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Divergence of cis-regulatory elements drives species-specific traits', but how this
manifestsin the evolution of the neocortex at the molecular and cellular level remains
unclear. Here we investigated the gene regulatory programs in the primary motor
cortex of human, macaque, marmoset and mouse using single-cell multiomics
assays, generating gene expression, chromatin accessibility, DNA methylome and
chromosomal conformation profiles from a total of over 200,000 cells. From these
data, we show evidence that divergence of transcription factor expression corresponds
to species-specific epigenome landscapes. We find that conserved and divergent gene
regulatory features are reflected in the evolution of the three-dimensional genome.
Transposable elements contribute to nearly 80% of the human-specific candidate
cis-regulatory elementsin cortical cells. Through machine learning, we develop
sequence-based predictors of candidate cis-regulatory elements in different species
and demonstrate that the genomic regulatory syntax is highly preserved from
rodents to primates. Finally, we show that epigenetic conservation combined

with sequence similarity helps to uncover functional cis-regulatory elements and
enhances our ability to interpret genetic variants contributing to neurological

disease and traits.

Throughout evolution, sequence divergence in the non-coding regions
ofthegenomeis believed to be amajor driving force behind the emer-
gence of species-specific traits'. Today, the large number of available
genome sequences of eukaryotic species enables us to use compara-
tive genomics to map functionally important sequences under evo-
lutionary constraints, including cis-regulatory elements (CREs)*>.
However, sequence conservation alone cannot provide definitive
evidence of the functional role of aregulatory element as not all func-
tional elements have conserved sequences, and some non-functional
elements may be sequence conserved. Moreover, sequence conser-
vation cannot reveal information about the cell- and tissue-specific
activity of an element. We currently possess little knowledge of how
gene regulatory programs evolve. In other words, how sequence
divergence leads to altered gene expression patterns across differ-
entspecies remains largely unexplored. Filling this knowledge gap is

critical tounderstanding the consequences of genetic divergence on
species-specific phenotypes.

Previous bulk sequencing assays have revealed general principles
concerning the conservation of CREs and tissue-specific gene expres-
sion patterns. For example, enhancers exhibit rapid turnover during
mammalian evolution*’, and conserved enhancers have lower
cell type specificity®’. By contrast, sequence divergent enhancers
have a substantial role in establishing tissue and species-specific
traits®’. Such divergent enhancers are often mediated by de novo
insertion of transposable elements (TEs) carrying clusters of
transcription-factor-binding sites®'°", Notably, the conservation
of CREs"*" and expression™ generally decreases as development
progresses. Despite the established divergence of cis-regulatory
sequences throughout evolution, DNA motifs recognized by
sequence-specific DNA binding proteins are highly conserved®,
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suggesting the existence of a conserved flexible genomic regulatory
syntax. To characterize such gene regulatory syntax, it is important
to perform anintegrated analysis of chromatin landscape, structure
and gene expression in a cell-type-specific manner across multiple
species.

The primary motor cortex (M1) is a region of the neocortex that is
preserved across eutherianmammals that is critical for volitional fine
motor movements'®. Recently, several reports, part of the BRAIN Initia-
tive Cell Census Network, have characterized the vast complexity of
cellular taxonomy, gene expression and epigenome of brain cells in
multiple mammalian species” . A single-cell comparative analysis
of the mouse, marmoset and human transcriptomes of M1 cells
revealed a high degree of species-specific marker gene expression’s.
However, our understanding of how genome evolution influences
species-specific gene expression remains limited. We therefore exam-
ined whether sequence divergence at non-coding CREs is associated
with driving species-specific biology through the evolution of gene
regulatory programs.

Here we sought to characterize the evolution of gene regulatory pro-
grams by performing comparative epigenomic analyses. Specifically,
we performed single-cell multiomics assays on brain tissue from mouse,
marmoset, macaque and human, profiling four different molecular
modalities: gene expression, chromatin accessibility, DNA methyla-
tion and chromatin conformation. In doing so, we mapped candidate
CREs (cCREs), and profiled their dynamic epigenetic states across
21 brain cell types in the M1 from four species. To use these data for
our comparative study, we developed a framework for assessing the
evolution of gene regulatory features and demonstrated co-evolution
of the epigenome and three-dimensional (3D) genome with the tran-
scriptome. Although not all cCREs contribute to gene expression in
the same manner, epigenetically conserved cCREs are more likely to
activate gene expression and contain disease-risk-associated variants.
Species-biased cCREs that are predicted to regulate gene expression
are more likely to contribute to divergent gene expression. Genome
browser tracks are publicly available for viewing at the WashU Com-
parative Epigenome Browser data hub (https://epigenome.wustl.edu/
BrainComparativeEpigenomey/).

Single-cell assays of the M1in four mammals

To gain a detailed picture of how gene regulatory programs evolve,
we performed acomparative epigenomics study in the M1 of human,
macaque, marmoset and mouse (Fig.1a). Two single-nucleus genomics
assays were used—10x multiome (10x Genomics) and snm3C-seq?*
(also known as single-cell methyl-Hi-C**?*)—to simultaneously pro-
file the transcriptome with chromatin accessibility in the same cell
and DNA methylation with 3D genome in the same cell, respectively.
We profiled 40,937 human nuclei, 34,773 macaque nuclei, 34,310
marmoset nuclei and 47,404 mouse nuclei using 10x multiome,
and 8,198 human nuclei, 5,737 macaque nuclei, 4,999 marmoset
nuclei and 5,349 mouse nuclei using snm3C-seq (Fig. 1b). We next
performed unsupervised clustering on the basis of gene expression
or DNA methylation, and integrated datasets across species using
orthologous genes as features (Fig.1b and Extended DataFig.1a,b). Cell
types were identified at the subclass resolution using a combination
of marker-gene activity and reference mapping to the available M1
datasets from mouse, marmoset and human'8, Although we identi-
fied each cell type in all four species, cell type fractions were highly
species specific (Fig. 1c). Notably, an expansion of the oligodendrocyte
proportion and areduction in the excitatory neuron proportion was
observed from mouse to human, consistent with previous reports?*
(Fig. 1c). Specific subclasses of excitatory and inhibitory neurons
were enriched in human, such as cortical layer 6 (L6) intratelence-
phalic CAR3 (L6 IT CAR3), Chandelier and VIP neurons, while L5/6
near projecting, L5 IT, L5 ET and PVALB neurons were consistently

lower in human donors (Fig. 1d). Our data reveal evolutionary diver-
gence of cell type composition in mammalian M1, demonstrating
the necessity for cell-type-resolved data for cross-species compara-
tive analysis. For downstream analyses, we combined sequencing
reads for each cell type, resulting in species- and cell-type-resolved
epigenome and transcriptome landscapes for each molecular
modality (Fig. 1e).

Comparing gene expression across species

We evaluated the divergence and conservation of transcription between
species for each gene identified as one-to-one orthologues in all four
species. We defined gene expression conservation as the ability to
predict the expression level of a gene in a specific cell type, given the
expression level of the same cell type in adifferent species. Toaccount
forthe dependence relationships between cell types, we used general-
ized least squares (GLS) regression? for each pair of species (Methods)
(Fig. 1f, Extended Data Fig. 2a and Supplementary Table 1). We obser-
ved considerable correspondence between gene expression con-
servation and the average PhastCons score across a gene’s exons
(Extended DataFig.2b). Next, to assess the divergence of gene expres-
sion, we performed differential expression analysis using edgeR for
each cell type between each species pair* (Fig. 1g and Supplemen-
tary Table 2). We identified species-biased genes that are differentially
upregulated in asingle cell type compared with in each other species
(Methods).

0f13,822 gene orthologues expressed in at least one of the four spe-
cies, we identified 2,689 (-20%) mammal-conserved genes with simi-
lar patterns of expression across cell types in all four species (Fig. 1h
and Extended Data Fig. 2c). We also identified 2,638 (-20%) genes
with conserved patterns of expression only among primates (Sup-
plementary Table 3). Across species, we identified 3,511 (-25%) genes
with species-biased expression patterns, finding that the number of
biased genesisconcordantwith evolutionary diversity (human, 1,376;
macaque, 451; marmoset, 638; mouse, 1,367) (Fig. 1i, Extended Data
Fig.2c and Supplementary Table 3).

We noted that the majority of mammal conserved genes displayed
broad gene expression patterns across cell types and we therefore
further divided theminto categories of ubiquitous and non-ubiquitous
on the basis of cell type specificity of expression (Methods and
Extended Data Fig. 2d). To identify biological processes displaying
high levels of conservation and divergence, we next performed Gene
Ontology (GO) enrichment analysis. Ubiquitous mammal-conserved
genes were most enriched for GO categories related to the regulation
of protein expression, such as ubiquitin-dependent catabolic pro-
cesses and mRNA processing (Extended Data Fig. 2e). Non-ubiquitous
mammal-conserved genes showed enrichment for transcriptional
regulation through RNA polymerase Iland DNA-templated regulation,
nervous system development and cation channel regulation (Fig. 1j).
These genes also showed highly correlated patterns of expression
across cell types (Extended Data Fig. 2c). Among primate-conserved
genes, the number of ubiquitously expressed genes dropped consider-
ably (Extended DataFig. 2d), and these genes were enriched for trans-
lational processes (Extended Data Fig. 2f). Among non-ubiquitous
genes, we saw strong enrichment for neuronal functions such as syn-
aptic transmission and axonogenesis (Extended Data Fig. 2g). These
differences in enrichment suggest different targets of functional
conservation at different evolutionary timescales, with the stronger
selection placed on genes that regulate many functions over genes
encoding cell-type-specific functions, consistent with previous
research?.

Among non-ubiquitously expressed human-biased genes, we found
the highestenrichment for the GO term extracellular matrix organiza-
tion (Fig. 1k), which is known to be crucial for diverse aspects of neu-
ral development®, GO enrichment analysis for human-biased genes
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Fig.1|Cross-species evolutionary comparison of single-cell multiomics
analysis ofthe ML1. a, lllustration of the human M1 (left), created using BioRender.
Dendrogramrepresenting the evolutionary distance of each speciesin our study
(right) from TimeTree®. b, Uniform manifold approximation and projection
(UMAP)”° embeddings of 10x multiome RNA (top) and snm3C-seq DNA
methylation (bottom) clustering, annotated by cell type (left) or species
(right). Thenumbers in parentheses indicate the cell counts from each species.
NP, near projecting neurons. ChC, Chandelier neurons. ¢, The fraction of each
celltype fromunbiased nucleus-sorted samples. Dataare mean + s.d. across
donors (primates, n=3) or pools (mouse, n = 8).d, The relative abundance
between species for each cell type amongits particular class (excitatory,
inhibitory or non-neuron). Dataare mean +s.d. e, The WashU Comparative
Epigenome Browser displaying an alignment between human (hg38; top, green)
and macaque (rheMac10; bottom, blue) genomes with L2/3 1T excitatory data

fromindividual cell types further revealed diverse functional terms
(Extended Data Fig. 2h-k). For example, the human-biased genes
from L5/6 near-projecting neurons were enriched in triglyceride
catabolic process, while human-biased genes from oligodendrocyte
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tracks for Hi-C, RNA, assay for transposase-accessible chromatin (ATAC) and
mCG.f, The conservation index, showing GLS regression for N/IPBL (GLS T
statistic =15.460) and GAREMI (GLS T statistic = 3.673) between human and
macaque coloured by cell type. The error bars indicate the 95% confidence
interval calculated using GLS regression. g, The divergence index, showing
differential expressionbetween humanand macaqueinL5IT neurons, PVALB
neurons, ASCsand MGCs. NIPBL and GAREM1 are showninred. FC, fold change.
h, Therelationship between the average conservationindex across species and
theaverage divergenceindexacross species. Mammal-conserved genes are
highlighted. i, Therelationship between the average conservationindex across
species and the average divergence index across species. Human-biased genes
are highlighted. j. Top significant GO analysis terms for non-ubiquitous
mammal-conserved genes. P,q;, adjusted P. k, Top significant GO analysis terms
for non-ubiquitous human-biased genesinany cell type.

precursor cells (OPCs) were related to negative regulation of blood
vessel morphogenesis (Extended Data Fig. 2h-j). This analysis high-
lights the diversity of human-specific functions among motor cortex
cell types.
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Fig.2| Comparative analysis of chromatin accessibility across species.

a, Thelevels of conservation for ATAC-seq peaks. b, Human cCREs from
ATAC-seq peaks for eachindicated group for human-specific, level O (sequence
conserved), level 1 (tissue conserved), level 2 (cell type conserved) and level 3
(matched patterns acrossall the cell types) across mammals. ¢, The relationship
betweenthe average conservationindex (xaxis) and the average divergence
index across species (yaxis). The density of allmammal-conserved gene cCREs
ishighlighted. d, Therelationship between the average conservationindex
acrossspecies (xaxis) and the average divergenceindex across species (yaxis) for
eachlevel O (sequence conserved) peak. Human-biased peaks are highlighted.

e, Heat mapsordered by cell type with highest signal for mammal level 3 distal
cCREs (top) and human-biased distal cCREs (bottom). For visualization of cell
type patterns of accessibility, log,[counts per million (CPM) +1] values are row

Comparative analysis of chromatin accessibility across
species

To identify cCREs on the basis of chromatin accessibility data, we
determined the open chromatin regions in each motor cortex cell
type in each species using MACS2? and identified 384,412 human,
336,463 macaque, 281,297 marmoset and 333,814 mouse cCREs that
display accessibility in one or more cell types (Extended Data Fig. 1b,c
and Supplementary Tables 4-7). We used liftOver®° to classify human
cCREs as human-specific, mammalian sequence conserved (from
human to mouse) or primate sequence conserved (from human to
marmoset) (Extended Data Fig. 3a-cand Supplementary table 8). For
our comparative epigenomic analysis, we defined levels of conserva-
tion on the basis of sequence and activity (Fig. 2a and Extended Data

scaled.Non-N, non-neuronal.f, The proportion of promoter-proximal (<1 kb from
aTSS) or promoter distal (>1 kb froma TSS) cCREs for the indicated group (left).
The density plots show the cell specificity scores (Methods) for cCREsineach
group. g, The percentage of human cCREs in TEs for different conservation
groups. h, The average conservation and divergence index for all cCREs
containing a given TF motif fromJASPAR CORE. Motifs are coloured by TF class.
i, The weighted cell type chromatin accessibility divergence across distal
cCREsasafunction of weighted cell type TF divergence foreachcell type.
Distal cCREs and TF genes were weighted by CPM. j, The weighted chromatin
accessibility conservationindistal peaks as afunction of weighted cell type
PhastConsamong distal peaks. Foriandj, Pvalues were calculated using
two-sided Pearson correlation.

Fig.3a-c).Species-specific cCREs containsequences that have notbeen
identified in the other three species. Level O elements are cCREs with
orthologous sequences across all four mammals (mammal level 0) or
allthree primates (primate level 0) (Fig. 2a). Moreover, we performed
epigenetic conservation analysis of the level 0 cCCREs and defined three
levels of epigenetic conservation (epi-conservation) (Fig. 2a): level 1
aretissue-conserved cCREs witha peak called across species regardless
of which cell type; level 2 are cCREs displaying accessibility in at least
one of the same cell types across species; and level 3 are cCREs with
matching patterns of chromatin accessibility across all the cell types, as
measured to be significant (Benjamini-Yekutieli-adjusted® P < 0.05) by
GLS, inall of the species (Methods). Analogous to species-biased genes,
species-biased cCREs are defined as peaks with differential accessibility
that are consistently higher in one species compared withinthe three
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other species in the same cell type as identified through differential
accessibility analysis performed using EdgeR? (Methods).

Of the 384,412 human cCREs, 7,532 cCREs (-2%) represented
sequences found only in human, while 204,921 (-53%) shared ortholo-
gous sequencesinthe three other species (mammallevel 0) (Fig. 2band
Extended DataFig.3d). Anadditional 127,301 human cCREs (-33%) shared
orthologous sequences only among the three primates (primate level 0)
(Extended Data Fig. 3d and Supplementary Table 8). Of the 204,921
mammal level O cCREs, 66,781 (32.5%) were classified as level 1, 49,134
(24.0%) aslevel2and 16,068 (7.8%) as level 3 epi-conservation (Fig. 2b,c
and Extended Data Fig. 3d-g). Considering conservation among just
primates, we identified an additional 127,301 cCREs that are primate
level 0, 60,515 primate level1,29,395 primate level 2and 32,874 primate
level 3 that are not conserved in mice (Extended Data Fig. 3d,e,h and
Supplementary Tables 8 and 9). Finally, 10,743 cCREs showed
human-biased accessibility in one or more cortical cell type compared
with allthree other mammals (Fig. 2d and Extended Data Fig. 3f,g), and
anadditional 12,091 human-biased cCREs compared with only two other
primates (Extended Data Fig. 3h and Supplementary Table 10a-f).

Alarge proportion of epi-conserved cCREs was found to be promoter
proximal (<1 kb fromaTSS), and this number increased along with the
conservation level for both mammal and primate comparisons (Fig. 2f
and Supplementary Table 8). Notably, mammallevel 3 conserved cCREs
have aconsiderably higher fraction of promoter-proximal cCREs com-
pared with the primate level 3 conserved cCREs. This suggests that the
turnover rates are different between the promoter-proximal and distal
cCREs during evolution, whereby distal cCREs have lower evolution-
ary constraint than proximal cCREs. Furthermore, level 3 conserved
cCREs thatare promoter distal have reduced cell type specificity com-
pared withlevel 0 cCREs (P <2 x 107", t-test) (Fig. 2e,f), suggesting that
distal cCREs with broad cell type activity have higher constraint than
cell-type-specific distal cCREs.

TEs have been proposed to be a driver of genomic diversity as they
can contain CREs™, To characterize the extent of TE contribution to
epi-divergence, we calculated the percentage of cCREs within TEs from
different conservation levels (Fig. 2g and Supplementary Table 8).
We found that 75% of human-specific cCREs and 16% of human-biased
cCREsarelocated within TEs. By contrast, less than 1% of mammal level
3 cCREs are located within TEs. Particularly, LINE-1and LINE-2 are the
most common TEs containing cCREs, which are mostactiveinexcitatory
neurons (Extended Data Fig. 4a). However, human-specific cCREs in dif-
ferent celltypes are enriched in different types of TEs. Human-specific
cCREs fromIT excitatory neurons had the highest overlap with LINE-1,
while glial cells (microglia cells (MGCs), OPCs, oligodendrocytes
(ODCs) and astrocytes (ASCs)) had the highest overlap with endog-
enous retrovirus-1 (ERV1) and endogenous retrovirus-K (ERVK) long
terminal repeats (LTRs) (Extended Data Fig. 4a,b). Similar to human,
mouse-specific CCREs were highly enriched in TEs and were depleted
as epi-conservation increased (Extended Data Fig. 4c). Mouse cCREs
were enriched for different types of LTRs and short interspersed nuclear
elements (SINEs) compared with those observed in humans (Extended
DataFig. 4d). Our results provide further evidence that organisms
may co-opt TEs to achieve species-specific and cell-type-specific gene
regulation.

We next performed transcription factor (TF) motif analysis to identify
factors contributing to conserved and divergent human cCREs. We
calculated the mean conservation and divergent indexes for all pro-
moter distal cCREs containing each non-redundant TF motif from the
JASPAR CORE vertebrate database (n = 791 motifs). We found that motifs
belonging to the C2H2 zinc-finger class of TFs were present in distal
cCREs with the highest epi-conservation. This included Kriippel-like
factor family members, ZBTB33 and ZNF610, and insulator-binding
factor CTCF (Fig. 2h). Despite mostly belonging to the same TF class,
the top epi-conserved TF motifs come from diverse families and sub-
families with non-redundant binding sequences. By contrast, distal
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cCREs with bHLH, bZIP and homeodomain-containing TF motifs had
the highest epi-divergence in human distal cCREs. Among them were
thelineage-specific TFs OLIG1, OLIG2, NEUROGI, POU2F1and POU3F1,
which are known to have a role in neural development®~*, Although
the homeodomain TF motifs have low epi-conservation in adult
cortex, their epi-conservation may be high during earlier stages of
development, given theirimportantroles inembryogenesis®. Consist-
ent with this, they possessed high sequence conservation despite low
epi-conservation (Extended Data Fig. 3i).

To assess the degree to which divergent expression of TFs contrib-
utes to divergent epigenomic landscapes, we checked for a correla-
tion between epigenome divergence with weighted TF expression
divergence across cell types (Fig. 2i). From this analysis, we observed
ahighdegree of correlation (Pearsonr=0.855,P=7.75 x 107), suggest-
ing that TF expression divergence may greatly influence the evolution
of gene regulatory landscapes. Moreover, sequence divergence can
resultintheloss or gain of generegulatory elements during evolution.
Totest whether the conservation of TF motifs in cCREs correlates with
epigenome conservation, we checked for a correlation between the
mean PhastConsscore for every TF motifin human cCREs and the mean
epi-conservation index for all human cCREs across cell types (Fig. 2j),
for which we observed a significant correlation (Pearson r=0.63,
P=0.0022). A significant positive correlation was also observed for
individual elements (Extended Data Fig. 3j). Taken together, these
results imply that changes in the expression of TFs and TF-motif
sequences during evolution have a role in shaping species-specific
cCRE use.

Comparison of DNA methylomes across species

We further investigated epigenetic evolution by examining differ-
entially methylated regions (DMRs) across all four species. Previ-
ous studies have indicated that DMRs are enriched for cCREs?¥. For
each species, we called differentially methylated CG regions between
cell types using methylpy®, identifying 1,361,958 human, 1,661,598
macaque, 1,066,980 marmoset and 1,748,945 mouse DMRs (Extended
DataFig.1b,cand Supplementary Tables 11-14). We next identified con-
served DMRs across species by repeating the same analysis described
for chromatin-accessible cCREs (Fig.2a and Extended Data Fig. 3a,b).

Interms of conserved sequences, we identified 54,829 human-specific
DMR sequences (4.0%), 579,026 (42%) sequences were orthologous
in all four mammalian species (mammal level 0) and 519,456 (38%)
sequences were found in all three primates but not in mouse (Fig. 3a,
Extended Data Fig. 5a and Supplementary Table 15). Of the mammal
level 0 DMRs, we found 195,435 (14.3%) as level 1,144,156 (10.6%) as
level 2 and 23,414 (1.72%) as level 3 in which patterns of cell type CG
hypomethylation are highly conserved (Fig. 3a and Extended Data
Fig.5a,b,f). Conservation of CG methylation (mCG) showed strong cor-
relation with conservation of chromatin accessibility (Fig. 3b). Primate
epi-conserved elements were identified from the mammal and primate
level 0 cCREs (Extended DataFig. 5a,b). We found an additional 201,415
DMRs (14.8%) as level 1,199,555 (14.65%) as level 2 and 64,138 (4.7%) as
level 3 that were epi-conserved in primates but not in mice (Extended
DataFig. 5a,b,f and Supplementary Tables 15 and 16).

Compared with chromatin-accessible cCREs, DMRs are much less
promoter proximal (Extended Data Fig. 5g), probably due to ubig-
uitous promoter hypomethylation across cell types. However, they
still displayed an increasing enrichment for transcription start site
(TSS) proximity with higher levels of conservation (Fisher’s exact test,
P<2x107") (Extended DataFig. 5c,g). Much like chromatin-accessible
cCREs, promoter-distal mammal and primate level 3 DMRs showed
lower cell type specificity compared with level 0 DMRs (P< 2 x 107,
t-test) (Extended Data Fig. 5g).

We again evaluated the contribution of TEs to DNA methylome evo-
lution by evaluating the proportion of DMRs in TEs across different
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levels of conservation. DMRs showed the same pattern of decreasing
TE enrichment with increasing conservation as chromatin-accessible
cCREs, with human-specific sequences showing enrichment for TEs
(69%), and mammal level 3 conserved sequences showing deple-
tion (6.5%) (Fig. 3c and Supplementary Table 15). Similar trends were
observed for primate-conserved DMRs (Extended Data Fig. 5d). To
evaluate the contribution of TEs to DMRs across cell types we identi-
fied the proportion of various TE classes to hypomethylated DMRs in
each celltype (Extended DataFig. 5e). While both chromatin-accessible
cCREs and DMRs showed enrichment of LINE-1 elements, the propor-
tion of hypomethylated DMRs overlapping LINE-1 elements was rela-
tively consistent across cell types. By contrast, DMRs in Alu elements
had modest enrichment among excitatory neurons, which was absent
among chromatin-accessible cCREs. Human-specifichypomethylated
DMRsin Alu elements showed a preference for neurons (Extended Data
Fig. 5e). Like chromatin accessibility, human-specific DMRs showed
depletionin certain classes of elements, and anotableincreasein ERVK
elements.

We again performed TF-motif analysis toidentify factors contribut-
ing to conserved DMRs. We calculated the mean conservationindexes
for all promoter distal DMRs containing each non-redundant TF motif
fromthe JASPAR CORE vertebrate database. Comparingthe conserva-
tion of motifs in DMRs to their conservation in chromatin-accessible
cCREs showed amarked identity between the sequence drivers of con-
servation between the two modalities (Fig. 3d). Lastly, we intersected
DMRs with chromatin-accessible cCREs and found that DNA meth-
ylation was relatively high at human-specific cCREs and decreased as
chromatinaccessibility conservationincreased (Extended Data Fig. 5h).

Comparing 3D genomes across species

The genomeis organized into topologically associating domains (TADs)
that influence gene expression by constraining chromatin contacts
between promoters and CREs®. To characterize the conservation
of 3D genome organization, we compared TAD boundary elements
across species (Fig.4aand Supplementary Tables17-20). Most human
boundaries had aconserved sequencein atleast one other species, with
12,641identified as conserved inall four species (mammallevel 0) and a
further12,960 having conserved a sequence among primates (primate
level 0) (Extended Data Fig. 6a). Of the mammal level O (sequenced
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conserved) boundaries, we identified 40% (5,118) found in all four spe-
cies from any cell type (mammal level 1, tissue-level conserved), and
10% (1,290) conserved in any of the same cell types in all four species
(mammallevel 2) (Fig.4b, Extended DataFig. 6a,b and Supplementary
Table 21). In total, 859 human boundaries were sequence specific in
human (Fig.4b and Extended DataFigs. 6a) and 1,653 were called only in
human (humanbiased) (Fig. 4c). Across cell types, we observed differ-
encesbetween theratio of divergent to conserved TAD boundaries. For
example, allneurons contained more mammal level 2boundaries than
human-biased boundaries, with cortical layer IT excitatory neurons
having the highest (Fig. 4c). The reverse was true for non-neurons (with
the exception of OPCs), with MGCs containing the highest proportion
of human-biased boundaries (Fig. 4c). Genes associated with diver-
gentboundaries haveincreased divergent expression (Extended Data
Fig.6¢), which could be a consequence of or contribution to divergent
boundary insulation.

Ithasbeendemonstrated that CTCF bindingis necessary for maintain-
ing and establishing TAD boundary insulation in adosage-dependent
manner*®*, We observed that the number of CTCF motifs and CTCF
chromatinimmunoprecipitation-sequencing peaks from human cor-
tex ENCODE data were higher in mammal level 2 human boundaries
thanin human-biased boundaries (Extended DataFig. 6d,e). However,
there was no reductionin CTCF motifs in macaque, marmoset or mouse
in orthologous regions of human-biased boundaries to explain the
human-biased insulation. It has also been demonstrated that CTCF
bindingisinterrupted at methylated binding sites*2. We found that the
regions near CTCF binding sites in human-biased boundaries have a
higher proportion of methylated CGsin non-human species compared
with in human; however, the average proportion at the precise CTCF
motifswaslowinall species (Extended DataFig. 6f), suggesting alterna-
tive mechanisms for divergent TAD boundary formation.

Todetermine whether TEs are differentially enriched between diver-
gentand conserved boundary elements, we calculated the percentage
of boundaries containing TEs for each conservation group. Notably, 67%
of human-specific boundary elements contain TEs; by contrast, 32% of
mammal level 2 boundaries contain TEs (Fig. 4d). Particularly, LINE-1
and Alu elements had the highest enrichment in human boundaries,
and human-specificboundaries were most enriched for LINE-1, Aluand
ERV1TEs (Extended Data Fig. 6g). It has previously been reported that
TEs, especially Alu and SINE elements containing CTCF-binding sites,
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Fig.4|Comparative analysis of TAD boundaries and chromatinloops across
species.a, Thelevels of conservation for TAD boundaries. b, The conservation
levels of human TAD boundaries, including human-specific (sequence divergent),
level O (sequence conserved), level1(tissue conserved) and level 2 (cell type
conserved), across mammals ¢, The number of human-biased (conserved
sequence, called only in human) and mammallevel 2 (cell type conservedinall
four species) TAD boundariesineach celltype.d, The percentage of boundaries
overlapping TEs for different conservation groups. e, The conservationindex
of gene expression, ATAC-seq peaks and DMRs associated with boundaries
oftheindicated conservationlevel. ‘Primate conserved’ excludes mammal
conserved. Pvalues were calculated using two-sided unpaired Wilcoxon rank-sum
tests comparing with mammallevel O, except for primate level 1and 2, which

may be amechanism for the evolution of chromatin organization in
different species®. More recently, several studies showed that the LTR
family of TEs also induces the formation of TAD boundaries in specific
cell types and developmental stages***.

We also checked for a connection between conservation of the 3D
genome with conservation of gene expression and the epigenome.
Importantly, we found that genes near conserved boundaries have more
conserved expression compared with genes near divergentboundaries
(Fig. 4e). Chromatin-accessible cCREs and DMRs within conserved
boundaries similarly have more conserved epigenetic states compared
with those within divergentboundaries (Fig. 4e). Our results suggesta
co-evolution of the 3D genome along with epigenome and gene expres-
sion, whereby evolutionary constraints are placed onto the 3D genome
to preserve gene expression.

We next classified chromatinloops by conservationlevels (Fig. 4fand
Supplementary Tables 22-25). Compared with boundary elements, a
lower fraction of loops was identified as conserved across mammals
and primates (Fig. 4g, Extended Data Fig. 7a,b and Supplementary
Table 26). We observed high correspondence of overlap between
chromatin-accessible cCREs and loops between cell types (Extended
DataFig. 7c). Conserved loops were more likely to contain promot-
ers with conserved expression, and chromatin-accessible cCREs and
DMRs with conserved activity (Fig. 4h), suggesting that conserved 3D
chromatininteractions maintain the conservation of gene regulatory
functions.

We further characterized loops in each conservation group by cal-
culating the percentage overlap with TSSs and boundaries. Conserved
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were compared with primate level 0; *P< 0.05,**P < 0.001.Sample sizes are
reportedin Supplementary Table 34.f, The levels of conservation of chromatin
loops. g, The conservation level of human chromatin loops, highlighting
human-specific, level O (sequence conserved), level 1 (tissue conserved) and
level 2 (cell type conserved), across mammals. h, The conservation index of
geneexpression, ATAC-seq peaks and DMRs overlapping atleast one anchor
ofloops foreachindicated conservation level. ‘Primate conserved’ excludes
mammal conserved. Pvalues were calculated as described for e. Sample sizes
arereportedin Supplementary Table 34. For thebox plotsineandh, the centre
linerepresents the median, the box limits encompass the 25th to 75th percentiles
and the whiskersrepresent1.5x theinterquartile range.

loops had a higher percentage containing TSSs and a higher percent-
age containing boundaries that correlated with conservation level
(Extended Data Fig. 7d,e). Moreover, the anchor-to-anchor loop dis-
tance decreased with increasing conservation group (Extended Data
Fig. 7f), suggesting that shorter-distance loops are more likely to be
preserved through evolution, potentially due to agreater chance that
both anchors will be retained in the same syntenic region. Our analysis
demonstrates the marked concordance between the conservation
of the 3D genome with gene regulatory programs, suggesting that
selective pressure on genome organization maintains conserved gene
regulation throughout mammalian evolution.

Divergent cCREs and evolution of expression

We next examined how epigenetic divergence at cCCREs correlates with
the evolution of gene expression programs in different species. We first
predicted putative enhancers and their target genes for cCREs using the
activity-by-contact (ABC) model*, using our chromatin accessibility
and chromatin contact datafor eachcell type (Extended Data Fig. 8aand
Supplementary Tables 27-30). We found that human-specific cCREs
were greatly depleted of putative enhancers (Extended Data Fig. 8b).
However, we also noticed that the sequences at human-specific cCREs
had a considerable drop in read mappability due to the presence of
repetitive elements (Extended Data Fig. 9a). As mappability correlated
withread counts (Extended DataFig. 9b,c), reduced read mappability
cannegatively impact ABC scoring. We addressed this by normalizing
chromatin accessibility for mappability* at every cCRE (Extended Data
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Fig.5|Epigenetic conservation at cCREsis correlated with conservationin
expression of their putative target genes. a, The percentage of peaks predicted
tobeenhancers (ABCscore > 0.02) with mappability-normalized chromatin
accessibility. Pvalues were calculated using x> tests. b, The mappability-
normalized H3K27ac log,-transformed CPM within +2 kb of cCRE centres for
thespecified groups. Pvalues were calculated using two-sided unpaired
Wilcoxon rank-sum tests. Sample sizes are reported in Supplementary Table 34.
¢, Density plots for gene expression conservationindex values from each
indicated comparison. Target genes are categorized as either human-biased
distal cCRE targets or mammal level 3 distal cCRE targets. Pvalues were
calculated using two-sided unpaired Wilcoxon rank-sum tests. d, Box plots of
ABC putative target genes for each distal cCRE from theindicated conservation
group. Pvalues were calculated using two-sided unpaired Wilcoxon rank-
sumtests. Samplesizes are reported in Supplementary Table 34. e, The
conservation levels of human TAD boundaries, including human-specific,

Fig.9d,e). Asexpected, mappability-normalized values increased the
number of human-specific distal cCREs acting as putative enhancers
identified by the ABC model, increasing from 16.8% to 26.8% (Fig. 5a
and Extended Data Fig. 8b). However, distal human-specific cCREs
remained significantly depleted of putative enhancers compared with

level O (sequence conserved), level 1 (tissue conserved) and level 2 (cell type
conserved), across mammals. f, The conservation levels of genes and cCREs in
theindicated conservation groups. g, Heat maps for pairs of human-biased
cCREs targeting human-biased genesin the same cell type. The values represent
the smallest -log,,-transformed false-discovery rate (FDR) for any comparison
betweenhumanand another species. Rows are scaled to visualize relative
differences across cell types. h, WashU browser snapshots of FOXP2 (left) and
RYR3 (right) showing chromatin accessibility, H3K27ac and RNA signalsin
human and chromatin accessibility and RNA for macaque, marmoset and mouse
for MGC (left) or ASC (right) and L6 CT. The tracks display concordance of
genome alignment from human (hg38) to theindicated species. For the box
plotsinb, dandf, thecentrelinerepresentsthe median, the box limits
encompass the 25th to 75th percentiles and the whiskers represent 1.5x the
interquartilerange.

all distal cCREs (31.61%, P= 2.4 x10™), while the percentage of distal
human-biased putative enhancers (37.0%) was significantly higher
thanalllevel 0 cCREs (P=1.9 x107®) (Fig. 5a). We observed a correlation
between ABC scores and epi-conservation (Extended Data Fig. 8c,d).
In general, cCREs located in TEs were less often predicted to function
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asenhancers (Extended Data Fig. 8e). Notably, 76.9% of mammal level
3 distal cCREs were identified as putative enhancers (Fig. 5a), again
suggesting that epi-conserved cCREs are more likely to function as
enhancers.

Acetylation of histone H3 atlysine 27 (H3K27ac) isaknown marker for
active enhancers*®, To examine H3K27ac levels of the putative enhanc-
ersidentified using the ABC model, we performed droplet paired-tag*
analysis in human M1 tissue to generate H3K27ac profiles in each cell
type (Extended DataFig.10a). To annotate the cell typesin the droplet
paired-tag data, we integrated RNA profiles with 10x multiome RNA
datafor both human M1 and previously published mouse frontal cortex
droplet paired-tag* data (Extended Data Fig.10a). We observed astrong
agreement between the signals of H3K27ac and chromatin accessibility
across celltypes (Extended Data Fig.10b). Epi-conservation of H3K27ac
correlated with epi-conservation of chromatin accessibility and was
strongest at promoter-distal cCREs (Extended Data Fig.10c,d and Sup-
plementary Table 32). However, this correlation disappeared at the
mammallevel 3 chromatin-accessible cCREs (Extended DataFig.10c,d).
For distal cCREs, H3K27ac was higher at those predicted as putative
enhancers (Extended Data Fig. 10e). The levels of H3K27ac at distal
cCREs for each conservation group had exact correspondence to the
relative number of putative enhancers (Fig. 5a,b), further supporting
the prediction for epi-conserved cCREs to possess enhancer activity.

Expression of mammal level 3 distal cCRE target genes was more
conserved than human-biased distal cCRE target genes (Fig. 5¢), pro-
viding evidence for conservation of the enhancer landscape to pro-
mote conservation of gene expression during evolution. Although
human-biased cCREs were less often predicted as enhancers compared
with epi-conserved cCREs (Fig. 5a), their putative target genes were
enriched for divergent expression (Fig. 5d), giving evidence for their
function as enhancers for human-biased gene expression.

We classified ABC-predicted human enhancer-gene pairs into
conservation levels and identified 25,472 mammal level 1 pairs and
15,142 mammal level 2 pairs (Fig. Se, Extended Data Fig. 8f,g and Sup-
plementary Table 31). In general, mammal level 2 pairs had more con-
served putative enhancers and target genes compared with those in
human-biased pairs (Fig. 5f). Consistent with our gene expression con-
servation analysis, we found that human-biased cCREs target genes
thatare enriched for extracellular matrix organization, mammal level
3 cCREs target genes that are involved in transcriptional regulation
and primate level 3 cCREs target genes that are enriched for nervous
system and neuronal functions (Extended Data Fig. 8h-j).

To characterize human divergent gene regulatory programs, we
identified allhuman-biased cCREs predicted to target ahuman-biased
expressed gene in the same cell type (Supplementary Table 33). Most
of these human divergent enhancer-gene pairs were found in four
glia cell types, MGCs, OPCs, ODCs and ASCs (Fig. 5g). The genes in
MGC divergent enhancer-gene pairs were significantly enriched for
GO terms such as negative regulation of viral entry into the host cell
and amyloid fibril formation (Extended Data Fig. 8k). Consistent with
aprevious report>®, we noticed DSCAM and FOXP2in the MGC human
divergent enhancer-gene pairs—genes that have been implicated in
neurodevelopmental disorders®*? (Fig. 5g,h). Also present was RIN3,
which was previously implicated in Alzheimer’s disease*® (Fig. 5g and
Extended DataFig. 8). Genes involved in synaptic signalling were found
in other glia cell types such as NOS1in OPCs, SYNDIG1 in ODCs and
RYR3in ASCs (Fig. 5g,h). Although FOXP2 was expressed in neurons
across all the species, its expressionin MGCs was restricted to human
and is probably activated by the putative enhancer E1% (Fig. 5h (left)).
This putative enhancer was linked to FOXP2 by ABC and displayed
MGC-specific and human-biased accessibility and H3K27ac (Fig. Sh
(left)). Similarly, ryanodine receptor-3 (RYR3) was expressed in L6
CT (corticothalamic) neurons in all species, but had human-biased
expression in ASCs. RYR3 was targeted by three ASC human-biased
putative enhancers with ASC-specificand human-biased accessibility
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and H3K27ac (Fig. 5h (right)). By integrating comparative analyses
of the epigenome and the transcriptome with 3D genome data, we
identified putative human divergent gene regulatory programs across
human cortical cells.

Predicting cCRE use from DNA sequence

Previous studies have suggested a conserved regulatory grammar
and syntax at CREs in the genomes of mammalian species®, but how
the genome encodes the gene regulatory program remains unclear.
To understand how differences in species chromatin accessibility are
drivenby sequence changes, we trained a neural network model to pre-
dictthe chromatinaccessibility in each cell type from the DNA sequence
alone (Fig. 6a). We adapted the neural network framework basen;ji* to
this task. We first constructed testing and validation sets on chromo-
somes with conserved sequenceidentity fromall four species (Fig. 6b).
This mitigates the risk of data leakage’®>’ caused by an orthologous
region trained on another species appearing in the test set. In such a
case, one might greatly overestimate the model’s understanding and
predictive ability when applied to unseen DNA.

For each species, we evaluated how different training data contribute
to the model accuracy. For each species, we trained a single modality
baseline, abimodal (CG DNA methylation and chromatin accessibility)
and afour-species bimodal model, using the same parameters for each
(Methods). We evaluated the accuracy of the model by comparing the
Spearman correlation of all test set predictionsin each cell type to the
true values. Both non-human primates showed a significant increase
inaccuracy whentrained using both chromatin accessibility and mCG
datasets, and all species demonstrated asignificantincreasein accuracy
when expanding to a multi-species multimodality dataset (one-sided
paired t-test) (Fig. 6¢).

We also evaluated each model’s ability to predict differences among
cell types. For each peak in the test dataset, we correlated the model
predictions to the true accessibility across cell types (Methods). Includ-
ing additional species demonstrated improved the prediction ability
except for mice (Fig. 6d).

Given the superior predictive ability of the four-species model,
we generated tracks for each species in the unseen test dataset. Our
model effectively predicts chromatin accessibility at SLC4A4, success-
fully identifying not only L2/3 IT neuron activity in all cell types, but
ahuman-specific increase in ODC chromatin accessibility (Fig. 6e).
Moreover, at the huntingtin protein locus, the model again identifies
L2/31T neuron activity, along with promoter activity conserved across
cell types (Extended Data Fig. 11h).

To evaluate the ability of the model to predict epigenomesin unseen
species, we trained four bimodal models, one excluding each species
(for example, to evaluate unseen prediction accuracy in mouse, we
trained amodel using human, macaque and marmoset data). We then
evaluated the model using the test dataset of the unseen species. To
demonstrate the model performance under evolutionary dissimilarity,
we performed predictions using the least accurate species-specific
predictor for each model. For each held-out species, accuracy across
regions withinacell type remained high (Extended Data Fig. 11f); how-
ever, when evaluating model accuracy in peak regions across cell types
thereis a considerable drop (Extended Data Fig. 11g), suggesting the
necessity of species-specific information to inform patterns of cell
type specificity.

We further evaluated how variable levels of genomic conservation
impacted model accuracy across human test-set peaks. Notably, the
single-species and the four-species models demonstrated increasing
accuracy patterns in increasingly conserved regions (Extended Data
Fig.11a,b,d). Notably, both models showed high accuracy in predict-
ing human-specific sequence cCREs relative to peaks with sequence
orthology in all other species (Extended Data Fig. 11a,d). By contrast,
sequences with human-biased activity were difficult to predict for
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Fig. 6| Deeplearning models predict cell-type-specific chromatin
accessibility from the DNA sequence alone. a, Schematic of the prediction
task used to predict cCREs from the DNA sequence. CNN, convolutional neural
network. b, Schematic of the dataset design for the model. Chromatin
accessibilityand DNA methylation datasets from human, macaque, mouse and
marmoset are divided by chromosome. Chromosomes with a conserved
sequenceidentity across species areidentified asatesting and validation
dataset.c, The predictionaccuracy of the model chromatin accessibility
prediction withineach celltypein unseentestregions. The panels from left
toright correspond to accuracy inhuman, macaque, marmoset and mouse
datasets. For each species, three predictions were evaluated—a chromatin
accessibility model; chromatin accessibility and DNA methylation; and a

bothmodels (Extended DataFig.11a,c,d). Evaluating poorly predicted
regions, we identified that both models have greater failure rates at
intergenic peaks (Extended Data Fig. 11e).

Epigenome conservation helps to interpret non-coding
risk variants

Genome-wide association studies (GWASs) have identified common
genetic variants linked to various traits and diseases, yet most GWAS
variants reside in non-coding regions of the genome and their influence
ongene expression remains unresolved®®. A growing body of evidence
suggests that the non-coding disease risk variants may contribute to
disease by disrupting CREs and affecting gene expressionin cell types
relevant to disease pathogenesis® .. As human cCREs with elevated
epigenetic conservation levels are more likely tobe predicted as active
enhancers, we hypothesize that evidence of epigenetic conservation
may improve our ability to interpret non-coding disease-risk-associated
variants. To test this, we performed stratified linkage disequilibrium
score regression (LDSC)®. Performing this analysis with all cCREs, we
observed high enrichment for variants implicated in neurological traits
within cCREs identified from various neuronal and glial cell types, as
expected (Fig. 7a). However, when this analysis was performed with
the human epi-divergent cCREs (specific and human-biased cCREs),
the enrichment for GWAS variants associated with neurological traits

ATAC

ATAC + Four species
mCG ATAC + mCG

four-species model combining both modalities. The dots represent cell types.
Statistical analysis was performed using one-sided paired-sample t-tests;
**p<1x107>. n=16celltypes.d, Correlationacross cell typesinregions with
apeak. Correlation was evaluated for each model type for each species as
describedinc.n=39,236,44,311,32,484 and 41,605 test set peaks for human,
macaque, marmoset and mouse, respectively. e, True and predicted chromatin
accessibility near SLC4A4in ASCs, Layer 2/31T neurons, microglia, ODCs and
parvalbumininterneuronsin human, macaque, marmoset and mouse. For the
box plotsincandd, the centreline (c) and white dots (d) represent the median,
the box limits encompass the 25th to 75th percentiles and the whiskers
represent1.5x theinterquartile range.

was almost entirely eliminated (Fig. 7a). By contrast, the enrichment
improved when the analysis was performed with the mammal level 2
epi-conserved cCREs (Fig. 7a,b). For example, variants associated with
multiple sclerosis (MS) are highly enriched for epi-conserved MGC
cCREs, but notsignificantly enriched in any cell type when considering
the full set of cCREs (Fig. 7a,c). Two other examples include anorexia
nervosaand tobacco-use disorder, which show significant enrichments
only in neuronal epi-conserved cCREs (Fig. 7a,c). Moreover, cCREs
containing fine-mapped risk variants for Alzheimer’s disease, bipolar
disorder and schizophrenia have significantly higher epi-conservation
compared with all cCREs (Extended Data Fig. 12a).

Asour list of epi-conserved cCREs specifically linked MGC regulatory
elements to MS, we used our enhancer-gene predictions to deter-
mine whether we could interpret potential gene regulatory effects of
MS-risk-associated variants and their relation to microglial functions.
Using alist of 233 MS-risk-associated variants®®, we identified 38 over-
lapping human cCREs with 32 predicted target genes. The target genes
of enhancers containing MS-risk-associated variants are enriched for
functionsrelated toimmune response pathways (Fig. 7d). Forexample,
MS-risk-associated intronic variant rs60600003 resides ina mammal
level2cCREin ELMO1,agene thatisinvolved in phagocytosis (Fig. 7e).
ELMO1 is expressed in both MGCs and ODCs; however, the cCRE con-
taining therisk variantis accessible exclusively in MGCs with matching
H3K27acsignals (Fig. 7e and Extended Data Fig.12b). This MGC-specific
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Fig.7|Taking advantage of epigenetic conservation tointerpret non-coding
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cCRE s predicted to be an enhancer of ELMOI, indicating that ELMO1
expression is selectively affected in MGCs by this MS-risk-associated
variant. Our analysis provides examples of how comparative epig-
enomics can help with interpreting disease-risk genetic variants for
neurological diseases such as MS.

Discussion

Our comparative analysis of the transcriptome, epigenome and 3D
genome features of 21 cortical cell types from four species provides a
perspective on the evolution of gene regulatory programs in rodents
and primates. By integrating four molecular modalities (gene expres-
sion, chromatin accessibility, DNA methylation and chromatin confor-
mation) across 21 cell typesin four species, we characterized conserved
and divergent generegulatory features focusing on three evolutionary
times scales: mammal conserved (from humanto mouse, around 90 mil-
lion years), primate conserved (from human to marmoset, around
43 million years) and human divergent (human from macaque, about
25 million years ago). Although cCREs show non-neutral sequence
constraint, the majority exhibit an unconserved epigenetic state. Their
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of LDSC enrichments across cells for MS, anorexia nervosa and tobacco-use
disorder.d, Thetopsignificant GO biological process terms for ABC target
genes of enhancers containing a MS-associated risk variant®. e, Example locus
ofamammallevel 2 predicted enhancer of ELMOI overlapping aMS-associated
risk variantin amicroglia-specific chromatin-accessible region.

selective constraint is dependent on the type of CRE. For example,
epigenetic conservation of distal cCREs is generally lower than that of
promoters or promoter-proximal cCREs, and epigenetic conservation
of cCREs with a high cell type specificity is lower than those with broad
cell type activities, consistent with previous findings*~.

By quantifying epi-conservation of all TF motifs, we found potential
factors contributing to the evolution of the mammalian epigenome
(Figs. 2h and 3d). We found evidence of divergence of TF expression
and TF motif sequences in promoting species-specific epigenome
landscapes (Fig. 2i,j). Compared with epi-divergent distal cCREs, we
show that epi-conserved distal cCREs are more often predicted to act
as enhancers of target genes (Fig. 5a), have stronger H3K27ac signals
(Fig. 5b) and are more enriched for genetic variants associated with
neurological disease/traits (Fig. 7a,b). Moreover, our data provide
evidencethat selective pressure on 3D genome organization maintains
conserved gene regulatory programs (Fig. 4e,h). Taken together, this
provides evidence that comparative epigenomics can assist inidentify-
ing functional enhancers.

We provide evidence that TEs may be a major source of species-
specific chromatin-accessible cCREs (Fig. 2g), DMRs (Fig. 3¢) and



TAD boundaries (Fig. 4d). Notably, different types of TEs contribute
to the establishment of different categories of cCREs. For example,
ERVK contributes highly to human-specific chromatin accessibility
(Extended DataFig.4a,b) but much less to human-specific boundaries
(Extended Data Fig. 6g). TE contribution is also cell type dependent.
The human-specific cCREs in TEs from IT excitatory neurons occur
most oftenin LINE-1elements, whereas, in glia, they occur most often
in ERV1and ERVK (Extended Data Fig. 4a,b).

We highlight the power of machine learning approachestolearnthe
gene regulatory grammar from single-cell multiomic datasets across
mammalian species and cell types (Fig. 6 and Extended Data Fig. 11).
The resulting sequence-based predictors demonstrate a highly pre-
dictive ability in unseen species, suggesting a general conservation
of regulatory grammar across mammalian species. These results also
suggest differences in regulatory grammar that establishes patterns
across cell types (Extended Data Fig. 11f,g). While neural networks have
shown promise in predicting epigenetic features and gene expres-
sion levels from the DNA sequence® ¢, there is still a gap between
model predictions and experiment-level observations. Despite recent
advances, research in neural network scaling suggests improve-
ments in model accuracy follow a power law, requiring an exponen-
tial increase in both model and dataset size®’. Expanding epigenome
datasets to diverse species enables us to overcome limited sequence
diversity and dataset size as well as link sequence changes to diverse
phenotypes®.
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Methods

Nucleus preparation from frozen brain tissue for Chromium
single-cell multiome ATAC and gene expression analysis

Ml tissue was obtained from three human donors (male, aged 42, 29
and 58years), three macaque donors (male, aged 6 (Macaca mulatta),
6 (M. mulatta) and 14 (Macaca fascicularis) years), three marmoset
(Callithrixjacchus) donors (aged 5 (male), 4 (male) and 6 (female) years)
and mouse primary motor cortex (MOp) from eight P56 C57BL/6) male
mice (Mus musculus). Mouse MOp was dissected into four subregions
(2C,3C, 4B, 5D) as described previously®. Each subregion was pooled
from four mice for each replicate, and a total of two replicates was
performed for each subregion. C57BI/6) mice, purchased fromJackson
Laboratories, were kept for up to 10 daysin the Salk animal barrier facil-
ityunder al2 h-12 hdark-lightcycle, under a controlled temperature
(between 20-22 °C) and food ad libitum. All samples were effectively
controls, therefore randomization was not used and all samples were
included inthe same experimental group. Samples were labelled with
IDs with no identifying donor information within species, however
researches were not blind to the species for each sample. Sample size
was not predetermined.

Braintissue was pulverized usingamortar and pestleondryiceand pre-
chilled withliquid nitrogen. Pulverized brain tissue was resuspendedin
1mlof chilled NIM-DP-L buffer (0.25 M sucrose, 25 mMKCI, 5 mM MgCl,,
10 mM Tris-HCI pH 7.5,1mM DTT, 1x protease inhibitor (Pierce),1U pl™
recombinant RNase inhibitor (Promega, PAN2515) and 0.1% Triton X-100).
Tissue was Dounce homogenized with a loose pestle (5-10 strokes)
followed by a tight pestle (15-25 strokes) or until the solution was uni-
form. Nucleiwerefiltered usinga30 pm CellTrics filter (Sysmex, 04-0042-
2316)intoa LoBind tube (Eppendorf,22431021) and pelleted (at 1,000 rcf,
for 10 min at 4 °C; Eppendorf, 5920R). The pellet was resuspended in
1 mlI NIM-DP buffer (0.25 M sucrose, 25 mM KCI, 5 mM MgCl,, 10 mM
Tris-HCI pH 7.5,1mM DTT, 1x protease inhibitor, 1U pl™ recombinant
RNase inhibitor) and pelleted (1000 rcf, 10 min at 4 °C). Pelleted nuclei
wereresuspendedin400 pl2 uM 7-AAD (Invitrogen, A1310) in sort buffer
(1mMEDTA,1U pl™ recombinant RNase inhibitor, 1x protease inhibitor,
1% fatty acid-free BSAin PBS). A total of 120,000 nuclei was sorted (Sony,
SH800S) into a LoBind tube containing collection buffer (5 U pl ™ recom-
binant RNase inhibitor, 1x protease inhibitor, 5% fatty acid-free BSA in
PBS). Then, 5x permeabilization buffer (50 mM Tris-HCI pH 7.4, 50 mM
NaCl, 15 mM MgCl,, 0.05% Tween-20, 0.05% IGEPAL, 0.005% Digitonin, 5%
fattyacid-free BSAin PBS,5 mMDTT,1U pl™ recombinant RNase inhibi-
tor, 5x protease inhibitor) was added for afinal concentration of 1x. Nuclei
wereincubated onice for1min, thencentrifuged (500 rcf,5 minat4 °C).
The supernatant was discarded and 650 pl of wash buffer (10 mM Tris-HCI
pH 7.4,10 mMNaCl,3 mMMgCl,, 0.1%.Tween-20, 1% fatty acid-free BSAin
PBS,1mMDTT,1U pl” recombinant RNaseinhibitor, 1x protease inhibi-
tor) was added without disturbing the pellet followed by centrifuging
(500 rcf,5 minat4 °C). The supernatant was removed, and the pellet was
resuspended in 7 pl of 1x nucleus buffer (nucleus buffer (10x Genomics),
1mMDTT,1U pl™ recombinant RNase inhibitor). Nuclei (1 ul) were diluted
in1x nucleus buffer, stained with Trypan Blue (Invitrogen, T10282) and
counted. Intotal,16,000-20,000 nuclei were used for the tagmentation
reactionand controller loading and libraries were generated according to
the manufacturer’srecommended protocol (https:/www.10xgenomics.
com/support/single-cell-multiome-atac-plus-gene-expression). 10x
multiome ATAC-seq and RNA-sequencing (RNA-seq) libraries were
paired-end sequenced on the NextSeq 500 and NovaSeq 6000 systems
to adepth of around 50,000 reads per cell for each modality.

Genome assemblies and annotations

Homo sapiens (human) assembly: hg38, GRCh38 annotation: hg38
Gencode v33; M. musculus (mouse) assembly: mm10, GRCm38 anno-
tation: mm10 Gencode vM22; M. mulatta (rhesus monkey) assembly:
Mmul_10 (rheMacl10), annotation: Ensembl release 104 (and Refseq

GCF_003339765.1 for 10x multiome (see below)); Callithrixjacchus
(white-tufted-ear marmoset) assembly: cj1700_1.1 (calJac4), annota-
tion: GCA_009663435.2.

Tomaximize the number of orthologous protein-coding genes quan-
tifiedin macaque 10x multiome RNA data, we supplemented any miss-
ing protein-coding genes in GCF_003339765.1 gtf with annotations
present in Ensembl release 104.

10x multiome sequence data processing and clustering
Rawsequencing data were processed using cellranger-arc (10x Genom-
ics), generating single-nucleus RNA-seq (snRNA-seq) UMI count matri-
ces for intronic and exonic reads mapping in the sense direction of a
gene. We performed unsupervised clustering with RNA UMI counts
using the Seurat (v.4)” standard analysis pipeline. First, cells were
filtered for low-quality nuclei by requiring 21,000 ATAC fragments
and =500 genes detected per nuclei. Counts were normalized using
SCTransform identifying 3,000 variable genes used for principal
component analysis (PCA). Putative multiplets were predicted using
DoubletFinder’”?and 10% of cells were removed from each sample that
had the highest doublet score. Batch correction across donors was per-
formed using Harmony” on SCTransformed PCs. A k-nearest neighbour
graphwasbuilt using the first 20 PCs and clusters were identified using
Louvain clustering. To visualize clusters, we performed the UMAP non-
linear dimension reduction technique’. We annotated subclass-level
cell types for mouse, marmoset and human cells by reference mapping
to published M1 snRNA-seq datasets'”™® using Seurat. We integrated
datasets from all four species using reciprocal PCA, which projects
each species datasets into the PCA space of other species and identifies
anchors by the same mutual neighbourhood requirement. For integra-
tion anchors, we considered only genes that are orthologous across
allfour species. Reads from 21 annotated cell types were combined to
generate pseudo-bulk datasets used for downstream analyses.

ATAC-seq peak calling and filtering

We used MACS2 for ATAC-seq peak calling on pseudo bulk ATAC-seq
fragments using the MACS2 command callpeak with the parameters
--shift =75 --ext 150 --bdg -q 0.1 -B --SPMR --call-summits -f BAMPE. We
extended the peak summit by 249 bp upstream and 250 bp downstream
toachieve 500 bp width for every peak. As the number of peaks calledin
eachcelltypeisrelated to the sequence depth, whichis highly variable
due to differences in cell type abundance, we converted MACS2 peak
scores (—log;,[g]) to score per million”™. Peaks with a score per million
of >2 were retained for each cell type. We further filtered human and
mouse peaks by removing those with ENCODE blacklist regions (https://
mitra.stanford.edu/kundaje/akundaje/release/blacklists/) of hg38
and mm10. For comparative analysis of human ATAC-seq peaks, we
first removed peaks that were mapping to aregion in any of the four
species that had low read mappability. To identify regions with low
mappability in our ATAC-seq data, we counted all reads in 1 kb bins
across each genome. We took 1 kb bins with O reads and, for the remain-
ing bins, we took the 0.02 quantile for the number of reads mapped
and extended by1kbinbothdirections giving us 3 kb low-mappability
bins. Finally, low-mappability bins within 5 kb were stitched together,
providing our final list of low ATAC-seq mappability regions. Peaks or
orthologous elements falling within any of these regions in any species
were excluded from the comparative analysis.

Nucleusisolation and FANS

Forallsnm3C-seqsamples, insitu 3C treatment was performed during
the nucleus preparation, enabling the capture of the chromatin
conformation modality as described previously?>. These steps were
performed using the Arima-3C BETA Kit (Arima Genomics). The
nuclei were isolated and sorted into 384-well plates using previous
described methods?. In brief, single nuclei were stained with Alex-
aFluor488-conjugated anti-NeuN antibodies (MAB377X, Millipore) and
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Hoechst 33342 (62249, Thermo Fisher Scientific) and then processed
for fluorescence-activated nucleus sorting (FANS) using the BD Influx
sorter with single-cell (1 drop single) mode.

Library preparation and Illumina sequencing

The snm3C-seq samples were prepared according to a previously
described library preparation protocol®?2. This protocol has been
automated using the Beckman Biomek i7 instrument to facilitate
large-scale applications. The snm3C-seq libraries were sequenced on
the [llumina NovaSeq 6000 instrument, using one S4 flow cell per 16
384-well plates and using 150 bp paired-end mode.

Data preprocessing

Mapping and quality control of shm3C-seq data. The snm3C-seq
mapping was conducted using the YAP pipeline (cemba-data, v.1.6.8)
aspreviously described®. Specifically, the main mapping stepsinclude
(1) demultiplexing FASTQ files into single cells (cutadapt, v.2.10);
(2) read-level quality control; (3) mapping (one-pass mapping for snmcC,
two-pass mapping for snm3C) (bismarkv.0.20, bowtie2v.2.3); (4) BAM
file processing and quality control (samtools v.1.9, picard v.3.0.0);
(5) methylome profile generation (ALLCools v.1.0.8); and (6) chroma-
tin contact calling. All reads from human, macaque, marmoset and
mouse were mapped to the hg38, Mmul_10, calJac4 and mm10 genomes,
respectively.

Pre-analysis quality control for DNA methylome cells was (1) over-
all mCCC level < 0.05; (2) overall mCH level < 0.2; (3) overall mCG
level < 0.5; (4) total final reads of >500,000 and <10,000,000; and
(5) Bismarck mappingrate > 0.5. Note that the mCCC level serves asan
estimation of the upper bound of the cell-level bisulfite non-conversion
rate. Moreover, we calculated lambda DNA spike-in methylation lev-
els to estimate the non-conversion rate for each sample. To prevent
any meaningful cell or cluster loss, we chose loose cut-offs for the
pre-analysis filtering. The potential doublets and low-quality cells were
accessed inthe clustering-based quality control described below. For
the 3C modality in snm3C-seq cells, we also required cis-long-range
contacts (two anchors > 2,500 bp apart) > 50,000.

Methylome clustering analysis

After mapping, single-cell DNA methylome profiles of the snm3C-seq
datasets are stored in the ‘all cytosine’ (ALLC) format, which is a
tab-separated table compressed and indexed by bgzip/tabix. The
generate-dataset command in the ALLCools package can help to gen-
erate amethylome cell-by-feature tensor dataset (MCDS), storedin Zarr
format. We used non-overlapping chromosome 100 kb (chrom100k)
bins of the corresponding reference genome to perform clustering
analysis, gene body regions +2 kb for clustering annotation and integra-
tion with the companion10x multiome dataset. Details of the integra-
tion analysis are described in the next section.

Methylome clustering

We next performed clustering on the chrom100k matrices, as described

previously?. In summary, the clustering process includes the follow-

ing main steps:

(1) Basic feature filtering based on coverage and ENCODE blacklist.

(2) Highly variable feature (HVF) selection.

(3) Generation of posterior chrom100k mCH and mCG fraction
matrices, as used in the previous study and initially introduced
previously”.

(4) Clustering with HVF and calculating cluster enriched features (CEF)
of the HVF clusters. This framework is adapted from cytograph2’.
We first perform clustering based on variable features and then
use these clusters to select CEFs with stronger marker gene sig-
natures of potential clusters. The concept of CEF was introduced
previously”. The calculation and permutation-based statistical
tests for calling CEFs are implemented in ALLCools.clustering.

cluster_enriched_features, in which we select for hypo-methylated
genes (corresponding to highly-expressed genes) in methylome
clustering.

(5) Calculation of PCsin the selected cell-by-CEF matrices and genera-
tion of the --SNE and UMAP”° embedding for visualization. --SNE was
performed using the openTSNE® package according to previously
described procedures”.

Cluster-level DNA methylome analysis

After the clustering analysis, we merged the single-cell ALLC files into
pseudo-bulk level using the ALLCools merge-allc command. We next
performed DMR calling as previously described® using methylpy. In
brief, we first calculated CpG differentially methylated sites using a
permutation-based root mean square test®. The base calls of each
pair of CpG sites were added before analysis. We then merged the dif-
ferentially methylated sites into DMR if they are (1) within 500 bp and
(2) the minimum methylation difference was greater than or equal to
0.3 across samples. We applied the DMR calling framework across the
cell clustersin each species.

Cell- and cluster-level 3D genome analysis

Generating the chromatin contact matrix and imputation. After
snm3C-seq mapping, we used the cis long-range contacts (contact
anchorsdistance > 2,500 bp) and trans contacts to generate single-cell
raw chromatin contact matrices at three genome resolutions: chromo-
some 100 kb resolution for the chromatin compartment analysis; 25 kb
binresolution for the chromatin domainboundary analysis; and 10 kb
resolution for the chromatin loop or dot analysis. The raw cell-level
contactmatrices are stored in HDF5-based scool format. We then used
the scHiCluster package (v.1.3.2) to perform contact matriximputation.
In brief, the scHiCluster imputes the sparse single-cell matrix in two
steps: the first step is Gaussian convolution (pad =1); the second step
is to apply arandom walk with restart algorithm on the convoluted
matrix. The imputation is performed on each cis matrix (intrachro-
mosomal matrix) of each cell. For 100 kb matrices, the whole chro-
mosome is imputed; for 25 kb matrices, we imputed contacts within
10.05 Mb; for 10 kb matrices, we imputed contacts within 5.05 Mb.
The imputed matrices for each cell were stored in cool format. For
most of the following analyses, cell matrices were aggregated into cell
groupsidentified in the previous section. These pseudo-bulk matrices
are concatenated into a tensor called CoolDS, and stored in the Zarr
format.

Domain boundary analysis

We used the imputed cell-level contact matrices at 10 kb resolution
toidentify the domain boundaries within each cell using the TopDom
algorithm®., We first filter out the boundaries that overlap with ENCODE
blacklist v2.

We used cooltools (v.0.5.1) to call cluster-level boundaries and
domains with 10 kb resolution matrices. A sliding window of 500 kb
was used to compute the insulation score of each bin, and the bins
with boundary strength > 0.1 were selected as domain boundaries.

Loop analysis
We called the cluster-level loops with 10 kb resolution matrices using
the call_loop function in the scHiCluster package.

Droplet paired-tag

Nuclei were extracted from frozen human M1 tissue using Dounce
homogenization according to the method described in the ‘Nucleus
preparation from frozen brain tissue for Chromium single-cell mul-
tiome ATAC and gene expression analysis’ section above. Single
nuclei were subsequently stained with AlexaFluor488-conjugated
anti-NeuN (MAB377X, 603 Millipore) antibodies and Hoechst 33342
(62249, Thermo Fisher Scientific). The stained nuclei were sorted to



split NeuN* and NeuN™ using the BD Influx sorter. Finally, the NeuN*
and NeuN™ nuclei were combined at a 2:8 ratio.

The experimental protocol for droplet paired-tag was adopted from
aprevious study®. Inbrief, pA-Tn5 and H3K27ac (Abcam, ab4729) pri-
mary antibodies were pre-conjugated at room temperature during
nucleus extractionat1pgper 500,000 nuclei, and subsequently incu-
bated with 0.50 million permeabilized nuclei at 4 °C overnight. After
the overnight incubation, the nuclei were washed twice to remove
excess antibodies and PA-Tn5, and then tagmented by PA-Tn5 at 37 °C
for1honaThermoMixer (Eppendorf).

The tagmentationreaction was terminated by adding stop buffer. We
aliquoted 40,000 nucleiinto two tubes for loading onto the Chromium
Next GEM ChipJ system and carried out droplet generation using the
Chromium X microfluidic system (10x Genomics). Reverse transcrip-
tion and cell barcoding were performed inside the 10x GEM system.
Both DNA and RNA library construction were performed according
to the Chromium Next GEM Single Cell Multiome ATAC + Gene Expres-
sionkit manual except that we used 13 amplification cycles for histone
modality libraries.

Identification of orthologous sequence elements across spe-
cies (level 0). We identified orthologous sequences for each human
cis-regulatory region in all other species using liftOver®’. For each
human ATAC peak and DMR, we first performed liftOver to each other
species’ genome with arequirement of 50% retained sequence identity
(minMatch=0.5). Forloop anchors and boundaries, lifted-over required
only 30% of retained sequence identity (minMatch = 0.3) to account
for the difficulty of lifting over alonger (10 kb) region. Any region that
could not be lifted to any of the other profiled species was identified
as human specific. For ATAC peaks (500 bp), we retained only ortholo-
gous elements that are 1kb or less to the lifted-over genome. We next
performed liftOver from theidentified orthologous sequence back to
the human sequence. We retained all sequences that mapped back to
the same peakidentity as ‘level O conserved’ between human and the
respective species. We then further identified sequences that are level
0 across allmammals and level 0 across primates.

Identification of human level 1 (tissue conserved) and level 2 (cell
type conserved) CREs. For each human feature (DMR, ATAC peak, loop,
boundary and ABC enhancer pair), we determined whether the feature
was also present across species. For eachnon-humanspecies, we used
each feature’s orthologous coordinates in hg38 and performed bed-
tools®intersect®, counting each human element with an overlapping
elementas having level1conservation between human and that species
independent of cell type. We further identified elements that are level 1
across allmammals (mammal level 1), as well as elements that are level
1across primates and not in mouse (primate level 1). Elements were
identified as level 2 conserved if theintersection, as described above,
existedin any of the same cell types across species. This procedure was
modified for DMRs, with DMRs being split into hypomethylated and
hypermethylated DMRs and performing the described procedure for
each; the results of both were aggregated. For loops, this procedure
was modified by requiring intersection at both anchor bins. For ABC
enhancer pairs, we required that the orthologous cCRE targeted the
orthologous gene across species.

Identification of level 3 conserved peaks and DMRs. For each spe-
cies pair, we identified ATAC peaks and DMRs with conserved patterns
of activity across cell types. We first normalized peak accessibility in
each cluster to log,[CPM] quantified for level 0 mammal peaks or the
combined set of mammal and primate level O peaks (when comparing
primates). For DMRs, we transformed quantifications to 1 - the mCG
levelin eachcell type. We then considered the effect size (7-statistic) of a
GLS regression® between the species as the effect size of conservation.
This procedure controls for the effects of dependence between cell

types. Akey step in GLS is to estimate the covariance matrix. For each
species pair, we computed a covariance matrix between cell types by
firsttaking the covariance between cell types for each species across all
peaks or DMRs. We then formed a covariance matrix for the regression
by taking the mean of both species’ covariance. Given the GLS T-statistic
for eachspecies pair, we next identified conserved genes between each
specieswithafalse discovery rate of 0.05 adjusted using the Benjamini-
Yekulti method® to account for dependency among cCREs.

We furtheridentified two categories for peaks and DMRs: those con-
served among mammals that were identified as conserved between
each pair of species, and those conserved among primates that were
identified as conserved among all three primates but not among all
species.

Cell type specificity of genes, ATAC peaks and DMRs. For each gene,
ATAC peak and DMR, we computed its cell type specificity using an
information-theoretic criteria®. We identified ubiquitously expressed
genes as those with a specificity of less than 0.01. For DMRs, we trans-
formed quantifications to1 - the methylation level in each cell type.

For distal ATAC peaks and distal DMRs we compared eachincreasing
pair of conservation levels for changes in mean conservation using a
two-sided ¢-test for independent samples.

Annotation of TEs and TSS proximity. For each human element
in each category (DMR, peak, loop, boundary), we annotated its TE
association and identified its TSS proximity using annotatePeaks.pl
with hg38 from HOMER®*. This analysis was repeated for mouse ATAC
peaks using mm10 to identify their TE association.

We compared eachincreasing conservation level of ATAC peaks and
DMRs to determine enrichment for TSS proximity. Between each pair
of levels, we performed a two-sided Fisher’s exact test.

GO enrichment analysis. We performed GO enrichment analysis
using the Enrichr® module in GSEApy®. For each gene set, we used
GO biological process 2021. We performed such analyses using the
most appropriate background set, for example, the background set
for level 3 genes was all genes expressed in each species using the
default minimal expression criteria as edgeR (v.3.36.0)%. For ABC target
genes, the background set was allhuman genes called as havingan ABC
enhancer. For evaluating human-biased genes in specific cell types, the
background set was all genes tested for differential expression in the
cell type. When evaluating human-biased gene links, the background
set was all tested genes in that cell type that had an ABC link.

Identification of species-biased gene activity. Starting with alist of
one-to-one orthologous genes across all four species, we performed
differential expression analysis on pseudo bulk count profiles for each
cell type using edgeR (v.3.36.0)*. We performed analysis using previ-
ous recommendations®. Each pseudo bulk profile was normalized for
sequencing depth using trimmed mean of M-value normalization®$,
after whichtagwise dispersion was estimated using locfit. We fit asingle
model to predict the expression of a cell type based on species iden-
tity using glmFit, after which differential expression was evaluated on
between-species contrasts for each species pair. We used stringent
criteriatoidentify whether ageneis differentially expressed between
aspecies pair. To account for multiple comparisons we nominated an
FDR 0f 0.001, which we further lowered to 8.33 x 10 ¢ by dividing by the
number of pairs of species (6), multiplied by the number of cell types
(20). In addition to this FDR threshold, we required our differentially
expressed genes to meet a minimum fold change of 2, as well as be
expressedinatleast 15% of the cellsinthe upregulated species cell type.

After applying these criteria, we further identified biased genes for
each species. For each cell type in each species, we identified biased
genes as a gene that was significantly upregulated in that cell type
compared within each other species.
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Identification of peaks with species-biased chromatin accessibility.
Starting from the sets of human peaks with orthologues in all four
species, we used edgeR to identify differential chromatin accessibility
across species. We used the same parameters as used for identifying
species-biased gene activity to estimate fold changes and P values for
each orthologous peak region. When identifying significantly differ-
entially accessible peaks, we made some modifications. We used the
same FDR cut-off (8.33 x 10°%); however, to account for the sparseness
of peaks, we nolonger placed a threshold on the number of cells where a
peak was detected. To compensate, we require aminimum fold change
between species of at least 4.

After applyingthese significance criteria, we further identified biased
peaks for each cell type in each species. For each cell type in each spe-
cies, weidentified abiased peak as a peak that was significantly upregu-
lated in that cell type compared with in each other species.

Identification of genes with conserved patterns of activity. For each
species pair, we identified genes with conserved patterns of activity
across cell types. We first normalized gene expression in each cluster
tolog,[CPM] quantified in orthologous genes. We next considered the
effect size (T-statistic) of a GLS regression® between the species as the
effect size of conservation. This procedure controls for the effects of
dependencebetweengenes. Akey stepin GLSis to estimate the covari-
ance matrix. For each species pair, we computed a covariance matrix
between cell types by first taking the covariance between cell types for
each species across all genes. We then formed a covariance matrix for
the regression by taking the mean of both species’ covariance. Given
the GLS T-statistic for each species pair, we thenidentified conserved
genes between each species with an FDR of 0.05, adjusted using the
Benjamini-Yekulti method® to account for dependence among genes.

We further identified two categories for genes: those conserved
among mammals that were identified as conserved between each pair
of species, and those conserved among primates that were identified
as conserved among all three primates but not among all species.

TF motif scanning

For each TF motif from the JASPAR® CORE vertebrate database, we
used FIMO (v.5.5.3)°° toscan for all occurrences in the hg38 sequences
of every cCRE and DMR. For all elements containing a given motif, we
calculated the average conservation index, divergence index or Phast-
Cons score at the TF motifs. To classify the TF class for each motif, we
used the annotations in the TFClass database®.

Annotation of TF families. We annotated TF families to visualize the
conservation and divergence of TF motifs. Annotated TF families were
identified from TF class®’. The HTML text document summarizing TF
families was downloaded (http://www.edgar-wingender.de/huTF_clas-
sification.html) and parsed to identify the family of each motif analysed.

Comparison of conservation index to sequence conservation
We compared our measured conservationindex (defined as the mean
GLS T-statistic across all species pairs) to sequence conservation as
defined by PhastCons®* for genes and chromatin-accessible cCREs.

For each cCRE, we computed two sequence conservation values: one
as the average PhastCons of nucleotides in the cCRE, and a second as
the average PhastCons of the previously identified motif sequences
inthe cCRE.

For each gene, we measured sequence conservation as the average
PhastCons across all the gene exons.

For both genes and cCREs, we compared the conservation index to
PhastCons using two-sided Spearman correlation.

Analysis of paired-tag RNA and H3K27ac
Droplet paired-tag fastq files were demultiplexed using cellranger-arc
(v.2.0.0) using the command ‘cellranger-arc mkfastq’; however, DNA

and RNA data were preprocessed using cellranger-atac (v.2.0.0) and
cellranger (v.6.1.2), respectively, and barcodes were manually paired
using the related barcodes connecting each modality®.

Integration with human or mouse motor cortex 10x multiome RNA.
ForhumanM1, nuclei with RNA from less than 500 detected genes were
removed. Counts were log normalized, identifying 3,000 variable genes
used for PCA. Putative multiplets were predicted using DoubletFinder™
and 10% of cells were removed from each reaction (n = 2) that had the
highest doublet score. Cells were clustered using Seurat, and clusters
were annotated by reference mapping to the 10x multiome RNA gener-
ated in this study.

Published mouse frontal cortex data* was re-annotated by reference
mapping to mouse MOp 10x multiome RNA data from this study using
Seurat. Cells thatwere not found in the MOp were removed (D12MSN,
OBGA, OBGL CLAGL and STRGA).

DNA fragments were combined from each annotated cluster to gen-
erate H3K27ac pseudobulk files. H3K27ac counts were quantified for
each cCRE in human and mouse for the region +2 kb from the centre.
These counts were used for downstream analyses.

Conservation and divergence of human cell type molecular
identity

We first scored activity for each peak in each cell type. To do so, we
first subset to distal peaks, as promoter elements demonstrate much
greater sequence and epi conservation, and promoter peak proportion
may be representative of reduced relative sequencing depth rather
thanincreased promoter activity. We next further subset to only peaks
with orthologous sequences across mammals. Next, we normalized
peak activity in each cell type as the CPM among all peaks called in
that cell type.

Given the peak activity of each cell type, we calculated that cell’s
weighted peak conservation as the conservation index of each peak
inthat cell type, multiplied by each peak’s activity score.

We then calculated the sequence conservation of each cell type.
First, we first identified the sequence conservation of each peak.
Using the previously identified motif coordinates from FIMO v.5.5.3,
we considered the sequence conservation score of a peak to be the
mean PhastCons® of the motifs in each peak. For each cell type, we
consider the weighted sequence conservation score to be the sequence
conservation of each peak multiplied by the cell type activity of
each peak.

To compute normalized TF divergence, we first calculated normal-
ized TF expression for each cell type. We subsetted gene expressionin
each celltypetoalist of transcript factors, and then normalized expres-
sion to CPM (among TFs). Given this relative TF activity for each cell
type, we next calculated the TF divergence of a cell type by multiplying
the relative expression of each TF by the average divergence index of
the same TF between human and all other species.

We computed the weighted epigenome divergence of each cell type
by multiplying the activity score of each of each cell type’s peaks, and
the absolute log,-transformed fold change of that cell type’s peaks
compared with all other species.

Analysis of region mappability
UMAP mappability scores for K=100 were downloaded for hg38
from a previous study*’. Mappability scores were converted from
wig to bigwig using UCSC wigToBigWig and averaged over peak
regions using bigWigAvgOverBed?. To assess the impact of map-
pability on read counts, total counts for each peak and each
4 kb region centred on each peak were counted using bedtools
multicov®.

Tonormalize for mappability, the counts of each region were divided
by theregions mappability score. The regions were then normalized to
mappability-normalized CPM for downstream analysis.


http://www.edgar-wingender.de/huTF_classification.html
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Identifying putative enhancer-gene pairs with the ABC model
We used the ABC model*® to identify putative enhancer gene links in
each species. In brief, the ABC model uses normalized contact fre-
quencies from Hi-C data, along with a measure of enhancer activity,
to predict putative enhancer-gene pairs. For each cell type, we ran the
ABC model using the default parameters, providing normalized Hi-C
matrixes at 10 kb resolution, ATAC chromatin accessibility BAM files
and a list of ATAC peaks identified in that same cell type. Predictions
with an ABC score greater or equal to 0.02 were considered positive
and used for downstream analysis.

For each cCRE conservation level, we quantified the proportion of
cCREsinvolvedinan ABC-predicted enhancer-gene pair.

We performed ABC again using mappability-normalized counts to
account for mappability differences impacting the ABC links identi-
fied among different enhancer classes. To do so, we computed the
average mappability in each peak for each cell type, and replaced the
values ‘activity_base’ columns in enhancer_list.txt with mappability-
normalized CPM values.

We again quantified the proportion of cCREs involved in ABC-
predicted enhancer-gene pairs and, while there was an increase
in predicted ABC enhancers among the groups most affected by
mappability, most ABC pair categories were unaffected.

Because UMAP mappability scores are unavailable for marmoset
and macaque genomes, we proceeded with the ABC links identified
using un-normalized values.

Identification of conserved enhancer-gene pairs

Human ABC pairs were classified as mammal level O (sequence con-
served) if the pair contained a cCRE that was orthologous across all
four species and targeted a one-to-one orthologous gene in all four
species. For those not mammal level O, they were tested for primate
level O, which includes the same criteria but across only three pri-
mates. Pairs that were not mammal or primate level O were classified
as human-specific. For allmammallevel O pairs, we classified those as
epi-conserved if the orthologous element in all four species was pre-
dicted totarget the same gene. If the same ABC enhancer-gene pair was
called across species, regardless of which cell type, it was categorized
asmammallevel1conserved. Ifthe same ABC enhancer-gene pair was
identified in at least one of the same cell types across species, it was
categorized as level 2. We performed the same analysis across primates
for primate level O pairs to classify as primate level 1and primate level
2.Forlevel O pairs that were notidentified asmammal or primate level
1, they were categorized as human biased.

Identification of human divergent enhancer-gene pairs

We identified CREs that are likely to regulate human-biased patterns
of gene expression. For each cell type, ahuman divergent enhancer-
gene pair was defined as a human-biased enhancer with an ABC link
to agene that was human-biased in the same cell type. In this case, we
considered ABC links identified inany human cell type, as missed links
may be reflective of lower chromatin contact coverage in a cell type
rather than true cell type differences.

Cross-species sequence-based model of epigenome activity

We trained a deep learning model to predict open chromatin, using a
Basenji*>*® neural network architecture. We used the same layer con-
struction as in a previous study®®, with minor modifications. Namely,
the standard convolutional tower was replaced using residual convo-
lutional blocks, which have been shown to improve learning speed
and accuracy®***. For multi-species modelling, we added an output

prediction head for each species.

Dataset construction. We selected test and validation datasets by
identifying chromosomes with high degrees of sequence similarity

across species to minimize dataleakage®®. Chromosomes were selected
by visualizing region correspondence in the NIH National Library of
Medicine Comparative Genome Viewer. We removed low-coverage
cell types from training and evaluation, namely endothelial cells,
Chandelier interneurons, L5 extra-telencephalic neurons and vascular
leptomeningeal cells.

Training. For each species we trained three models, one model that pre-
dictschromatinaccessibility alone, one that predicts both chromatin
accessibility and DNA methylation, and one modelincluding all other
species with the species held out for evaluation trained on both DNA
methylation and ATAC data.

Models were trained on a single NVIDIA A6000 GPU with 48 GB
of VRAM. Training datasets were augmented using reverse comple-
ments as well as a 3 bp sequence shift. Each model was trained for
atleast 10 epochs, with training continuing for as long as validation
loss had improved within the past 8 epochs. Training parameters
were as follows: batch size = 4, loss = poisson, ADAM optimizer,
learning rate = 0.01, momentum = 0.99, clip_norm = 2. We saved the
model with the lowest validation loss across training and used it for
evaluation. In the case of multi-species models, we saved the lowest
validation loss model for each species, and used that model for later
predictions.

Model evaluation. The evaluate within-cell-type predictive accuracy,
for each model, we evaluated the predictive ability to rank activities
within cell types as the Spearman correlation between the predicted
accessibility withina cell type, to the true accessibility of that cell type
for all peaks.

To evaluate the improvement of different datasets on model accu-
racy, we performed a one-sided paired sample t-test between the chro-
matin accessibility alone and the bimodal model, as well as between
the bimodal modal and the multi-species bimodal model.

Cross-cell-type evaluation. To evaluate the model’s ability to pre-
dict patterns of chromatin accessibility across cell types, we subset
toregionsin the testing dataset overlapping all peaks called in each
species genome. For each peak in the testing dataset, we calculated
the correlation of the predicted cell type chromatin accessibility with
the true chromatin accessibility at the same locus. We also measured the
normalized error for each peak. The normalized error was computed
asthe L1normbetweenthe true and predicted accessibility divided by
the mean true accessibility at that locus.

Evaluation of model generalization to unseen species. For each spe-
cies, we evaluated our ability to predict its accessibility when excluded
fromtraining. After training a three-species model excluding each spe-
cies, we predicted accessibility for that species in the testing dataset.
We first evaluated the accuracy of these predictions by calculating the
within-cell type correlation of predictions for each species-specific
prediction made by the three-species model. We then report the accu-
racy of the predictions using the poorest predictor of the three training
species. We further evaluated the predictive accuracy of the held-out
model for predicting changes in chromatin accessibility across cell
types asdescribed previously.

GWAS variantenrichment

We obtained GWAS summary statistics for quantitative traits related
to neuropsychiatric and neurological traits and disorders as described
previously”. We prepared summary statistics to the standard format
for linkage disequilibrium score regression. We used a subset of
chromatin-accessible peak cCREs from the indicated conservation
group for each cell type as abinary annotation and, as the background
control set, we used all cCREs from the indicated cell type. For each
trait, we used cell-type-specific linkage disequilibrium score regression


https://ncbi.nlm.nih.gov/genome/cgv/?utm_source=ncbi_insights&amp;utm_medium=referral&amp;utm_campaign=cgvbeta-20220705
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(https://github.com/bulik/Idsc) to estimate the enrichment coefficient
of each annotation jointly with the background control®%.

External datasets
PhastCons® conserved elements were downloaded from the UCSC
genome browser (http://hgdownload.cse.ucsc.edu/goldenpath/mm10/
phastCons60way/). Alist of annotated TF genes was downloaded from
(https://ars.els-cdn.com/content/image/1-s2.0-S0092867418301065-
mmc2.xIsx)%.

Mouse frontal cortex H3K27ac droplet paired-tag data were down-
loaded from the Gene Expression Omnibus (GEO: GSE224560).

Statistics

No statistical methods were used to predetermine sample sizes. There
was no randomization of the samples, and investigators were not
blinded to the specimens being investigated. Low-quality nuclei and
potential barcode collisions were excluded from downstream analysis
asoutlined above.

Ethical compliance

Permission was obtained from the decedent next of kin. Postmor-
tem tissue collection was performed in accordance with the provi-
sions of the United States Uniform Anatomical Gift Act of 2006
described in the California Health and Safety Code section 7150
(effective 1/1/2008) and other applicable state and federal laws and
regulations. The Western Institutional Review Board reviewed tissue
collection processes and determined that they did not constitute
human subjects research requiring institutional review board (IRB)
review. Mouse experiments were approved by the SALK Institute
Animal Care and Use Committee under protocol number 18-00006.
Marmoset experiments were approved by and performed in accord-
ance with the Massachusetts Institute of Technology IACUC protocol
number 05170520. Macaque experiment protocols were approved
by the University of Washington Institutional Animal care and Use
Committee.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Dataproduced inthis study are available at the NCBIGEO under acces-
sion number GSE229169 (10x multiome), GSE240297 (sn-m3C-seq) and
GSE246760 (droplet paired-tag). Data have been uploaded for viewing
on the WashU Comparative Epigenome Browser data hub (https://
epigenome.wustl.edu/BrainComparativeEpigenome/).

Code availability

Codeto performanalysesinthisstudyisaccessible at GitHub (https://
github.com/ejarmand/comparative_epigenomic_motor_cortex).
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plots showing percentage of mouse cCREsin TEs for different conservation
groups. d. Dot plots showing the percentage of all (left) or mouse-specific
(right) cCREs in different subclasses of TEs for each cell type. Species silhouettes
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Extended DataFig.11|Species specificity of open chromatin deep learning.
a.Correlationacross cell types for peaks by conservation levels in human test
dataset for single and multi-species models. Violin plots represent the density
of data points. Box plots encompass 25th to 75th percentiles; white dots
represent medians; whiskers represent1.5times the interquartile interval.
N=39,236,777,21,737,6,605,4,896,1,493.b. Scatter compares the model’s
ability to predict chromatin accessibility across cell types (spearmanr) and
conservationindexinthetestset.c.Scatter plot compares the model’s ability
to predict chromatin accessibility across cell types (spearmanr) and divergence
indexinthetestset.d. Box plots show relationship between modelaccuracy
(meanLlnormbetween predictionsand true data) and conservation levelin
thetest dataset. Box plots encompass 25th to 75th percentiles; central lines
represent medians; whiskers represent1.5times the interquartile interval.
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Nasina.e.Barplotcomparing poorly predicted peaksin the top 10 peak
annotations from Homer to each peak annotationinthe entire test dataset.
Shown for human only model (top), and multispecies model (bottom).
N=39,236 peaks.f. Accuracy of athree-species model across cell types with
each speciesasanoutgroup.Spearman correlation of model predictions and
measured chromatin accessibility for each celltype, each represented asadot.
Plottedintervalsarethe same asina.N =16 foreach.g. Correlation of test set
peaks predictions to measured chromatin accessibility across cell types for
each species. Violin plots represent the density of data points. Plotted intervals
arethesameasind.N=39,236 (human), 44,311 (macaque), 32,484 (marmoset),
and 41,605 (mouse) test set peaks. h. True and predicted chromatin accessibility
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Extended DataFig.12|Conserved cis-regulatory landscape of disease risk.
a.Aviolin plotshowing conservationindex of cCREs containing fine-mapped
disease-risk variantsin Alzheimer’s disease, bipolar disorder, and schizophrenia.
Width of violin plots represent the density of data points. Box plots encompass
25thto 75th percentiles; lines inside the boxes represent medians; whiskers

represent1.5timestheinterquartileinterval. N=384,412 (All cCREs), 86
(Alzheimer’s disease), 49 (Bipolar disorder), 251 (Schizophrenia). Two-sided,
unpaired Wilcoxon rank sum test for P-values vs “All cCREs”. b. Genome browser
snapshot showing H3K27aclandscapes of amammallevel 2 predicted enhancer
of ELMOI overlapping amultiple sclerosis risk variant across cell types.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

/a | Confirmed

>

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

< A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XX O [0 OX [ X[

X0

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection.

Data analysis cellranger-arc v2.0.0, cellranger-atac v2.0.0, cellranger v6.1.2, MACS2, YAP v1.6.8, cutadapt, v2.10, bismark v0.20, bowtie2 v2.3, allcools
v1.0.8, methylpy, scHiCluster, cooltools v0.5.1, liftOver, HOMER, GSEApy, edgeR v3.36.0, FIMO v5.5.3, wigToBigWig, bigWigAvgOverBed,
bedtools multicov, Seurat v4, DoubletFinder v2.0.3, Harmony v0.1.0, ABC: run.neighborhoods.py & predict.py , Basenji v0.6

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data produced in this study are available in the NCBI Gene Expression Omnibus (GEQ) under accession number GSE229169 for 10x multiome, GSE240297 for sn-
m3C-seq and GSE246760 for Droplet Paired-Tag. Data is uploaded for viewing on the WashU Comparative Epigenome Browser data hub: https://




epigenome.wustl.edu/BrainComparativeEpigenome/. Reference genomes used are hg38, mm10, Mmul_10, ¢j1700_1.1.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Human subjects were male.

Reporting on race, ethnicity, or | Please specify the socially constructed or socially relevant categorization variable(s) used in your manuscript and explain why
other socially relevant they were used. Please note that such variables should not be used as proxies for other socially constructed/relevant variables

groupings

(for example, race or ethnicity should not be used as a proxy for socioeconomic status).

Provide clear definitions of the relevant terms used, how they were provided (by the participants/respondents, the
researchers, or third parties), and the method(s) used to classify people into the different categories (e.g. self-report, census or
administrative data, social media data, etc.)

Please provide details about how you controlled for confounding variables in your analyses.

Population characteristics Donor ID, Sex, Age, PMI, hemisphere, Cause of Death

Recruitment

Ethics oversight

H19.30.001, Male, 42, 8h, right, suicide
H19.30.002, Male, 29, 7.5h, right, pulmonary embolism
H19.30.004, Male, 58, 12h, right, witnessed cardiac arrest

Postmortem donors with no known neuropsychiatric or neurological conditions between ages 18 and 68 were considered for
inclusion.

Permission was obtained from decedent next-of-kin. Postmortem tissue collection was performed in accordance with the
provisions of the United States Uniform Anatomical Gift Act of 2006 described in the California Health and Safety Code
section 7150 (effective 1/1/2008) and other applicable state and federal laws and regulations. The Western Institutional
Review Board reviewed tissue collection processes and determined that they did not constitute human subjects research
requiring institutional review board (IRB) review.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences

|:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

Blinding

Sample size was not predetermined, and were limited to available samples. Number of subjects were n = 3 for human, n = 3 for macaque, n =
3 for marmoset, and n = 8 mice.

Low quality nuclei were removed from datasets. After predicted doublets were removed we used quality metrics to further remove low
quality cells. For 10x multiome nuclei were required to have 21000 ATAC fragments and 2500 genes detected. For sn-m3c-seq nuclei were
required to have overall mCCC level < 0.05, overall mCH level < 0.2, overall mCG level < 0.5, total final reads > 500,000, and < 10,000,000,
Bismarck mapping rate > 0.5. For Droplet Paired-Tag nuclei were required to have >200 genes detected.

Sample quality metrics, data quality metrics, and cell type proportions were assessed for each individual sample and displayed high
reproducibility, n = 3 for primates, n = 4 for mouse. To obtain adequate sample sizes for downstream analysis, data across samples were
subsequently combined for each cell type within each species individually.

All samples were effectively controls, therefore randomization was not used and all samples were included in the same experimental group.

Researchers used samples that were labeled with IDs and no identifying donor information within species, however researches were not blind
to the species for each sample to exercise appropriate safety protocols.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Plants

Antibodies

Involved in the study

Eukaryotic cell lines

n/a | Involved in the study

|Z |:| ChIP-seq
|Z |:| Flow cytometry

Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms

Dual use research of concern

Antibodies used

Validation

anti-H3K27ac (Abcam, ab4729), anti-NeuN antibody (MAB377X, Millipore)

ab4729 validated by manufacturer for ICC/IF, WB, IHC-P, ChIP, PepArr. Validated for droplet paired-tag signal-to-noise through
transcription start site enrichment analysis. MAB377X is validated by manufacturer for IHC and reactivity in human, mouse, and rat.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals
Reporting on sex
Field-collected samples

Ethics oversight

3 macaque donors (6 y.o. male Macaca mulatta, 6 y.o. male Macaca mulatta, and 14 y.o. male Macaca fascicularis), 3 marmoset
(Callithrix jacchus) donors (5 y.o. male, 4 y.0. male, and 6 y.o. female), and MOp from 8 P56 C57BL/6J male mice (Mus musculus).
C57Bl/6J animals, purchased from Jackson Laboratories, were kept for up to 10 days in the Salk animal barrier facility on a 12-hour
dark/light cycle, under controlled temperature (between 20-22 degrees Celsius) and food ad-libitum.

No wild animals were used in this study

3 male macaque, 2 male and 1 female marmoset, 8 male mice

No field collected animals were used in this study

Mouse experiments were approved by the SALK Institute Animal Care and Use Committee under protocol number 18-00006.
Marmoset experiments were approved by and in accordance with the Massachusetts Institute of Technology IACUC protocol number

05170520. Macaque experiment protocols were approved by the University of Washington Institutional Animal care and Use
Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks

Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied. . . . .
Describe-any-atthentication-procedures foreachseed stock-tised-or-novel-genotype generated.—Describe-any-experiments-tused-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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