

Volume 30, Issue 5, Page 580-587, 2024; Article no.JSRR.115188 ISSN: 2320-0227

Impact of Custom Hiring Centers on Cost, Profitability, and Efficiency in Crop Production in Anantapur District of Andhra Pradesh, India

Ganavi N R ^{a++*}, Nalini Ranjan Kumar ^{b#}, Ravikumar S ^{a++} and Parashuram Kambale ^{c++}

^a Department of Agricultural Economics, UAS, GKVK, Bengaluru, Karnataka -560065, India. ^b Department of Agricultural Economics, ICAR-National Institute of Agricultural Economics and Policy Research (NIAP) Dev Prakash Shastri Marg, Pusa, New Delhi-110012, India. ^c Department of Agricultural Extension Education, UAS, Raichur, Karnataka- 584 104, India.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JSRR/2024/v30i51974

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/115188

> Received: 24/01/2024 Accepted: 28/03/2024 Published: 30/03/2024

Original Research Article

ABSTRACT

This study examines the impact of custom hiring centers (CHCs) on agricultural mechanization and productivity of groundnut of cultivation in Anantapur District of Andhra Pradesh in 2021. CHCs, established under the Submission on Agricultural Mechanization (SMAM) scheme, aim to address challenges faced by small-scale farmers in accessing improved machinery. Through farm business analysis, data envelopment analysis (DEA), and binary logistic regression, the study evaluates the adoption of improved farm machinery, changes in costs, profitability, and efficiency in crop

⁺⁺ Ph.D. Scholar;

[#] Principal Scientist;

^{*}Corresponding author: E-mail: ganavigkvk@gmail.com;

J. Sci. Res. Rep., vol. 30, no. 5, pp. 580-587, 2024

production due to CHCs. Utilizing purposive sampling, data was collected from 160 beneficiary and non-beneficiary farmers in villages. Cost concepts were used to compare costs and returns in groundnut cultivation among CHC beneficiaries and non-beneficiaries. Findings indicate that CHC beneficiaries demonstrate lower input costs and higher net returns, signaling improved efficiency and profitability. DEA analysis reveals higher technical, allocative and cost efficiency among beneficiary farms compared to non-beneficiary ones. Additionally, binary logistic regression identifies significant factors influencing farmers' decisions to hire machinery from CHCs, including machine labor, net income, hired human labor, irrigation, and yield. Overall, the study underscores the pivotal role of CHCs in enhancing agricultural productivity and efficiency, particularly among small-scale farmers. It suggests that policymakers prioritize expanding CHCs and promoting mechanization to further improve agricultural outcomes and address challenges faced by marginalized farmers.

Keywords: Custom hiring centers; data envelopment analysis; binary logistic regression; submission on agricultural mechanization; technical efficiency; allocative efficiency; cost efficiency.

1. INTRODUCTION

Mechanization has been acknowledged as a pivotal factor in augmenting land productivity by facilitating timely execution of agricultural tasks, enhancing labor efficiency through reduced exertion, and upgrading the overall guality of farm activities [1]. It leads to savings of approximately 15-20 percent on inputs such as seeds and fertilizers, 20-30 percent on labor and operational time, 5-20 percent on cropping intensity, and 10-15 percent on crop productivity [2]. Numerous challenges accompany the adoption of farm mechanization, including economic hurdles like initial high and maintenance costs, inadequate access to institutional credit. exorbitant custom hire charges, escalating production costs, limited service availabilitv of centers. situational constraints such as small and fragmented land holdings, unsuitability of certain machines for various soil types, and technological limitations such as a lack of proficiency in operating machinery and implements [3].

Custom hiring centers (CHCs) serve as crucial facilitators in introducing advanced agricultural machinery to small-scale and marginalized farmers in India, thereby addressing the hurdles associated with mechanization and fostering promote increased productivity [4]. То agricultural mechanization, the Indian government has initiated various schemes and programs such as the Rashtriya Krishi Vikas Yojana (RKVY), the National Food Security Mission (NFSM), and the National Horticulture Mission (NHM). Notably, prior to 2014, the Government of India did not introduce specific schemes or programs for the promotion of agricultural mechanization [5,6]. However, in the

fiscal vear 2014-15. the Submission on Agricultural Mechanization (SMAM) was launched to assist small-scale and marginalized farmers by establishing custom hiring centers (CHCs), farm machinery banks (FMBs), and high-tech hubs to facilitate access to farm machinery. The proliferation of CHCs, high-tech hubs, and FMBs at the grassroots level has ensured that small-scale and marginalized farmers have access to modern agricultural machinery for various field operations [7].

The state of Andhra Pradesh has emerged as a frontrunner in establishing CHCs under the SMAM scheme, with Agriculture being the mainstay of the economy of the Ananthapuram district, with 85 percent of the farmers being small and marginal farmers [8]. In light of this backdrop, this study has been undertaken to assess the changes in cost of operations, profitability and efficiency in crop production due to the adoption of improved farm machinery owing to CHCs in the Anantapur District of Andhra Pradesh.

2. MATERIALS AND METHODS

2.1 Data

Andhra Pradesh state was chosen purposively to study the performance of custom hiring centers established with government support. It is because Andhra Pradesh is the leader in the establishment of CHCs with the highest number of CHCs established under the SMAM scheme. Rayalseema region was selected purposively because most of the farmers belong to small and marginal categories in this region and the objective of the government scheme is to cover small and marginal farmers. Anantpur district from the Ravalseema region was intentionally selected as it is one of the largest districts and most of the farmers are small and marginal farmers. Government subsidv support in establishing CHCs plays an important role in such areas. In the district, 2 taluks were selected randomly namely Anantapur and Dharmavaram and from each of the selected taluks, 2 clusters of villages, one having formal CHCs established with government support and another without formal CHC and away from the first one so that custom hire services are not available in the villages from the formal CHC, were selected. From each of the selected villages, 40 farmers were selected randomly. Thus a total sample of 160 constituting 80 CHC farmers and 80 nonbeneficiaries farmers were selected. The Primary data was collected using the personal interview method with the aid of a pre-tested schedule designed for the study.

2.2 Farm Business Analysis

Farm business analysis was performed to estimate different costs and returns in crop cultivation on sample farms. For this purpose cost concepts of the Commission on Agricultural Costs and Prices (CACP) [9] were used to estimate profitability and different costs to compare across farm size categories for both the beneficiaries and non-beneficiaries of CHCs to assess the changes due to mechanization through CHCs. The various cost concepts used to analyze the costs and profitability of Groundnut production are discussed below:

Cost Concepts:

- Cost A₁ = Wages of hired labor, cost of input, hired machinery charges, Imputed value of owned machine power, depreciation on implements and farm buildings, land revenue, and interest on working capital.
- Cost A₂ = Cost A₁ + Rent paid for leased in land
- Cost B₁ = Cost A₁ + interest on the value of owned fixed capital (excluding land).
- Cost B₂ = Cost B₁ + rental value of owned land.
- Cost C₁ = Cost B₁ + imputed value of family labour.
- Cost C₂ = Cost B₂ + imputed value of family labour.
- Cost C₃ = Cost C₂ + 10 percent of Cost C₂ accounting for managerial input

Farm Returns:

- Farm business income = Gross income - Cost A₁
- Family labour income = Gross income - Cost B₂
- Net income over Cost C₁ = Gross income - Cost C₁
- Net income over Cost C₂ = Gross income - Cost C₂
- Net income over Cost C₃ = Gross income - Cost C₃

2.3 Data Envelopment Analysis Approach (DEA)

DEA is a non-parametric linear programming method for evaluating the performance of a set of peer entities called decision-making units (DMUs). In this case, the individual farm was considered as a decision-making unit. lt measures the technical efficiency based on estimated best-practice or efficient frontier or envelopment surface made up of a set of Pareto-efficient DMUs (efficiency score = 1). The efficiency of the farms was calculated about this and the efficiency score was between 0 and 1. Technical efficiency corresponding to constant returns to scale (CRS) assumption is known as Overall Technical Efficiency (OTE) which captures efficiency due to both managerial and scale effects.

Considering N DMUs, i=1,..., N and assuming that there are M outputs and N inputs. Let yi and xi denote, respectively, the output and input vectors for the i-th DMU. The K*N input matrix X and the M*N output matrix Y, represent the data of all N DMU"s.

To estimate the technical efficiency, the envelopment form of the linear programming problem using the duality was used as

$$min_{ heta,\lambda} heta, \ st - y_i + Y\lambda \ge 0, \ heta x_i - X\lambda \ge 0, \ \lambda \ge 0,$$

Where θ is a scalar and λ is an N×1 vector of constants. The value of θ is the efficiency score for the ith firm [10]. Table 1 shows the description of variables along with their unit of measurement which were used to perform DEA analysis.

S. No.	Variables	Units (per acre)	
1	Output variable		
1	Profit	Rupees	
II	Input variables		
1	Seed material cost	Rupees	
2	Fertilizer cost	Rupees	
3	Human labour	Total hours	
4	Machine labour	Total hours	

Table 1. Description of the input and output variables used in the DEA analysis

2.4 Binary Logistic Regression Model

A logit model was used to identify the factors influencing farmers to hire machinery from CHCs. Using the maximum likelihood estimation method, the model predicts the probability of a binary outcome. It deals with situations in which the outcome for a target variable can have only two possible ways. Logistic regression model output helps to identify the factors (Xi) impacting the dependent variable (Y) and also shows the nature of the relationship between dependent variable and explanatory variables.

The logistic function can be represented as,

$$Y=\ln (P_i/1-P_i) = \alpha + \beta_1 X_1 + \ldots + \beta_n X_n + U_i$$

Where Y is the dependent variable that takes value 1 if a farmer hired machinery from CHC and otherwise it takes 0.

 α = the constant of the equation; β = the coefficient of predictor variables Xi= the predictor variables U_i=error term

In this particular case, nine (9) independent variables were used as shown in Table 2- The logistic function for this study was thus rendered as

 $\begin{array}{l} Y=ln \ (P_i/1-P_i) = \alpha \ +\beta_1Age \ + \ \beta_2 \ Education+ \ \beta_3 \\ machine \ labour \ hours+ \ \beta_4Net \ income \ + \ \beta_5Animal \\ labour \ hours+ \ \beta_6 \ Human \ labour \ hours \ + \ \beta_7 \\ Irrigation+ \beta_8 \ yield+ \ \beta_9 \ total \ seed \ cost \ + U_i \end{array}$

Marginal effects (dy /dx): These reflect the change in probability of Y=1 given a unit change in independent variable X.

3. RESULTS AND DISCUSSION

3.1 Costs and Return in Groundnut Cultivation on Sample Farms

Farm business analysis was performed to understand the economics of groundnut

production in both the CHC adopted villages and non-adopted villages. The costs and returns over different costs have been estimated and presented in the Table 3 for both the CHC and non-neneficiaries farmers across farm size categories. Perusal of the table indicates that all the input cost excepting irrigation and plant protection cost was higher on non-beneficiary farmers in comparison to beneficiary farmers. However, yield was marginally higher by 0.51 percent on beneficiary farms in comparison to Non-Beneficiary farmers. Singh et al., [11] also found that state having highest mechanization index incurred lower cost of cultivation per quintal of the wheat crop due to increased yield.

The Cost C2 was 4.8 percent lower on CHC farms as compared to non-beneficiaries faarms on overall basis and also the pattern of beneficiary and non-beneficiary farms in case of cost reduction was similar across farm size categories. The net returns over Cost C2 of CHC beneficiaries was 20.8 percent more in comparison to non-beneficiaries and the net return over Cost C1 of CHC beneficiaries was 14.73 percent higher than non-beneficiaries. This indicates that increased use of farm machinery on beneficiary farms has led to an increase in better use of inputs and hence reduction in the cost of cultivation. Verma [12] concluded that farm mechanization enhances the production and productivity of different crops due to timeliness of operations, better quality of operations and precision in the application of the inputs.

3.2 Efficiency in Groundnut Production Across CHC and Non-Beneficiaries Farmers

DEA was used to determine efficiency (TE), allocative efficiency (AE) and economic efficiency (EC) in groundnut production for both the CHC farmers and non-CHC farmers and to know the status of efficiency of groundnut farms, farms of both the CHC and non-beneficiaries villages were classified into four categories based on their technical allocative and economic efficiency score into (i) Efficient if score is equal to one: (ii) Less efficient if score is more than 0.8 but less than 1; (iii) Moderately efficient if score is more than 0.6 but less than 0.8 and (iv) Inefficient if score less than 0.6. The results are summarized in Table 4. A perusal of the table reveals that out of a total of 80 sample farms, 18.8 percent of beneficiaries and 13.8 percent of nonbeneficiaries of CHC were technically efficient; 50 percent of beneficiaries and 40 percent of non-beneficiaries were less efficient: 31.2 percent of beneficiaries and 46.2 percent of nonbeneficiary were moderately efficient and none of the farms either in CHC or non-beneficiaries villages were technically inefficient. The overall

technical efficiency of beneficiaries was high compared to non-beneficiary's farms. Chinnappa et al., [13] also observed that farmers hiring machineries from private individual were less efficient compared to those hiring machineries from formal custom hire service providers.

Only 2.5 percent of beneficiaries and none of the non-beneficiaries of CHC had an allocative efficiency score 1. However, 57.5 percent of beneficiaries and 75.0 percent of nonbeneficiaries were inefficient in allocating their resources and had an allocative efficiency score of less than 0.6. Overall results convey that allocative inefficiency was of greater on nonbeneficiary farms of CHC compared to beneficiary farms.

Table 2. Description and units of	of variables used in the models
-----------------------------------	---------------------------------

	Variables	Units of measurement
	Dependent variable	
Yi	Whether Farmer is hiring made	chineries from 1=yes,0=no
	CHC or not	-
	Independent variable	
X ₁	Age	years
X2	Education	Illiterate=1, Primary=2, Secondary=3,
		PUC=4, Degree=5
Х3	Machine labour	Hours
X4	Net income	Rupees
X5	Animal labour	Hours
X ₆	Human labour	Hours
X7	Irrigation	Yes=1,No=0
X8	Yield	q/ha
X9	Seed cost	Total cost

Table 3. Costs and returns in groundnut cultivation at beneficiaries and non-beneficiaries of CHC farms (Rs /ha)

	Non-beneficiaries farmers			Change over			
Particulars	Marginal	Small	Overall	Marginal	Small	Overall	Non- beneficiaries farms (%)
Human labour	16720	16480	16600	17507	18327	17917	-6.68
Animal labour	6856	6644	6750	8015	7835	7925	-13.49
Machine labour	15123	17172	16148	20146	21152	21152.5	-28.50
Seed	14800	14450	14625	14910	14790	14850	-0.34
Manures & Fertilizers	5682	5777	5715	5815	6010	5955	-4.58
Irrigation charges	542.5	543.5	543	496	498.5	497.5	9.05
Plant Protection Chemicals	1455.5	1544.5	1500	1411.5	1489.5	1450.5	0.34
Miscellaneous	1435	1621	1528	1538	1553.5	1557.5	-7.87
Cost A ₁	60633	59900	60267	65900	65200	65550	-7.50

Ganavi et al.: J. Sci. Res.	Rep., vol. 30, no. 5, pp.	580-587, 2024; Article no.JSRR.115188

Beneficiary farmers				Non-bene	Change over		
Particulars	Marginal	Small	Overall	Marginal	Small	Overall	Non- beneficiaries farms (%)
Cost A ₂	61591	60859	61225	66783	66083	66433	-7.29
Cost C ₁	67886	67155	67521	73078	72268	72673	-6.59
Cost C ₂	82883	80905	81894	88075	86048	87061.5	-4.80
Yield (q)	19.6	19.8	19.7	19.2	19.7	19.5	0.51
Price (Rs/q)	5600	5620	5610	5560	5580	5580	0.36
Gross return	112958	114459	113709	110958	112957	111958	0.89
Farm Business Income	51367	53600	52484	44175	46874	45525	12.83
Family labour Income	34164	38054	36109	28630	31309	29969.5	14.00
Net Returns over C1	45072	47304	46188	37880	40689	39284.5	14.73
Net Returns over C ₂	30075	33554	31814.5	22883	26909	24896	20.80

Source: Compiled from field survey, 2021

Table 4. Distribution of farms (%) according to Technical (TE), Allocative (AE) and Economic efficiency (CE) in groundnut production

Efficiency level		TE		AE		EC		
	Benefici aries	Non- beneficiaries	Benefici aries	Non- beneficiaries	Benefici aries	Non- beneficiaries		
Efficient (E=1)	18.8	13.8	2.5	0.0	2.5	0.0		
Less efficient (E> 0.8 <1)	50.0	40.0	13.8	7.5	11.3	0.0		
Moderately efficient (E> 0.6 <0.8)	31.2	46.2	26.2	17.5	13.8	27.5		
Inefficient (E <0.6)	0.0	0.0	57.5	75.0	72.5	72.5		

Source: Compiled from field survey(N=160), 2021

Table 5. Binary logit estimates for factors influencing farmers to hire machinery from CHC

Parameter	Coefficient	Marginal effect (dy/dx)	Z value	P > z
Age (Years)	0.06602**	0.13**	2.07	0.04
Education (Illiterate=1, Primary=2, Secondary=3, PUC=4, Degree=5)	0.2498	0.52	0.77	0.44
Machine labour (Total hrs.)	0.4636***	0.0973***	3.69	0
Net income (Rs/ha)	0.00053***	0.00011***	4.49	0
Animal labour (Total hours)	0.000102	0.0000215	0.44	0.87
Hired human labour (Total hrs.)	-0.05053***	-0.00218***	-3.16	0.002
Irrigation (1=yes,0=no)	1.35005**	0.307**	1.99	0.04
Yield (Qtl/Ha)	1.4897***	0.312***	2.67	0.008
Seeds (Total cost)	-0.000745***	-0.0001***	-3.49	0
Pseudo-R-squared	0.58			
LR chi2(10)	125.72			
Prob> chi2	0			

Note: *** significant at 1% level, ** significant at 5% level

Economic Efficiency was also lower for nonbeneficiaries of CHC as compared to

farms had cost efficiency scores less than 0.6 and hence inefficient in both cases. Hiremath et beneficiaries, and more than 72.5 percent of al., [14] also found that the success of CHCs in the district of Raichur has substantially assisted small and marginal farmers to carry out farm scores operations on time at low cost.

The above discussion indicates that the technical, allocative and cost efficiency were higher among farms covered by formal CHC in comparison to farms in villages not covered by formal CHCs. However, these also indicates the existence of ample room for improvement in all the technical, allocative and cost efficiency in the entire study area irrespective of whether villages are covered by CHC or not. This may be due to low mechanization in the area. In addition to all other efforts, mechanization of farms can play an important role in improving technical efficiency and hence greater emphasis is required on mechanizing the less mechanized farms [15].

3.3 Factors Influencing Farmers to Hire Machinery from CHC

A Binary logit model was used to identify the factors affecting the decision by farmers to choose services from CHC. The results of the logit model presented in the Table 5 show that machine labor, net income, hired human labour, vield and seeds were observed to be significant 1 percent level of understanding of at significance while age and irrigation were found to be significant at 5 percent level of significance. The factors like age, machine labor, net income, irrigation and yield were positively related to the participation. The animal labour and seeds were found to negatively influence the farmer's decision to hire machinery from CHC. The marginal effect of age, machine labour, net income, irrigation and yield had negatively influenced the farmer's decision to hire machinery from CHC. With increase in age by one year the probability of hiring farm machinery from CHC by the farmer increases by 0.13 percent keeping the other things constant. Similarly, if the farmer wants to increase machine labor hours by 1 hour the probability that farmers will go to hire machinery from CHC increases by 0.09 percent. If farmers want to increase animal labour hours by 1 percent, then the probability to machineries by farmers from CHC hire decreases by 0.00002 percent. To overcome the problem faced by marginal and small farmers in India during the peak season, use of farm machinery will solve the issue [16].

4. CONCLUSION

The study highlights the positive impact of CHCs on agricultural mechanization in Anantapur

District. Andhra Pradesh. Beneficiary farmers experienced lower input costs, higher profitability, and greater efficiency compared to nonbeneficiaries. Factors such as machine labor. net income, and yield influenced farmers' decisions to hire machinery from CHCs positively. Overall, the findings emphasize the importance of CHCs in promoting mechanization and suggest the need for further expansion to enhance agricultural productivity and sustainability in the region. То further promote agricultural mechanization and the effectiveness of Custom Hiring Centers (CHCs), policymakers should focus on expanding CHC networks, providing financial support and subsidies, offering training programs for farmers, investing in rural infrastructure, promoting information and awareness campaigns, fostering collaboration with the private sector, and implementing robust monitoring and evaluation mechanisms.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- 1. Singh G. Agricultural mechanisation development in India. Indian Journal of Agricultural Economics, 2015;70(1):64–82.
- Gurung TR, Kabir W, Bokhtiar SM. (eds.) Mechanization for Sustainatractor-baseball Agricultural Intensification in SAARC Region. SAARC Agriculture Centre, Dhaka, Bangladesh; 2017.
- 3. Madhukar B, Reddy PBH, Lakshmi T, Ramu YR. Constraints in adoption of farm mechanization and suggestions to overcome the constraints, Pharma Innovation. 2021;10(6):376-379.
- 4. Nagaraj PS, Swamy D, Madhushree A, Vidyadhara B. A Study on Knowledge and Adoption of Farm Mechanization by Paddy Grower in Tungabhadra Project Area, Karnataka. International Journal of Agriculture and Food Science Technology. 2013:4(4):385-390
- Bethi SK, Deshmukh SS. Custom Hiring Centers in Indian Agriculture: Evolution, Impact, and Future Prospects. Asian Journal of Agricultural Extension, Economics & Sociology. 2023;41(11):193-203.
- 6. Bhatt R, Majumder D, Garg AK. Custom Hiring Centre–Need of the hour for small and marginal farmers. Scientific Reports. 4(12):18-22.

- Mehta CR, Chandel NS, Senthilkumar T, Singh KK. Trends of Agricultural Mechanization in India. CSAM Policy Brief. 2014;2:1-13.
- Anonymous. Potential Linked credit Plan-Ananthapuram. National Bank for Agricultural and Rural Development. 2016-17.

Availabe:https://www.nabard.org/auth/write readdata/tender/1910160520AP_Anantapu r.pdf

- Jawla SK, Maisnam G, Kumar S, Kumar T. An economic analysis of paddy cultivation in the central plain zone of Punjab, India. International Journal of Research and Analytical Reviews. 2018;5(4):127-32.
- 10. Cooper WW, Seiford LM, Zhu J, editors. Handbook on data envelopment analysis; 2011.
- 11. Singh CS, Kumar C, Sudhakar PC, Nath A, Sinha AK, Singh R. Mechanization of Indian agriculture-keeping pace with change. Agro India. 2004:8(5):12-14.
- 12. Verma SR. Impact of agricultural mechanization on production, productivity,

cropping intensity income generation and employment of labour. Status of farm mechanization in India. 2006: 133-53.

- 13. Chinnappa B, Patil KK, Sowmya HS. Economic impact of custom hiring service centres in Maize cultivation: a case study from Karnataka. Indian Journal of Agricultural Economics. 2018 ;73(4):478-500.
- Hiremath G, Joshi AT, Lokesha H. Performance of custom hiring service (CHS) in tractor based farm machineriesan economic analysis (doctoral dissertation, University Of Agricultural Sciences, Raichur); 2014.
- 15. Kulkarni SD. Mechanization of Agriculture. Indian Scenario, Central Institute of Agricultural Engineering (CIAE), Bhopal, India; 2009.
- Ranade DH, Chourasia MC, Shrivastava NK, Patidar D. Improved Tools and Scope for their Custom Hiring in Malwa Region-A Case Study. Agricultural Engineering Today. 2006;30(1&2): 28-31.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/115188