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ABSTRACT 
 

The work was conducted to determine the mechanical properties of heat-treated (full annealing) 
compacted graphite cast irons (CGI) of different microstructures suitable for automotive 
applications. Six types of CGI were selected from numerous available samples based on their 
chemical compositions. The six CGI were tagged A1, A2, A3, A4, A5, and A6. Full annealing heat-
treated was carried out on A1-A6, they were austenized at 920°C. Chemical analysis and carbon 
equivalent were done, and the results showed that A1-A6 were hypereutectic CGI with different 
alloying elements. SEM analysis was equally carried out on A1 to A6. The result from the 

Original Research Article 

https://www.sdiarticle5.com/review-history/124216


 
 
 
 

Samuel et al.; J. Mater. Sci. Res. Rev., vol. 7, no. 4, pp. 663-675, 2024; Article no.JMSRR.124216 
 
 

 
664 

 

microstructural analysis indicated that A1 and A2 have structures close to gray cast iron, A3 and A4 
have a pure CGI microstructure, and A5 and A6 have structures close to ductile cast iron. 
Mechanical properties (hardness, impact, and wear resistance) were tested on A1-A6. A1 with 209 
Brinell hardness number (HBN) has the highest hardness value and A6 with 112HBN has the least 
hardness number. Similarly, the result from ultimate tensile strength (UTS) shows that A5 has the 
highest UTS value of 140 megapascal (MPa) and A2 has the lowest value of 38MPa. 38.8J for A1 
is the highest impact energy recorded for the series. Lastly, 67% recorded for A6 was the highest 
wear loss for the series. A1-A6 is suitable for the production of automotive parts especially exhaust 
system parts and engine blocks. 
 

 
Keywords: Full annealing; mechanical property; compacted graphite cast irons; microstructures; 

automotive. 
 

1. INTRODUCTION 
 

Cast iron is an alloy of iron and carbon with 
carbon content generally between 2% and 4.5 
[1]. It contains silicon which is an important 
ingredient, manganese, phosphorus, and sulfur 
[2]. Cast iron differs widely in composition and 
properties. Normal grades of cast iron are not 
particularly strong and are quite brittle [3]. A new 
brand of cast iron that will mitigate the 
disadvantages of normal cast iron is the 
compacted graphite cast iron (CGI). It has a 
carbon content between 3.1 and 4.0 %  and 

silicon content of 1.7 and 3.0% [4]. 
 

This type of cast iron has graphite particles 
shaped like a cross between ductile iron, which 
has graphite in a sphere, and regular gray iron 
flakes [5]. The physical characteristics of the 
worm-like compacted graphite shape are similar 
to the best qualities of ductile and grey irons [6]. 
 

Since the 1940s, compacted graphite iron (CGI), 
also known as vermicular graphite iron, has 
been the most recent addition to the cast iron 
family [7]. Because vermicular, or worm-shaped, 
graphite is typically stubby and has blunt edges, 
CGI has a nice mix of mechanical and physical 
qualities that lie between ductile and gray cast 
iron [8]. Compacted graphite cast iron also has 
excellent tensile strength, good fracture 
toughness, and solid impact properties [9]. In 
addition, it has a high thermal conductivity and 
better resistance to thermal shock in engineering 
firms [10]. Compared to ductile cast iron, CGI 
has greater thermal conductivity, easier casting, 
and greater strength and stiffness) [11]. Because 
of its distinct resistance to thermal fatigue, it is 
very appropriate for use in internal combustion 
engines and braking components, among other 
uses [12]. 
 

When compared to metals like steel and gray 
cast iron, CGI is lighter and less expensive [13]. 

The car industry's growing need for cast 
lightweight materials like aluminum and metal-
matrix composites has fueled the development 
of novel or more effective manufacturing 
processes and procedures [14]. Cast iron's low 
cost of manufacture has kept it competitive even 
with all the energy used in creating those new 
lightweight alloys [15]. 
 
Most of the mechanical properties of cast irons 
and their alloys depend on their microstructure 
[16]. They can be changed by varying the 
microconstituents in the metal through a heat-
treatment process [17]. Full annealing of 
compacted graphite cast irons (CGI) is a heat 
treatment process designed to refine the 
microstructure, reduce hardness, increase 
ductility, and improve machinability [18]. It 
involves utilizing a hypereutectic CGI slowly to a 
temperature of 920° C and cooling in the furnace 
to produce ferritic microstructures [19]. 
 
Compacted graphite cast irons (CGI) are known 
for their excellent combination of strength, 
thermal conductivity, and resistance to thermal 
fatigue, making them suitable for a variety of 
demanding applications [20]. In the automobile 
industry, its higher strength and stiffness 
compared to gray cast iron, with better thermal 
conductivity and fatigue resistance than ductile 
iron makes it an excellent material for the 
production of engine blocks. cylinder heads, 
exhaust system parts [21]. It also finds a variety 
of applications in the production of wind turbines, 
and turbine housing, and in industries like 
marine, railroads, agricultural equipment, heavy 
machinery, and construction equipment [22]. 
 

2. EXPERIMENTAL PROCEDURES 
 
Six compacted graphite cast iron of 16mm by 
16crm in dimension were taken to the laboratory 
to determine their chemical compositions and 
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heat-treated in the furnace. After, the heat-
treated process, mechanical tests were carried 
out on the six samples terms A1, A2, A3, A4, A5, 
and A6. 
 

2.1 Determination of the Composition 
Analysis of CGI 

 
Skyray EDX 3600B energy dispersive X-ray 
fluorescence spectrometer was used to 
determine the elemental composition of six 
different CGI before full annealing was carried 
out in the furnace. X-ray fluorescence is a 
powerful technique used in a wide variety of 
elemental composition of various materials [23]. 
XRF analyzers are widely recognized as a 
means for accurate, rapid, and non-destructive 
testing [24]. The Skyray EDX3600B is a high-
end energy dispersive spectrometer with a large 
sample chamber that supports most sample size 
[25]. 
 

2.2 Full Annealing Heat Treatment 
 
Full annealing was done on samples A1 to A6 
using a muffle furnace. This compacted graphite 
cast iron produced was austenized at 920 °, held 
for 45 minutes, and cooled slowly in the furnace. 
The ductile resulting austenized materials made 
from this process are labeled A1, A2, A3, A4, 
A5, and A6. 
 

2.3 Carbon equivalent of the Heat-
Treated CGI 

 
The carbon equivalent of the CGI was  
calculated using Equation 1 [26]  
 

𝐶𝐸 = 𝐶 + (𝑀𝑛 + 𝑆𝑖)/6 + (𝐶𝑢 + 𝑁𝑖)/15 +
(𝑉 + 𝑀𝑜 + 𝐶𝑟)/5                                        (1) 

 
Where CE is carbon equivalent, C is % by 
weight of carbon, Mn is % by weight of 
manganese, Si is the % by weight of silicon, Cu 
is the % by weight of copper, Ni is the % by 
weight of a nickel, V is the % by weight of 
vanadium, Mo is the % by weight of 
molybdenum, Cr is the % by weight of chromium 
that is present in CGI. 
 

2.4 Microstructural Examination 
 
2.4.1 SEM analysis 
 
The scan electron microscopy (SEM) was 
carried out using a Carl Zeiss sigma field 

Emission gun scanning electron microscope 
under 1000 magnification of 10µm, with an 
energy dispersive spectrometer (EDS Scanning 
electron) these was done to examine the internal 
structures of the CGI produced to determine 
their degree of graphite growth and nodularity 
[27]. 
 
2.4.2 Hardness test 
 
The hardness test was conducted using the 
hand-held Brinell tester. This conforms to ISO 
and ASTM E03-18 [28] standard which was used 
on all metals and alloys on any sample size [29]. 
The set of tests was performed on A1-A6, the 
test was done on four occasions and the 
average was recorded. 
 
2.4.3 Tensile tests 
 
Tensile tests were performed on the six samples 
of CGI produced labeled A1-A6 using the 
universal testing machine. The UTS test was 
carried out by ASTM A842-11A (2022) standard. 
The material testing system with a load capacity 
of 50 kN, at a loading speed of 10 rpm and a 
maximum chuck diameter of 1 0mm. The test 
samples were prepared on the lathe machine in 
cylindrical shapes of 9mm x 16cm. The samples 
were inserted into the chuck and were closely by 
an aligned key to grip them and the samples 
were pulled apart until they broke into pieces.   
  
2.4.4 Impact strength 
 
Impact strength was evaluated on the heat-
treated samples labeled A1, A2, A3, A4, A5, and 
A6. The test was conducted using the ASTM 
standard of dimension 9 mm x 16mm using the 
Hounsfield balance impact machine. The V-
notch impact specimen was clamped into the 
pendulum chuck and locked with an align key, 
the notched side facing the striking edge 
direction. The pendulum was released at a 
velocity of 4 m/s with a maximum energy of 170 
these were done to fracture the materials and 
the energy absorbed by the materials was noted 
and recorded. Four tests were carried out on 
each specimen and their average was recorded 
in joules which are units of energy [30]. 
 
2.4.5 Wear test 
 
The wear test of samples was carried out 
according to ASTM G99.15. The step-on disc 
rolling dry wear method was used which was 
carried out using a Rolling Sliding wear tester. 
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The initial mass M1 of samples was recorded 
before allowing them to be in contact with a 
rolling disc for one minute at 20 cycles. The final 
mass M2 of the samples was also recorded. The 
wear index R was obtained by Equation (2) [31]. 
 

1 2
100%

M M
R

RPM

−
=                                 (2) 

 

Where M1 is the initial mass (g), M2 is the final 
mass (g), and   RPM =20.       
 

3. RESULTS AND DISCUSSION 
 

3.1 Elemental analysis of the Heat-
Treated CGI (A1-A6) 

 

Based on the theoretical failure analysis and 
chemical compositions of some selected 
silencers, the following CGI were obtained with 
varying alloying elements, tagged A1, A2, A3, 
A4, A5, and A6. Results from chemical 
composition analysis in Table 1, shown that 
CGIs obtained were hypereutectic irons with 
4.35% carbon with the presence of Cu, and Cr 
which aids the  increase of the pearlite phase so 
as to increase the hardness, heat resistance and 
strength  which is in agreement with (32). These 
is shown in A1 and A2. Al. Ni and Si found in A4 
and A5 were obtained purposely so as to aid 
graphitization which promote ferritic phase and 
aid ductility in accordance with Boulifa and Hadji 
[32]. Inaddition, Ni and Cr also increase thermal 
conductivity but it shown a deleterious effect on 
percentage elongation, UTS and toughness as 
seen in A3 and A6  according to [33]. 
 

3.2 Carbon equivalent of the Heat-
Treated CGI Materials (A1-A6) 

 

The carbon equivalent (CE) of the CGI is shown 
in Table 2. All the CGI from A1-A6 are in 
excellent condition and fall into the range of CE 
of CGI which should be greater than 4.35 which 
is in line with [34]. 
 

3.3 SEM Analysis of A1-A6 
 
Fig. 1 shown a CGI with a distorted clusters 
graphite flakes (DGF) in ferrite under 1000 
magnification. The microstructure of A1 is close 
to gray cast iron with little percentage of nodules 
in the ferrite phase. 
 
Fig. 2 shows several distorted graphite flakes 
(DGF) in ferrite under 1000 magnification. The 
microstructure of A2 is also close to gray cast 
iron with a small percentage of distorted nodules 
(DN) in the ferrite phase. The nodules in A2 are 
more than the ones in A1. 
 
Fig. 3 shows several distorted graphite flakes 
(DGF) in ferrite under 1000 magnification. Some 
of the distorted graphite flakes are separated. 
The microstructure of A3 is pure compacted 
graphite cast iron with an equal number of 
distorted nodules (DN) in the ferrite phase. 
 
Fig. 4. shows several distorted graphite flakes 
(DGF) in ferrite under 1000 magnification. Some 
of the distorted graphite flakes are separated. 
The microstructure of A4 is also a pure 
compacted graphite cast iron with an equal 
number of distorted nodules (DN) in the ferrite 
phase. The nodules in A4 are smaller in size 
than the nodules in A3 because of the 
percentage of Cu which served as nodules 
reducer (anti-nodularizers) in accordance with 
[35]. 
 
Fig. 5 shows several heavily distorted graphite 
flakes (DGF) in ferrite under 1000 magnification. 
Some of the distorted graphite flakes are 
separated. The microstructure of A5 is more 
ductile cast iron with some distorted nodules 
(DN) in the ferrite phase. The nodules in A5 are 
bigger in size than the nodules in A1 to A4 
because of the percentage of silicon, 
magnesium which served as nodule enhancers 
which agrees with [4]. 

Table 1. Summary Elemental Composition of the Heat-Treated CGI Materials (A1-A6) 
 

 Fe C Si Cu Cr Ti AL Ni Mg S Mn 

A1 93.1000 4.3500 1.5400 0.1510 0.0773 0.0067 0.2090 0.0466 0.0025 0.0953 0.216 
A2 92.6000 4.3500 1.8200 0.1820 0.0900 0.0134 0.1610 0.0438 0.0064 0.1390 0.2800 
A3 92.5000 4.3500 1.8800 0.1820 0.0943 0.0211 0.1620 0.0433 0.0038 0.1350 0.2590 
A4 92.4000 4.3500 2.0000 0.3150 0.1310 0.0183 0.0307 0.0531 0.0048 0.1320 0.2770 
A5 92.0000 4.3500 2.2300 0.3290 0.1450 0.017 0.0597 0.1790 0.0081 0.1440 0.2820 
A6 92.4000 4.3500 2.0200 0.3400 0.1200 0.0374 0.0294 0.0053 0.0053 0.1200 0.2760 

 

Table 2. Carbon equivalent of the Heat-Treated CGI Materials (A1-A6) 
 

SN C1 C2 C3 C4 C5 C6 

CE 4.65 4.85 4.96 4.78 4.83 4.79 
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Fig. 1. A1 SEM image 
DGF= Distorted graphite flakes in ferrite, F= ferrite, N= nodules 

 

 
 

Fig. 2. A2 SEM image 
DGF= Distorted graphite flakes in ferrite, F= ferrite, DN= distorted nodules 
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Fig. 3. A3 SEM image 
DGF= Distorted graphite flakes in ferrite, F= ferrite, DN= distorted nodules 

 

 
 

Fig. 4. A4 SEM image 
DGF= Distorted graphite flakes in ferrite, F= ferrite, DN= distorted nodules 
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Fig. 5. A5 SEM image 
DGF= Distorted graphite flakes in ferrite, F= ferrite, DN= distorted nodules 

 

 
 

Fig. 6. A6 SEM image 
DGF= Distorted graphite flakes in ferrite, F= ferrite, DN= distorted nodules 

 
Fig. 6 shows several heavily distorted graphite 
flakes (DGF) in ferrite under 1000 magnification. 
Some of the distorted graphite flakes are 
separated. The microstructure of A6 is more 

ductile cast iron with some distorted nodules 
(DN) in the ferrite phase. The nodules in A6 are 
also bigger than the nodules in A1 to A4 
because of the percentage of silicon which 
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served as a nodules enhancer and copper which 
increased the pearlitic phase. which agrees with 
[36]. 
 
3.3.1 Hardness 
 
The hardness results of A1 to A6 from Fig. 7 
reveal, that the materials are tough, ductile, and 
have some elements of plastic deformation 
before failure. These conditions are desirable as 
they give a warning before failures in 
accordance with [37]. Also, A1 has the highest 
Brinel hardness (HB) value of 209 because its 

structure is close to gray iron microstructure, 
followed by sample A4 with 183HB this is due to 
the high percentage of Cu, Cr, and Mn which 
increase the hardness of CGI in accordance with 
[38].  The lowest is sample A6 with 112HB  
values because it’s ductile cast iron and ductile 
cast iron has the least hardness value in 
comparison to gray and compacted graphite cast 
iron which is in line with [39]. Summarily, all the 
samples’ microstructures are mostly ferritic with 
a little blend of pearlite except for A1 and A2 that 
has a higher pearlite phase which is responsible 
for their high hardnesses [40]. 

 

 
 

Fig. 7. Variation of Hardness heat-treated samples A1-A6 
 

 
 

Fig. 8. Variation of UTS for Samples A1-A6 
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Fig. 9. Variation of Ductility with Samples A1-A6 
 

 
 

Fig. 10. Variation of Impact test with Samples A1-A6 
 
3.3.2 Tensile test  
 
The tensile test results for the CGI- heat-treated 
samples A1-A6 are shown in Fig. 8. The 
following was deducted from the graph. A5 has 
the highest ultimate tensile strength (UTS) value 
of 140 megapascals (MPa) and A2 has the 
lowest UTS value of 38 MPa. A1 and A6 have 
UTS values of 58 MPa, and A3 and A4 have 
100MPa, respectively. The  highest UTS of 140 
MPa for A5 in the series is in agreement with 
[41]. That states that the UTS value of ductile 
iron is higher than that of gray cast iron due to 
alloying elements like magnesium, aluminum, 

and chromium additions. These elements 
promote ferritic microstructure over pearlite, and 
this is responsible for the H5 value. 
 
3.3.3 Ductility 
 
From Fig. 9 it can be deduced that A5 has the 
highest ductility of 490  due to the presence of  
magnesium as an alloying element that aids the 
transformations of α-ferritic microstructure over 
the pearlite phase which is in line with  [42] and it 
is expected that ductile cast iron should have 
elasticity close to that of steel according to                
[43]. 
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Fig. 11. Variation of Wear Rate of Samples A1-A6 
 
3.3.4 Impact strength 
 
Fig. 10, shows that A1 has the highest impact 
energy of 38.76 J/mm2 in the series. This is 
normal because of surface hardening and the 
presence of copper and  silicon in line with [44].  
However, the differences in the impact energy 
are not much from A1 to A6. It can be seen 
clearly that the differences in A3, A4, and A6 are 
not that much because of the little variance in 
the pearlitic and ferritic phases. These sets of 
series are ideal and suitable for exhaust system 
outer body parts production according to [44,45]. 
 
3.3.5 Wear 
 
Fig. 11 reveals, that A6 has the highest material 
loss with wear resistance of 66% for the series. 
The least material loss was A2 and A3 because 
they are gray cast iron with copper addition and 
because the pearlite microstructure phase is 
more predominantly present than the ferritic 
phase which conforms with [46]. 
 

4. CONCLUSION 
 
The carbon equivalent of the fully annealed 
samples A1 to A6 was calculated, indicating that 
they are hypereutectic cast graphite irons. 
 
Results from the SEM analysis indicated that A1 
and A2 have a microstructure close to that of 
gray cast irons because of higher percentages of 
distorted graphite flakes (DGF), and A3 and A4 
were compacted graphite cast iron (CGI), and 
A5 and A6 have structure close to ductile cast 
irons. 

The mechanical properties of A1-A6 follow the 
thread of properties of gray, CGI, and ductile 
cast iron respectively in that order except where 
alloying elements and microstructure were 
employed to change the property. The hardness 
value of A4 and A3 a CGI, was higher than that 
of A2 a gray iron because of the addition of 
higher concentrations of copper, titanium, and 
manganese that promote pearlite structure. The 
presence of cementite in pearlitic cast irons 
leads to an increase in hardness. 
 
Also, the thread follows in the UTS and ductility 
results except for A6 which has its values close 
to the A1 due to high percentages of aluminum, 
silicon, and chromium as an alloying element 
that promotes the ferrite phase. A CGI with a 
higher concentration of ferritic phase is usually 
ductile and ductility leads to higher tensile 
strength because the CGI matrix contains more 
nodular graphites. 
 
In addition, the impact energy of gray cast iron 
was expected to be higher than that of CGI and 
ductile cast iron. A1 with 38.8J has the highest 
impact energy in the samples because it has its 
microstructure close to gray irons and A3 has 
the least impact energy with 36.1J because it 
alloying element promotes ferrite phases. Lastly, 
the wear rates of 67% and 27% of A6 and A5 
were the highest in the series because they are 
ductile cast iron. 
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