the value of   as the increase of t . As the value of t increases from 0, the function 

value decreases from 1 to 0. When the value of   is large, more butterflies choose local search. When it is small, 

the algorithm tends to search globally. This enables the algorithm to exhibit high exploration ability in the early 

stage, allowing it to explore more unknown values in the solution space and thereby increasing the diversity of 

solutions. The algorithm can quickly move towards the optimal solution in the later stage. Therefore, achieving a 

good balance between the global and local search can effectively enhance the optimization performance of the 

BOA. The expression of  is as follows: 

 

100
10

1
1

1
t

e


−−
= −

+
,                                      (5) 

 

where   is the adaptive inertia weight and t  is the number of iterations. 

 

After introducing , the global search update equation is: 

 

( )1 2t t t

i i i i
x x r g x f

+ 
=  +  − .                                      (6) 

 

The local search update equation is: 

 

( )1 2t t t t

i i j k i
x x r x x f

+
=  +  − .                                      (7) 

 

4.2 Dynamic switching probability 
 

In the traditional BOA, the butterfly operator chooses global search or local search with a fixed probability. The 

probability is usually set to 0.8, which limits the search behavior of butterfly operators to some extent. This 

probability causes butterfly operators tend to search globally at any stage of the iterative process, and only a few 

butterfly operators select local search. Consequently, the BOA is difficult to avoid falling into the local optimum. 

To obtain a better balance between the global and local search, the paper introduces the dynamic switching 

probability
p

which is expressed as a function of t . The value of 
p

 is set to a small value in the early stage, 

which makes the algorithm tend to local search. As the iteration progresses, the value of
p

gradually approaches 

0.8, thereby biasing the algorithm towards global search. The introduction of 
p

makes the algorithm achieve a 

relative balance between these two searches, which not only increases the diversity of candidate solutions, but also 

promotes the convergence speed. This effectively prevents the algorithm from falling into the local optimum. 

 

The mathematical expression of the dynamic switching probability is: 

 

0.8
1

t
p

t
= 

+
.                                        (8) 

 

The flow-process diagram of the IBOA is presented in Fig. 2. 
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Fig. 2. Flow-process diagram of the IBOA 

 

5 Experimental Results and Discussion 
 
This section presents the simulation results of the IBOA on eight benchmark functions. We compare the IBOA 

with the traditional BOA, GWO, SCA, and PSO algorithms and give an analysis of the simulation results. In this 

experiment, we set that the number of initial population N is 20, the maximum number of iterations T is 200, and 

the initial value of 
p

is 0. We use the relevant literature about the BOA to select the initial value of c  and a , 

and the result is that c  is 0.01, a is 0.1. The eight benchmark functions are listed in Table 1. Table 2 gives the 

simulation results of the above five algorithms on these functions. Fig. 3 shows the convergence curves of five 

algorithms on the eight benchmark functions respectively. 

 
As shown in Table 2, the IBOA obtains better solutions on each benchmark function and demonstrates 

significantly higher accuracy. The search results of IBOA reach the theoretical optima for six of these benchmark 

functions. Only the GWO and SCA find the theoretical optimum of the function 2
f , and for other benchmark 

functions, none of these four compared algorithms find the theoretical optima. The results demonstrate the 

superior search capability of the IBOA. According to the comparative experimental results between the IBOA and 

the BOA, it is easy to find that the adaptive inertia weight and the dynamic switching probability greatly enhance 
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the search performance of the BOA. These two improvements can effectively balance these two search processes 

of the BOA and achieve our expected results. In addition, these two improvements greatly enhance the ability of 

the algorithm to escape from the local optimum. From the overall simulation results of these eight benchmark 

functions, the IBOA gets the smallest optimal solution, which indicates that the IBOA not only has superior 

optimization ability, but also strong robustness. 

 

  

  

  

  
 

Fig. 3. Convergence curves of different algorithms 
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Table 1. Standard benchmark functions used in this study 

 
No. Equation Dim Range Optima 

1
f

 ( ) ( )

( )( )

0.25
2 2

1 2

0.1
2 2

1 2
50 1

f x x x

x x

= +

  + +
    

2 [-100,100] 0 

2
f

 
( ) ( )

( )

2 2

1 2 1

2

2 0.3cos 3

0.4 cos 4 0.7

f x x x x

x





= + −

− +
 

2 [-100,100] 0 

3
f

 ( )
( )

2 2 2

1 2

2
2 2

1 2

sin 0.5
0.5

1 0.001

x x
f x

x x

+ −
= +
 + +
   

2 [-100,100] 0 

4
f

 ( )

2

1 1

n i

j

i j

f x x
= =

 
=  

 
 

 

30 [-10,10] 0 

5
f

 
( ) ( )max ,1

i
f x x i n=  

 

30 [-10,10] 0 

6
f

 ( )
1

1

n n

i i
i

i

f x x x
=

=

= + 
 

30 [-10,10] 0 

7
f

 
( ) 

=

=
n

i

i
xxf

1

2

 

30 [-100,100] 0 

8
f

 ( ) 2 6 2

1

2

10
n

i

i

f x x x
=

= + 
 

30 [-100,100] 0 

 

Table 2. Simulation results of different algorithms 

 
No. GWO SCA PSO BOA IBOA 

1
f

 
7.81E-08 3.45E-07 1.28E-04 8.48E-05 0.00E+00 

2
f

 
0.00E+00 0.00E+00 1.11E-16 6.42E-07 0.00E+00 

3
f

 
9.72E-03 4.84E-03 5.55E-17 3.74E-02 0.00E+00 

4
f

 
1.69E-164 9.51E-56 1.00E-21 1.61E-15 0.00E+00 

5
f

 
7.06E-08 5.87E+00 4.10E-01 1.15E-05 1.17E-224 

6
f

 
4.41E-66 5.82E-23 9.12E-11 1.66E-09 2.04E-227 

7
f

 
2.35E-193 1.88E-44 5.36E-24 1.10E-14 0.00E+00 

8
f

 
4.75E-27 2.71E-27 2.31E-11 5.53E-08 0.00E+00 

 

It is easy to find from Fig. 3 that the optimal solution obtained by the IBOA is closer to the theoretical optima than 

the other compared algorithms. This result indicates that the IBOA has the highest accuracy. In addition, by 

observing the convergence curves, we know that the IBOA has a fast convergence speed except a few functions, 

and for each benchmark function, the IBOA obtains the optimal results, which fully demonstrates the powerful 

search capability of the IBOA. We can draw a conclusion that the above two improvements play a great role in 

helping the IBOA escape from the local optimum. The IBOA can effectively balance local search and global 

search, and it outperforms the compared methods in terms of reliability and accuracy. 

 

6 Application of the IBOA-SVM Model 
 

6.1 IBOA-SVM model 
 

SVM is a prediction method proposed by Cortes and Vapnik [29], which has high prediction accuracy for most 

classification and regression problems in low-dimensional space. For the classification problem, the purpose of 

the SVM is to find a hyperplane, which maximizes the distance between different classes. This means ensuring 

that the sample points closest to the hyperplane are as far away from it as possible. In regression problems, we aim 

to obtain a special hyperplane that minimizes the error between the predicted value and the actual data point, 

either by fitting the points as closely as possible or having them fall on the hyperplane. The processing model of 
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regression problems is called support vector regression (SVR). The prediction results of the SVM model are often 

acceptable for linearly separable problems. However, in cases where sample points are linearly inseparable, the 

prediction results may exhibit significant errors. To address linearly inseparable problems, a kernel function is 

often introduced to map the data from low-dimensional to high-dimensional space, thereby enhancing the 

prediction accuracy of the model. The three kernel functions commonly used are as follows: 

Polynomial kernel: 

 

( ) ( )1
,

d

i j i j
K x x x x =  + ,                         (9) 

 

Gaussian kernel: 

 

( ) ( )
2

2
, exp

i j i j
K x x x x= − − ,                     (10) 

 

Sigmoid kernel: 

 

  ( ) ( )3
, tanh

i j i j
K x x x x =  + ,         (11) 

 

where i
x

and j
x

denote the sample data, , , ,d   represent parameters in different kernel function. 

 

In this paper, the SVR model is used to deal with regression problems, and the modeling process of the SVR 

model is introduced below. Assuming a given data set ( ) n

ii
yx

1
, , ( )

ii
yx ,  as a sample point, SVR is to find a 

hyperplane that minimizes the distance between the farthest sample point and the plane. The function of the SVR 

is expressed as: 

 

( ) ( ) bxwxf
T

+= 
      ,                                           (12) 

 

where 


 is a nonlinear mapping function, w  is the weight coefficients, and b  is a constant. The SVR model is 

transformed into solving the following optimization problems: 

 

21

2
Min w ,                                                    (13) 

 

( )

( )





−−−

−−





bxwy

bxwy
ts

i

T

i

i

T

i
:.. ,                                   (14) 

 

To make the prediction of the SVR model more stable, the slack variables 
 , are introduced to optimize the 

SVR model. The revised optimization problem is expressed as follows: 

 

( )
=


++

n

i

ii
CwMin

1

2

2

1
 ,                                    (15) 

 

( )

( )








=

−−−−

+−−





ni

bxwy

bxwy
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ii

ii

T

i

ii

T

i

,...2,1,0,

:..







,                     (16) 
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where C  is called the penalty factor,   is the insensitive loss parameter, and 


 ,  are the slack variables. 

 

Using Lagrange multiplier method and optimal conditions, we find the solution of the above problem by solving 

its dual problem, and finally obtain the following expression of ( )xf : 

 

( ) ( ) ( ) bxxKxf
i

n

i

ii
+−=

=


,

1

 ,         (17) 

 

where


ii
 , is the lagrange multiplier, ( )xxK

i
,  is the kernel function, and here we use Gaussian kernel. 

The flow-process diagram of the IBOA-SVM model is shown in Fig. 4. 

 

 
 

Fig. 4. Flow-process diagram of the IBOA-SVM model 

 

6.2 Earthquake magnitude prediction 
 

6.2.1 Earthquake magnitude data 

 

We select seventeen earthquake data in southwest Yunnan, China as the sample data. The data has eight 

indicators, which are earthquake cumulative frequency, cumulative released energy, b-value, abnormal earthquake 

swarm count, earthquake belt count, activity cycle, correlation zone magnitude, magnitude, respectively. Where, 

the earthquake cumulative frequency refers to the number of earthquakes with magnitude 3 or above occurring in 

half a year, the cumulative released energy refers to the accumulated value of energy released in half a year, and 
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the value of b is the proportional coefficient in the relationship between magnitude and frequency. The index 

values of the activity cycle are 1 and 0, indicating whether the regional fault zone is in the activity cycle. The first 

seven indicators comprehensively reflect the characteristics of earthquake in time, space and intensity, and play a 

key role in predicting earthquake magnitude. This data is used to verify the earthquake magnitude prediction 

performance of the IBOA-SVM model. In this experiment, we choose 70% of the sample data as the training 

dataset and 30% as the test dataset. The experiments are carried out in the Python 3.9.12 environment. 

 

6.2.2 Results of earthquake magnitude evaluation 

 

We choose the mean square error (MSE) and the mean absolute error (MAE) as our evaluation metrics. Lower 

MSE and MAE values indicate a better alignment between predicted and actual values. Table 3 presents the 

average values of MSE and MAE obtained by running each algorithm 10 times on earthquake magnitude data. 

The mathematical expressions of MSE and MAE are as follows: 

 

( )
2

1

1 N

i i

i

MSE y f
N =

= − ,                                       (18) 

 

1

1 N

i i

i

MAE y f
N =

= − ,                                        (19) 

 

where i
y  denotes the actual value and i

f  denotes the predicted value, and N  denotes the total number of data 

points. 

 
Table 3. MSE and MAE of different prediction models on earthquake magnitude data 

 
 SVM GWO-SVM PSO-SVM BOA-SVM IBOA-SVM 

MSE 0.28 0.22 0.39 0.40 0.14 

MAE 0.36 0.36 0.44 0.46 0.32 

 
As seen from Table 3, the values of MSE and MAE obtained by the IBOA-SVM model are 0.14 and 0.32, 

respectively, which are the smallest compared with the values obtained by the other four models. There are 

sufficient reasons to indicate that our proposed IBOA-SVM model has better prediction performance. At the same 

time, it also demonstrates that the optimization capability of the BOA is greatly enhanced after the adaptive inertia 

weight and the dynamic switching probability correction.  

 
To further illustrate the significant efficacy of the IBOA-SVM model, we present a comparative visualization in 

Fig. 5, depicting the actual and predicted earthquake magnitudes. In this visualization, the solid line denotes the 

actual data and the dashed line denotes the predicted value. By comparing the predicted value of the five models, 

it can be seen that the closer alignment of the IBOA-SVM model’s predictions to the actual values, which shows 

that the IBOA-SVM model has superior prediction performance. 

 

6.3 Air quality index (AQI) prediction 
 
6.3.1 AQI data 

 
In this paper, we select the monthly AQI and monthly average mass concentration data of six pollutant gases in 

Chengdu from December 2013 to June 2023 as samples to establish the database. The database contains the 

monthly average values of PM2.5 (
3

/ mg  ), PM10 (
3

/ mg  ), SO2 (
3

/ mg  ), NO2 (
3

/ mg  ), CO (

3
/ mmg  ), O3 (

3
/ mg  ), and AQI. The data is obtained from the China Air Quality Online Monitoring and 

Analyzing Platform. PM2.5, PM10, SO2, NO2, CO, and O3 are chosen as major factors affecting the AQI. In this 

experiment, we use the data from December 2013 to June 2020 for training, and the data from July 2020 to June 

2023 for testing the model’s predictive performance. 
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6.3.2 Results of the AQI evaluation 
 

The values of MSE and MAE are also selected as the test criteria, and the above five models are used to predict 

the AQI. The experimental results are given in Table 4 and Fig. 6. 
 

 
 

Fig. 5. Comparison results of different prediction models on earthquake magnitude data 
 

Table 4. MSE and MAE of different prediction models on AQI data 
 

 SVM GWO-SVM PSO-SVM BOA-SVM IBOA-SVM 

MSE 428.07 409.97 353.40 113.24 58.06 

MAE 13.12 12.22 10.76 5.43 4.35 

 

 
 

Fig. 6. Comparison results of different prediction models on AQI data 
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Table 4 gives the average values of MSE and MAE obtained by running each algorithm 10 times on the AQI data. 

The MSE of the IBOA-SVM is 58.06, and the MSE of the SVM, GWO-SVM, PSO-SVM, and BOA-SVM are 

428.07, 409.97, 353.4, 113.24, respectively. The results show that the values of MSE and MAE obtained by the 

IBOA-SVM model are the smallest, so the predicted value of the AQI is closer to the actual value and the 

prediction accuracy of the IBOA-SVM model is higher. Fig. 6 presents a comparison chart of the actual data and 

the predicted value of the AQI obtained by five algorithms. The predicted value from the IBOA-SVM model 

exhibits a striking proximity to the actual AQI. This result clearly shows the superior prediction accuracy of the 

IBOA-SVM model. 

 

7 Conclusions 
 

In this paper, a novel IBOA is proposed, which the adaptive inertia weight  and the dynamic switching 

probability
p

are introduced. The introduction of  and
p

can obtain an effective balance between the global 

search and the local search and promote the capability to escape from the local optimum. The optimization 

capability of IBOA is verified on eight classical benchmark functions. The simulation results indicate that 

compared with the GWO, SCA, PSO, and BOA, the IBOA has higher accuracy and stronger robustness. Finally, 

we combine the IBOA with the SVM model, propose the IBOA-SVM prediction model, and perform prediction 

experiments in two real datasets to evaluate the performance of the IBOA-SVM. Compared with SVM, PSO-

SVM, GWO-SVM, and BOA-SVM, the IBOA-SVM model has higher prediction accuracy. The experimental 

results also indicate that the IBOA is a superior hyper-parameter optimization technique for the SVM model. 
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