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In physics, two systems that radically differ at short scales can exhibit strikingly
similar macroscopic behaviour: they are part of the same long-distance universality
class'. Here we apply this viewpoint to geometry and initiate a program of classifying
homogeneous metrics on group manifolds®by their long-distance properties. We
show that many metrics on low-dimensional Lie groups have markedly different short-

distance properties but nearly identical distance functions at long distances, and
provide evidence that this phenomenon is even more robust in high dimensions.

An application of these ideas of particular interest to physics and computer science
is complexity geometry®*’—the study of quantum computational complexity using
Riemannian geometry. We argue for the existence of a large universality class of
definitions of quantum complexity, each linearly related to the other,amuch finer-
grained equivalence than typically considered. We conjecture that a new effective
metricemerges at larger complexities that describes a broad class of complexity
geometries, insensitive to various choices of microscopic penalty factors. We discuss
the implications for recent conjectures in quantum gravity.

Universality is an idea that permeates physics and computer science.
In various guises, this principle says that there are broad equivalence
classes of phenomenaat long distances, at long times or at high com-
plexity that may be insensitive to the details of how processes are
defined at short distances, short times or low complexity. This means
thatlarge, slow and highly complex experimentalists can make predic-
tions that are robust against having to know the exact details of how
everything works at the fundamental level.

In computer science, universality is integrated into the foundations
of the field via the Church-Turing thesis. According to this thesis, and
its associated theorems, a broad class of ways to define a computer all
have the same computational power—that is, any function that can be
computed infinite time by one machine inthe class canbe computedin
finite time by any other member of the class. They all define the same set
of computable functions. Universality is also foundational to complexity
theory. Todefine the classes of functions that canbe computed in polyno-
mial time on a classical computer (P) or on a quantum computer (BQP),
we donotneed tobe too careful about exactly whichfundamental opera-
tions are permitted for our computer because abroad class of definitions
are all equivalent. If there exist compilers such that two programming
languages can each emulate the other with only polynomial overhead,
thenthe set of functions they can computein polynomial timeis the same.

Universality also has a key role in physics. A large number of physi-
caltheories that differin their predictions at the highest energies and
shortest distance scales all give rise to approximately the same predic-
tions at low energies and long distances. For example, in statistical
physics, the Landau-Ginzburg theory of second-order phase transi-
tions® says that the critical exponents generically depend only on the
symmetries and areindependent of any other details of the molecular
dynamics. Similarly, in quantum field theory, almost all perturbations

that can be made to the Hamiltonian at short distances (in the ‘ultra-
violet’ (UV)) turnouttobeirrelevant—thatis, they have an ever smaller
effect as we probe the system on longer and longer length scales
(inthe ‘infrared’ (IR)). The renormalized couplings associated with
theseirrelevant perturbations are said to decrease with length scale.

In this paper, we explore a kind of universality in long-distance
geometry. We study the distance function on several curved spaces
and argue that the distance between two well-separated points can
be insensitive to most changes in the metric at short separations. We
illustrate this with various examples and provide evidence thatitis a
generic feature of high-dimensional Riemannian geometries.

We then connect this phenomenonin differential geometry back to
complexity theory. The bridge is complexity geometry*” (Methods),
which defines the complexity of performing operations onaquantum
computer as a distance function on a high-dimensional group manifold.
Through this definition, the conjectured universality of geometries
becomes a universality of definitions of quantum complexity. Unlike
the universality of computability, which allows any computational
overhead aslongasitisfinite, or the universality of BQP, whichdemands
only polynomial equivalence between runtimes, our conjectured uni-
versality allows at most linear overhead. We argue that this much more
fine-grained universality is nevertheless robust. Finally, we describe
how our results support previous conjectures about the connection
between computational complexity and the properties of holographic
black holes in quantum gravity.

Motivating example

Let us motivate our program with an example. Consider ahomoge-
neous three-dimensional space, of finite volume and a diameter of
one metre. Define a ‘small’ deformation of this metric as one that
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Fig.1| Complexity of parallel parking a unicycle as afunction of the distance
ztothe curb.a, WhenZ=1, wedriftdirectly into the parking spot, and the
complexityissimplyz.b, Forlarge Z, there are three regimes: first, the
complexity islinear with alarge coefficient (orange); second, after the cut
locusthereisasquarerootregime (blue); and third, atlarge z, linear growth
resumes with coefficient1(red).

preserves homogeneity and does not change the distance between
any pair of points by more than one picometre.

Surprising fact: a small deformation can make the volume infinite.
The surprise here is that in one sense, the homogeneous metric has
been changed alot (the volume becomes infinite), and in another sense,
the metric has hardly been changed at all (the distance between any
two points has a tiny additive variation). We will come to understand
this phenomenon as an example of long-distance universality. Our
small deformation will change the short-distance geometry, and we will
see that while the volume is sensitive to the short-distance geometry,
the distance function at large separations is not. The short-distance
geometry and the long-distance geometry decouple.

Low-dimensional Riemannian cases

Berger sphere

Our first example of long-distance universality is the Berger sphere®.
The Berger sphere manifests the surprising fact observedin the previ-
oussection andis the simplest non-trivial complexity geometry* ’—the
complexity geometry of asingle qubit'®". It describes the difficulty of
synthesizing elements of the group SU(2) when 6, and 6, rotations are
cheap but g, rotations are expensive'. The metric in Euler angles
U= eiozzeiayyeiox,\' is

ds?=cos?2y dx?+dy? + Z(dz+sin 2ydx)>. (1

For Z=1, thisgives the standard round metriconathree-sphere—which
is both homogeneous and isotropic—otherwise known as the
bi-invariant inner-product (‘Killing’) metric on SU(2). For Z#1, this
gives a squashed three-sphere, whichis still homogeneous but no
longer isotropic (right invariant but no longer left invariant).

To exemplify the surprising fact, take the Berger sphere with =10,
and make the small deformation Z > «, This sends the volume to infinity,
f det[g] =2m%/T > =, but makes only a tiny additive change to dis-
tances. It may seem surprising that taking Z - « only changes the dis-
tancesalittle, as it makes moving directly in the o, direction infinitely
expensive: the cost of directly synthesizing €' is/Z z. But we can also
synthesize €' indirectly by circling in the 6, and o, directions and
using the group commutator:

1+ivzo)(1+iJZo)(1-iJZ0 )1~ iJZo) ~1+i%2[0,,0,]=1+2iz0,. (2)
The cost C of this indirect technique—the geometric length of this
path—is independent of Z; because the amount of g, generated is

proportional to the area, the cost scales such as ./z at small z, and in
general is*"

Croo(€l77) = gmc(e“’zz) =./z0n-2). 3)

Let us see how much distances change under our small deformation.
As there are two ways to manufacture o,, the line €%is cutinto two. In
theinner region, direct synthesis is the cheapest so C(z) = \/Z z; in this
region, the geometry depends strongly onthe value of Z, and increas-
ing 7 can make a large multiplicative change to distances. Butwhen Z
is verybig, thisregionis very small, extending only as far out as the cut
locus atC,,,~Z Y2 For larger z, the optimal path is a mixture of direct
and indirect synthesis, and the farther we go the less direct synthesis
isinvolved. Thismeans that the farther we gointo the outer region, the
less the distance function depends on Z: if you already were not avail-
ing yourself much of the direct technique, making the direct technique
even more expensive makes little difference. This insensitivity to Z
reachesits apotheosis when making the very hardest unitary, z= m: for
Z>1, the cost of making U= 2" does not depend on T at all, because
we can reach the antipode by proceeding along any great circle
el = el%" = ¢l27 = -] 50 the greatest separation on the Berger sphere
isexactly mandis completely insensitive to Z (refs. 12,13). We are thus
left with the following picture. Close to the origin, the distance function
depends strongly on Z, but this region is small and shrinks to zero in
the sub-Riemannian limit, Z - «. Outside this region, distances are
largely independent of Z. Nowhere does Z make a large additive
difference.

A careful analysis™®" confirms this picture and shows that the very
largest additive discrepancy from the Z=~distance is found near the
cutlocus,soforallUand Z=1,

CpU) - C(U) < O(T7). 4)

As(10%°)2 =105, the 7= and 7=10" Berger spheres agree on dis-
tances to within a picometre. (A two-dimensional example that shows
the same phenomenonis given in Supplementary Information 3).

Finally, let us examine the role of curvature. At large Z, the metric
becomes strongly curved: the easy-easy section becomes very nega-
tively curved k(x,y) =4 -3Z, and the easy-hard sections become
very positively curved k(x, z) =Z. We call the o, and g, directions easy
because they are cheap to move it, whereas the g, direction is hard to
move in for Z>1. The curvature length |K|_l/2 ~Z7Y2, whichis also the
distance to the cutlocus in the hard direction, becomes very short.
The high curvature explains how the metric can hide lots of volume at
shortdistances thatareinvisible at long distances. Consider an opera-
tional definition of volume that counts how many marbles can be
packed into the space: if we can cram in n(r) marbles each of radius r,
then the volume is proportional to Ii%r3n(r). Although the volume
grows withoutboundas Z - «, the effective volume n(r)r*atanyfinite
value of r does not. Instead, the effective volume grows like r* as
we take rsmaller and only levels off at-/Z once ris less than the curva-
ture length Z V2. Thus even as T~ « the effective volume, as probed
by experiments with finite resolution, stays finite.

Euclideangroup
Consider parallel parking a unicycle.

Theunicycle starts facing parallel to the curb and ends facing parallel
tothe curbbutdisplaced sideways by z. The configuration space of the
unicycleisits possiblelocations{y, z} and orientations {6}, forming the
Euclidean group SE(2). There are three primitive operations: roll for-
wards or backwards; turn; or drift sideways (perpendicular to therolling

direction). We model the difficulty of any parking manoeuvre with
ds?=dx? +Zdx? + d6?
= (cos Ody + sin 8dz)? + Z(sin Ody - cos 8dz)? + d6”.

The cost of parking C(2) is the length [ds of the shortest path that
connects our starting configuration {6, y, z} = {0, 0, 0} to our parking
spot1{0, 0, z}.
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The important difference from the Berger sphere example is that,
because there is no bound on how far away the curb can be, there is
now no upper bound on C(z). However, we still get an inequality like
equation (4) thatis all the more powerful in this non-compact setting.
Whether drifting is just as easy asrolling (Z=1) or drifting is completely
forbidden (Z =), the cost of parking never changes by more than O(1),
soat large zall metrics with Z > 1 have the same linear growth.

Figure 1 plots the cost of parking. For Z=1, the metric is flat R? x §!
and the optimal parking manoeuvreisjust to drift directly in the zdirec-
tion at cost C(z) = z. For large Z, the optimal parking manoeuvre can
be more complicated, and there are three regimes. The first regime,
attiny z,istodrift directly in the zdirection, which gives linear growth
C(2) = -/Tzthatis strongly dependent on Z; this regime extends as far
as the cut locus, a curvature length from the origin at Co, = Z V2. The
second regime involves commuting the two easy directions giving
C(2) = ~/z.(Turnthrough anangle .z, roll forwards ./z, turn back through
—./z to be again parallel to the curb and then roll backwards --/z into
the parking spot).Sofar thisis the same as the Berger sphere example,
but the differenceis what happens next. Forz 2 1, the square root behav-
iour comestoanend, because onceyou have turnedto face the zdirec-
tion, there are no further efficiencies from turning more. But because
we have already paid the fixed cost of turning to face the zdirection,
the marginal cost of going farther in the z direction is just the cost of
rolling forwards. The third regime is thus another linear regime, but
this time with gradient one, C(z) =z + constant.

There is a simple upper bound on the distance that works for all
values of Z. Consider a strategy in which we first turn 90°, then roll
forwards all the way to the curb, and then on arrival turn 90° to end
parallel to the curb. This upper-bounds C(z) < % +z+ % and by optimiz-
ing this strategy we find that at large z

C2)=z+21-T71+ ..., (6)

in which the omitted terms vanish rapidly at large z. Indeed, a more
careful analysis finds the behaviour shown in Fig. 1.

We have thus found alarge universality class of metrics (every Z>1),
all of which agree at long distances, up to moderate additive correc-
tions. Inthis equivalence class, the leading-order long-distance behav-
iour isindependent of Z. As the dependence on 7 appears to be only
inthe sub-leading corrections, we may say that Z isanirrelevant defor-
mation. Although the members of the equivalence class agree at long
distances (borrowing the language of quantum field theory, we could
say they agree in the IR), they disagree markedly at short distances
(in the UV): they have radically different curvatures, and radically
different cutloci.

For most members of the universality class, the relationship between
short- and long-distance geometry is convoluted. For one member,
however, therelationshipis straightforward. For Z = 1-the critical value
below which changes in Z do affect the long-distance behaviour—the
UVbehaviour and the IRbehaviour match exactly, with the same linear
growth coefficient. We refer to this special value as giving the critical
metric. If you wish to approximate distances in the IR, it is easiest just
to calculate with this critical metric, no matter what the true UV value
of Z>1is. As we approach the critical metric, the cut locus gets
pushed out to z=«~ and the curvature becomes small. We use these
properties to help identify the critical metric in more complicated
models.

Finally, letuscommentontheerror, orlack thereof. For the unicycle
parking, we did not have to introduce a tolerance, because we can hit
exactly with minimal extra cost any point that we can get close to, even
inthe Z~ «limit. From the IR point of view, this is obvious—because
small changes in direction have small costs, and we have plenty of
‘wiggle room’ to make minor adjustments to the end point. From the
UV point of view, this is surprising—a Suzuki-Trotter-style! perturba-
tive expansioninzthat models the path as a piecewise linear sequence
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of time-independent Hamiltonians markedly overestimates the cost
of correctingerrors.

The Berger sphere has a diameter mand therefore no long-distance
regime. The unicycle parking example does have a long-distance
regime, but the critical geometry is flat. In the next example, we will
see a non-trivial critical distance function.

High-dimensional gate example

Inthe gate model of quantum complexity, we build complex unitaries
by arranging simple unitaries in a circuit”. The simple unitaries are
k-local gates, which means unitaries in U(2) that act non-trivially on k
qubits. We can use any element of U(2¥), ata cost@(the cost therefore
depends on only k); the cost of a circuit that uses n,k-local gates
is Clcircuit] =Y, \/fknk. To complete our definition of complexity,
we need to specify the penalty schedule, which means specifying
the penalty factors Z, for every value of k < N. We then ask how the
complexity of a given unitary depends on our choice of penalty
schedule.

Our first observation is that if we take any one of the Z large (while
keeping the others fixed) the complexity soon becomes completely
independent of the value of that penalty factor. Thisis because instead
of directly deploying a k-local gate, we could also indirectly synthesize
the same unitary with a subcircuit built out of cheaper gates. No gate
is indispensable, and the set of m-local gates for any individual m > 2
is sufficient to reconstitute all the others®. To replace a k-local gate we
never need to pay more thanmin,, mnm(k), where n,, (k) isdefined as
the number of m-local gates needed to build any U € U(2). Once Jfk
exceeds this critical value, the complexity becomes completely inde-
pendentof [T,

Now let us consider the critical schedule for which every penalty
factor takes its critical value. This means that the price of each gate is
the same as the cost of indirectly synthesizing it out of cheaper gates.
We canshow that thereis aschedule with approximately this property
by estimating n,,(k), which simple dimension counting bounds by

dim[u(29] _

k-m
GmIUE™] =4km - (7)

n,,(k)= number of m-locals to build U@k >

This lower bound is approximately saturated' (although not exactly
saturated because when two consecutive gates overlap on a qubit,
there is an U(2) isotropy subgroup, so adding the dimensions of
the two gates overcounts by dim[U(2)] = 4). If we fix the normali-
zation by setting Z,=1, this means that the critical schedule is
roughly

T =422, (8)

independent of Nfor fixed k. For this critical schedule, direct and indi-
rectsyntheses are approximately degenerate. If we start with the criti-
cal schedule and make one of the penalty factors more expensive, this
has little effect on the complexity of any unitary, because we will just
switch to the cheaper option. By contrast, if we start with the critical
schedule and make any penalty factor less expensive, the complexity
of almost all unitaries reduces.

We have thus, once again, found a large universality class of defini-
tions of complexity (every schedule with Z, =7, = 1 thatis no less expen-
sive than the critical schedule V, Z, > 7,;), all of which approximately
agree on the complexities of all unitaries. If the penalty schedule isin
this universality class, the large-distance complexity will be the same.
For most members of this class, the cheapest way to make a typical
element of U(2) involves a convoluted compilation strategy, but there
is aunique member of the class for which the optimal compilation is
straightforward: for the critical schedule, we make the element with a
single gate.
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Fig.2|Conjectured complexityC asafunction of theinner-product
distancez,inwhichH, o, is a1,000-local polynomial Hamiltonian. a, For
the proposed critical metric, the complexity grows linearly with the same
coefficientatall z (until it saturates at azexponential in N). b, For the cliff
metric, equation (9), at very short distances the complexity grows linearly
(orange), thenit hits the cut locus and slows to sublinear growth (blue), before
transitioning to linear growth againbut with alower slope that matches the
critical metric (red).

The universality behaviour is somewhat broader than the class
T,=1,,I; 2 I;. First, if we start with the critical schedule and make Z,
bigger, this may have alarge effect at short distances but only a small
effect atlong distances: in the language of quantum field theory, this
would be an ‘irrelevant’ deformation. Similarly, if we take some of the
I, withmoderate kand make them cheaper than the critical schedule,
this would affect both the UV and the IR, but its effect on the IR would
bejust to multiply all complexities by min,./Z,/Z: the entire effect on
the IR of a complicated UV deformation would be summarized by a
single parameter.

The features mentioned above all have direct analoguesin the exam-
ples given in the section ‘Low-dimensional Riemannian cases’. Now
let usexamine afeature that emerges only when the number of dimen-
sions s large. The critical schedule was defined by demanding that
ﬁ =min,, \/T»mnm(k). Butthereis ascaling symmetry n, (k) = n,,(p)
n,(k), which means that if we want to make a k-local unitary out of
m-local gates, we pay little extra cost for doing a hierarchical compila-
tion that first makes the k-local unitary out of p-local gates and then
makes the p-local gates out of m-local gates. This scaling symmetry
means that for the critical schedule the quantity \/T»mnm(k) is largely
independent of m. There is thus a huge degeneracy of ways to make a
k-local gate: there is an equal-length path for every value of m, as well
as agreat many more paths of mixed m. It is this massive degeneracy
andredundancy—called ‘load balancing’in network engineering—that
makes the numerical value of the complexity so robust against upward
deformations of the penalty schedule.

Application to complexity geometry

We now extrapolate the lessons learnt from the simple examples
seen in the sections ‘Low-dimensional Riemannian cases’ and
‘High-dimensional gate example’ and to make conjectures about the
long-distance behaviour of high-dimensional complexity geometry.
Complexity geometry is reviewed in the Methods.

Main conjectures

Let us ask how the value of the complexity of a unitary depends onthe
choice of penalty schedule. Our fundamental observation is that the
complexity geometry shares the same properties that drove the uni-
versal behaviour we saw in the previous examples. The universal behav-
iour in these cases was caused by the overcompleteness of the set of
primitive operations, which meant that there were many different ways
to effect any given change. The complexity geometry is even more
overcomplete than the gate definition of the previous section, because
on the one hand its target is the same (elements of U(2")) but on the
other hand the tools at its disposal are much more powerful: whereas

a k-local gate is constrained to act only on k qubits at atime, in the
complexity geometry we may also move in any polynomial superposi-
tion over different k-local terms, or terms of mixed k-locality; and
whereas the gate definition gets charged a full Jfkfor evenasmallstep
ofinner-productsize einak-local direction, the complexity geometry
charges only,[Z, e and is, therefore, able to change direction without
penalty and economically deploy very wiggly paths. Because construct-
ing a path through the complexity geometry affords so many more
options than compiling gates into a circuit, the primitive operations
are more overcomplete, and so the universality behaviour should be
correspondingly more robust.

Onthebasis of these considerations, we expect an enhanced version
of the same universality properties we saw earlier. We can formalize
thisinto two (independent) conjectures:

Conjecture 1. There exists a critical schedule Z,, and a universality
class consisting of all schedules that are anchored at 7, = Z, thatare no
easier than the critical schedule, Vk, Z; = 7;. In this universality class,
the distance functions may differ greatly at short separation (in the
UV), but will approximately agree at long separation (in the IR).

Conjecture 2. The critical schedule Z; is the unique member of the
universality class for which the UV and the IR behaviours match. This
means that for the critical schedule the cut locus is pushed far out in
almost all directions, so that geodesics leaving the origin typically
remain minimal for a time exponential in N and the linear growth
continues uninterrupted with the same coefficient at long and short
distances.

To make these conjectures more quantitative, we need to specify
how close the members of the universality class are to each other and
to identify the critical schedule. Our purpose in this paper is not to
settle these more quantitative questions but to lay out an effective
geometry programto address them, and to identify some valid candi-
date answers. The easiest schedule in the universality class is the
critical schedule, 7, whereas the hardest schedule is the cliff metric:

T1=T,=1 and Ti,3=Ty 9)

in the limit Z;; > «. As the penalty factors vary by an infinite amount
between these two extremes, we might think that the assigned com-
plexities could as well; the content of conjecture 1is that this does not
happen. Let us now describe a plausible quantitative conjecture
inspired by the results of the previous sections and describe some
supportingevidence.Inthe Methods, we lay out some more conjectures
about the critical metric and describe more directly the relationship
to the existing mathematics literature.

Quantitative conjecture for complexity growth
For concreteness, let us consider the complexity of a unitary of the
form U= e, where H, is a typical (polynomial) k-local Hamiltonian.
We normalize such that TrH2=1,so that zis the inner-product (Killing)
distance. This is a useful case to consider because constant H, gives a
geodesic. This is because all terms in H, have the same weight, and
by assumption the penalty factor depends only on the weight, and a
constant Hamiltonian in which all terms have the same penalty factor
gives ageodesic. A candidate quantitative conjectureis showninFig. 2.
The complexity growth for the easiest schedule in the universality
class, the critical schedule Z,, is shown in Fig. 2a. For a k-local Hamilto-
nian, our statement that the critical metric typically does not hit a cut
locus means the complexity C is simply given by the direct geodesic
distances, thatis, C(e'®) = s= [T, z, until zis exponentially large in N.
The complexity growth for the hardest schedule in the universality
class, the infinite-cliff metric Z,=7,=1, Z;,3=Z ;¢ > *, is shown in
Fig. 2b. At vanishingly small distances, the two schedules disagree
about the complexity of e/'¥ by amultiplicative factor of . [Z r/Z; > o
However, as Z; diverges, the cut locus in the zdirection approaches
the origin, and beyond the cut locus ¥ will be more economically
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synthesized by an indirect path that commutes the cheap directions.
For the cliff metric, we expect the same three-regime behaviour as we
saw for the parking unicycle in Fig. 1. The first regime is linear with a
huge coefficientC= mZ. Thisregime soonendsatacutlocus (and
issqueezed outentirely for Z ;¢ ~> ). Beyond the cutlocus, we synthe-
sizee*indirectly, by commuting 2-local Hamiltonians. As the number
of 2-local operators we must commute to make a k-local operator isat
least k - 1, the second regime has sublinear growth with C = zk-1 with
some multiplicative coefficient (the exponent of this power law s fixed
by the ball-box theorem)”. After z - 1, linear growth resumes with coef-
ficient given by the critical metric. In a strong form of the conjecture,
the additive deviation of the complexity is never more than the cost of
asingle k-local gate so that Coyr [€74] < Coyigica [€7] + O([T).

We have argued that there exists a critical metric. In the section
‘Quantitative conjecture for critical metric’, we make a quantitative
conjecture for the form of this metric, and argue that the penalty fac-
torsshould grow at least exponentially with the number of qubits they
touch.Inthe section ‘Consistency checks’, we discuss further evidence
for these conjectures.

Discussion

Inthis paper, we investigated long-distance universality and argued that
short-distance geometry and long-distance geometry can decouple. For
homogeneous metrics, the short-distance properties—those that canbe
measured in the vicinity of a point, suchasthe curvature and its deriva-
tives—determine (up to global identifications) everything about the
entiregeometry. But the farther away from the origin you get, the more
convoluted therelationship between short-distance and long-distance
geometry becomes. Weillustrated this by considering firing ageodesic
insomedirection and following it for adistance z. At first, the distance
fromthe originisjust z, so the distance function is simple. But when a
cut locus is encountered, the geodesic is no longer minimal, and the
distance function becomes much more complicated. Nevertheless, we
argued thatateven greater separations the distance function becomes
simple again. We argued that far out beyond the cut locus anew kind of
order emerges. This new order—an emergent long-distance metric—is
largely insensitive to the details of the short-distance metric. There is
instead aform of universality, inwhich abroad class of short-distance
metrics all give rise to the same effective long-distance geometry, with
the entire effect of the short-distance geometry being summarizedin
a handful of relevant parameters. This is the short-long decoupling
that enables different spaces of wildly different volumes to agree on
every distance to within a picometre.

In the section ‘Low-dimensional Riemannian cases’, we exhibited
long-distance universality in low-dimensional Riemannian examples that
we could solve exactly. Inthe section ‘High-dimensional gate example’,
we exhibited large-complexity universality in the high-dimensional but
non-Riemannian case of gate complexity. In the section ‘Application
to complexity geometry’ we studied high-dimensional Riemannian
geometries, and marshalled the evidence for our conjectures that these
complexity geometries exhibit long-distance universality (whichin this
contextis, by definition, the same thing as high-complexity universality).

Our investigations were originally motivated by the ideas in holo-
graphicblack holes. Although our results stand independent of those
motivations, we discuss the implications for holography in the sec-
tion ‘Relation to black holes and holography’; we observe that if our
conjectures are true, then complexity geometry may provide just the
precise-but-robust definition of complexity needed to undergird the
holographic complexity correspondences’® 2. An inspiration for our
investigations was the Wilsoniantheory of renormalizationin quantum
field theory'.Insome sense, this paper is an attempt to apply those ideas
togeometry. We develop the connection furtherin the section ‘Wilso-
nian connections’. Although we have emphasized the application of our
ideasto complexity geometry, it seems likely that they are applicable to
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allright-invariant metrics on sufficiently ‘large’ Lie groups, where ‘large’
could mean either non-compact or asequence of compact Lie groups
withgrowing dimensions; aninteresting mathematical program (Meth-
ods and Supplementary Information) would be to characterize the
equivalence classes of right-invariant geometries on large Lie groups.

Long-distance universality should be arobust feature of sufficiently
rich high-dimensional spaces. Here we have examined the implications
for one example of a high-dimensional space: the space of unitary func-
tions on quantum states, which has a dimension exponential in the
number of qubits. But high-dimensional spaces are found in many
areas in physics and computer science, from many-body systems to
deep neural networks. It is tempting to speculate that the concept of
emergent geometry may be of broader relevance.
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Methods

Review of complexity geometry

Now we provide an overview of Nielsen’s complexity geometry>”’; we
recommend ref. 11 (sections1and 2) as amore pedagogical review (for
other recent works, see refs. 22-29). Similar to gate complexity, com-
plexity geometry endows the unitary group U(2") with aright-invariant
distance function C(U,, U,) = C(UIUEI, 1) between two unitaries, which
we interpret as the definition of the relative complexity. However, in
contrast with gate complexity, which is not a continuous function of
U, complexity geometry endows the unitary group with a smooth
Riemannian metric. A general Riemannian right-invariant metric is
parameterized by a symmetric moment of inertia tensor Z;, so that
the infinitesimal distance ds between Uand U+ dU=(1+ lo,dQ’)U is
given by

ds®=dQ'7,do/ (10)
anddQ’ =iTr dU"g,U Here g,are the generalized-Pauli operators, which
provide a complete basis on the tangent space,

(A) ;(A)5(B)

{o} € {1,0%,i0¥0®P,0¥0P6, ...},

an

where lowercase letters run over the Pauli indices a € {x, y, z} and
capital letters indicate the qubit on which the Pauli operator acts,
A€{l,2,...,N}, and we have normalized the trace so that Trl = Tro2=1.
The distance between the two unitaries is defined as the minimal geo-
desicdistanceinthis metric,C = minfds. If 7, were the identity matrix,
this would recover the standard inner-product metric on the unitary
groupinwhichall directions are equally easy to movein, but in general
acomplexity geometry will stretch difficult directions to make complex
unitaries farther away. To specify a complexity geometry, we must
specify Z,. Following Nielsen, let us consider Z; s that are diagonal in
the generalized-Pauli basis and for which the penalty factor of a given
generalized-Paulioperatoris solely afunction of the k-locality, that is,
solely a function of the weight (or size) k of the operator, defined as
the number of capital indices in equation (11). Notice that a k-local
Hamiltonian canbe anarbitrary superposition of weight-k generalized-
Pauli operators—itis allowed to touch all the qubits, so long as no sin-
gleterm touches more thankat atime—whereas a k-local gate (defined
inthe section ‘High-dimensional gate example’) acts on only k qubits.
To specify the metric, we then need only to specify the penalty sched-
ule Z,, thatis, the choice of Z; foreach k< N.

We can also consider the complexity geometry on 2N Majorana
fermions; this would be natural for studying the complexity
of the Sachdev-Ye-Kitaev (SYK) model*®? or other fermionic
theories®™,

The critical metric
Here we elaborate on the conjectures made in the section ‘Application
to complexity geometry’.

Quantitative conjecture for critical metric. Let us identify a good
candidate to be the critical schedule. Unlike the cliff metric, for which
all Z,,; are the same, for the critical metric we expect the penalty
factors to steadily grow with k. This is to reflect the fact that the
difficulty of compiling a direction using two-local Hamiltonians
increases with the k-locality. On the other hand, we expect the largest
penalty factor to be exponentially large in V. This is to reflect the fact
that the maximum complexity is exponentially large in N, and the
maximum complexity is bounded above by the maximum penalty
factor, complexity ., <,/ Z .- In equation (8), we showed that the
exponential metric,

~ 42k, (12)

isagood approximation to the critical schedule of the gate model, up
to sub-exponential corrections. Our quantitative conjectureisthatan
exponential metric, possibly with some different base x not necessarily
equalto4,isalsoagood approximationto the critical schedule for the
complexity geometry,

T =x?®2, 13)

A previous study’ pointed out some of the attractive features of
the exponential metric for complexity geometry. One of the fea-
tures is that, similar to the critical metric we examined in the
section ‘Low-dimensional Riemannian cases’, the exponential
metric has low curvature. Let us review that now. Another study?
showed that when the commutator of two directions is much
more expensive than either direction individually, the sectional
curvatures are

Kk(H,, [H, H]) =+ (14)

Two generalized-Pauli operators have a non-zero commutator only
when they overlap on at least a single qubit, so the weight of the com-
mutator is always less than the sum of the weights of the two operators,

Weight([g;, g)]) < Weight(g)) + Weight(o)) - 1. (15)

This means that for the exponential metric the magnitude of all the
sectional curvatures, of both signs, is always less than O(1). In the sec-
tion ‘Low-dimensional Riemannian cases’, we saw that low curvature
isasignature of the critical metric. By contrast, the cliff metric has huge
sectional curvatures because two easy 2-local directions (Z,=1) com-
mute to a very hard 3-local direction (Z; = Z ;). This huge sectional
curvature of the cliff metric indicates that the cut locus in the hard
directionis close.

Consistency checks. Now let us describe some important consistency
checks on these ideas.

Animportant consistency check is the diameter. If members of the
universality class are to have approximately the same long-distance
behaviour, then they certainly need to approximately agree on the
diameter (thatis, the greatest separation of any pair of points). We saw
inthe Berger sphere example that all members of that universality class
agree onthe diameter exactly. Itis not obvious inadvance that the cliff
metric with Z ;¢ > «oshould even have afinite diameter, because some
of the directions are becoming infinitely expensive and the volume is
diverging. However, Chow’s theorem*** ensures that so long as we can
reach every element of the algebra by nested commutators of finitely
expensive elements of the algebra, then the distance function con-
vergesin the limit Z ;; > «and the diameter is therefore finite. We can
place atighter upper bound by noticing that everything we candoin
the gate definition of complexity from the section ‘High-dimensional
gate example’ we can do no more expensively (up to a multiplicative
factor of ) in the complexity geometry with the same penalty sched-
ule because every k-qubit gate U(2) can be made by evolving with a
k’-local Hamiltonian (k’ < k) that acts only on those k” qubits for an
inner-product distance at most 1, giving a complexity geometry cost
atmost.[Z,. Furthermore, we know from ref. 16 that even with the
infinite-cliff schedule we can construct a circuit for every element of
U(2") with a cost no greater than N?4", This gives the upper bound. A
previous study* was also able to prove alower bound on the diameter
of the cliff metric of 4V, If our conjecture is correct, the diameter of
the critical schedule cannot be substantially less than the diameter of
theinfinite-cliff metric. Itis thereforerelevant thatinref. 36 aresultis
proved that lower-bounds the diameter of the exponential metric,
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equation (13), for all x > 1 (and several other metrics) by a quantity
exponentially large in N. Our conjecture thus passes this consistency
check.

This result is encouraging, but much weaker than what we want to
show. We want to show that not only do all metrics in the universality
class agree on the diameter, but also they approximately agree on the
complexity of almost all sufficiently complex unitaries. Let us now
reportastepinthat direction.

First, let us describe a heuristic compilation strategy for e that
suggests an upper bound for the critical schedule. This compilation
strategy aims to synthesize e’ using only 2-local Hamiltonians (which
are always cheap for all members of the universality class). A typical

k-local Hamiltonian H, = ¥ w,0,is aweighted sum of about 3 [’I\(/jk-local

generalized-Pauli operators (monomials). The dimensionality of the
space of k-local Hamiltonians is therefore exponentially bigger than
the dimensionality of the space of 2-local Hamiltonians, by a factor of

an
k
(k)= ——<.
#3)
2
If we wish to write a typical k-local Hamiltonian as the nested com-
mutator of 2-local Hamiltonians, simple dimension counting tells us
that thisrequires no fewer than n,(k) levels of nesting. However, there
are atypical k-local Hamiltonians that can be generated much more

compactly.Inparticular, thereisaspecial set of Hamiltonians, of dimen-
sion approximately (k- 1)3? N , that can be written as the nested

(16)

commutator of only (k—1) 2-local terms. This set includes the k-local
generalized-Pauli operators. Our compilation strategy uses these spe-
cial Hamiltonians as building blocks. In particular, we use the fact that
any operator of the form €'%, where g, is a k-local generalized-Pauli
operator, can be constructed exactly out of 2-local operations with a
cost no greater than O(k).

Anexample of acompilationstrategy isthe following. Any generalized-
Pauli o, of weight k can be written as the commutator of aweight-(k - 1)
generalized-Pauli 0,and a weight-2 g, that overlap at a single qubit.
These three operators satisfy e/ = e'%¥¢el%2¢ %% just as they would
ifthey were elements of SU(2). In this way, we can recursively synthesize
motioninany k-local monomial direction with a cost Cle'*] < O(k). As
moving indirectly in monomial directionsis so cheap, the cut locusin
monomial directions is very close to the origin even for the critical
schedule. The extreme closeness of cut loci in monomial directions
does not violate conjecture 2 because monomial directions are
extremely atypical.

Thisimplies that we can approximate the operator U=[], el®9 with
atotal cost of about C= kn,(k). This operator agrees with our target
operator e 219 gt leading order in z, and has an inner-product error
of about 2. This can be improved to 2> by using the next order in the
Suzuki-Trotter expansion, but going to even higher orders becomes
prohibitively expensive. It is at this point that we make our heuristic
step. Inthe Euclidean group example, we saw that the complexity geom-
etry has so many degrees of freedom that by making minor deforma-
tions of the path we can correct small errors at small extra cost, ina
way thatis not captured by any finite order of the Suzuki-Trotter expan-
sion, and is instead an emergent feature in the IR. Compared with the
SU(2) example in the section ‘Berger sphere’, the task of compiling in
U(2") is complicated by the fact that there are many more directions
in which to err; on the other hand, there are correspondingly more
directions in which we can wiggle the path to eliminate the error,
and as a statistical matter, we expect that to dominate. If the small
inner-product errors can be corrected by wiggling the path, then we
can synthesize e for z <1at cost kn,(k). To generate €' at larger
values of z, the triangle inequality (C(az) <a C(z) for any a €N)

guarantees that the complexity grows no faster than linearly with coef-
ficient kn,(k). This argument heuristically shows that the binomial
metric is in the same universality class as the infinite-cliff metric, and
therefore upper-bounds the critical schedule:

Ty s k’ny(k)?. 17)
Theupper-bound equation (17) holds at all but the largest k, where the
analysis becomes unreliable. Note also that although the binomial
metric does not have acurvature as small as the exponential metric, it
is still very moderate |x| < O(N) compared to the cliff metric k|~ Z -
Thereasoning thatleadsto equation (17) is heuristic, because to elim-
inateerrorit appealsto astatistical argument. Inref. 37,itis shown that
there is a weaker result that can be proved. The study also shows that
any unitary that can bereached with a path thatin the binomial metric
hasalengthCy;, (U) canbe approximated to withininner-product error
eby a path that in the infinite-cliff metric has alength

Cbin.( U)7/2

(18)
Tz

Caire(U) 17N

Our conjectures imply that this can be improved from polynomial to
linear-with-additive-constant and from approximate to exact.

Finally, letus note thata property we have conjectured for the com-
plexity geometry—namely, linear growth of complexity that lasts for
an exponential duration—has been proved already in two simple toy
models: a discrete random-circuit model on Cayley graphs®and a
continuous random-circuit model on the unitary group that tolerates
zeroerror®,

Next steps. Inattempting to prove, refute or provide further evidence
for our conjectures about precise equivalences between high-
dimensional complexity geometries, two broad strategies could be
pursued: starting at low dimension and working up or starting at high
dimension and making the equivalencies more precise.

Following the latter strategy, we could initiate a program of prov-
ing increasingly precise equivalence relations. We would show that
all metrics in the equivalence classes have approximately the same
large-separation distance functions, with escalating strength for the
form of the discrepancy (for example, polynomial versus linear ver-
sus additive), for the N dependence of the discrepancy (for example,
exponential versus polynomial versus linear), for the form of the error
tolerated (for example, inner-product distance versus operator-norm
distance versus exact), and for whether tight bounds on the discrepancy
are to be foundin only moderately easy directions or in all directions.
This program would pursue a progressive strengthening of the results
giveninref. 37.

Acomplementary programwouldbetostart withthelow-dimensional
examplesin the section ‘Low-dimensional Riemannian cases’and stead-
ilyincrease the dimension. For example, aconcrete next step to test our
conjectures would be to numerically calculate the distance function for
amodest number of qubits (or Majoranas), extending the numerical
analysis of ref. 40 from two qubits to a handful or more.

Relation to black holes and holography

In the context of the gauge-gravity duality*, it has been conjectured
that some geometric properties of the black holeinterior’® * are related
to the quantum complexity of the holographic dual of the black hole.
For example, in ref. 19 it was conjectured that

Complexity = Volume, 19)

where the volume is the volume of a wormhole behind a black hole
horizon and the = symbol accounts for an unknown multiplicative
constant. Inrefs. 20,21, an even more precise conjecture was made:
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Complexity = (20)

where again the action is evaluated for a certain geometric region of
the holographic wormhole and this time there is no multiplicative
ambiguity.

From the point of view of conventional complexity theory, equa-
tions (19) and (20) are alarming. On the right-hand side of the equations
we have geometric quantities whose values can be calculated exactly,
whereas on the left-hand side we have a quantity that in the conven-
tional viewis robustly defined only up to polynomial equivalence, and
only then not for asingle solution but for a family of solutions of vary-
ing Nin the limit that N gets large. In this view, it is a category error to
expecttobeable togive robust meaning to the numerical value of the
complexity of a particular unitary. Of course, evenin this view, we can
always extract a numerical value by being extremely precise about
which choices we make for the definition of complexity (for example,
exactly which primitive gates or which penalty factors), but there would
be no expectation that the numerical value would be robust against
perturbing these choices. Furthermore, there are no known principles
that would dictate these seemingly arbitrary choices.

Butifthe conjecturesinthis study are correct, equations (19) and (20)
are no longer so alarming. Instead, the universality of long-distance
complexity tells you that (in the semi-classical limit, in which complexi-
ties are large and the dual spacetime is effectively classical), thereis a
robust definition of complexity to place onthe left-hand sides of equa-
tions (19) and (20), in which many of the seemingly arbitrary choices of
penalty factors do not matter. This could enable arigorous formulation
of holographic complexity.

Further links between holography and the results are discussed in
Supplementary Information 2.

Wilsonian connections
We make explicit the analogy between our findings in geometry and
the Wilsonian theory of renormalization’.

A starting point for complexity geometry, both logically and his-
torically, is Nielsen’s cliff metric with a huge penalty factor for the
non-easy directions Z;; (see section ‘Main conjectures’). In terms of
renormalization, we might call this a bare theory of complexity. For
this theory, the behaviours of the UV (that s, short distances) and the
IR (thatis, long distances) are very different. The UV has violently large
curvatures and a very short distance to the cut locus. Using the bare
theory, computing complexity growthinthe UV (short-distance behav-
iour) isstraightforward. We find alinear growth with a very large slope.
However, the calculation breaks down once the geodesic we are
following passes the cut locus, in which non-perturbative effects
become important. These effects slow the growth of complexity, and
if our conjectures are correct, eventually the complexity growth
becomes linear again, but withamuch-reduced slope. A new schedule
of penalty factors—the critical schedule—defines an effective theory
thatis easytouseinthelR.

Instatistical mechanics and quantum field theory, thisis analogous
to the statement that a field theory is a flow between a UV conformal
field theoryand an IR conformalfield theory. This means (among other
things) that certain correlation functions in field theories exhibit a
power-law decay in the UV and a power-law decay in the IR, but with
different (anomalous) logarithmicslopes (referred to as critical expo-
nents) in the UV and IR. Here the slopes of the linear growth of dis-
tances play the part of the logarithmic slopes in statistical physics. Our
conjecture that the IR slopes differ dramatically from the UV slopes
is analogous to the statement that in a strongly coupled field theory,
anomalous dimensions are typically large.

Thevalues of the penalty factors Z; are the parameters of the theory,
playing the role of the set of (inverse) coupling constantsinaquantum
fieldtheory.Ifagiven penalty factoris greater thanthe valueit attains

inthe critical schedule, then that parameter isirrelevant—thatis, per-
turbingit does not affect the IR behaviour. The penalty factor becomes
relevant only when it has the same value it would have had on the
critical schedule, and any further decrease in Z; beyond this point then
changes the distance functionin the IR.

In describing the geometry of the group manifolds, we have used
the terms of Wilsonian quantum field theory: UV and IR, bare theory,
anomalous dimension, non-perturbative, effective theory, flow, cou-
pling constants, relevant andirrelevant. At the moment the similarities
between complexity geometry and the renormalization of quantum
field theories are far from a preciseisomorphism, but they are sugges-
tive of deeper connections.

Connection to coarse geometry
We explain the relationship of our work to the mathematical subject of
coarse geometry and geometric group theory***, Supplementary Infor-
mation1furtherrephrasesourinvestigationand conjecturesinthislan-
guage, but the equivalences discussed there are somewhat less coarse
than those allowed under the standard definitions reviewed here.
The mainidea of coarse geometry is that given two metric spaces
X, X’ equipped with distance functions d, d’ we can say that they are
coarse equivalent or quasi-isometricd - d’iff there existsamap f: X > X’
such that

g, x) —a<d' (f(x),f(5) <cd(g,x,) +a (21)
forsomec>1and a > 0. Furthermore, it is required that every point
x’ € X’ is at most a fixed distance b > 0 from some image point f(x),
wherexcould depend on x’. For our purposes, we apply this definition
to the same underlying space X = X’ equipped with two different dis-
tance functions and take fto be the identity. We then say that the two
metrics are coarse equivalent d ~ d’ iff there exist a and ¢ such that

(g, x) —a<d'(x,x) <cd(x,x) +a. (22)

For an unbounded metric space, the statement has content because
aand carerequired to be finite. For abounded space such as a metric
onafinitegroup oracompactLie group, the statement has no content
unless we upper-bound a and c. In the context of complexity geometry,
itis natural to consider a sequence of metric spaces X,,, for example,
X,=U(2"). Then we would say that the sequences of geometries
are coarse equivalent if we can find some constants a and c that are
independent of n. If the diameter of X,,is unbounded as n > ~ thisis a
non-trivial statement.

The notion of coarse equivalent or quasi-isometry defines anequiv-
alencerelation onthe set of metrics donagivenspace. In our context,
weareinterested inthe caseinwhichthespaceisaliegroup G.Ingen-
eral, we can fully specify aleft-invariant geometry on a Lie group of
dimension dim(G) by specifying a dim(G) x dim(G) matrix Z worth of
parameters (which we refer to as penalty factors), which can be viewed
as the infinitesimal line element near the identity element of the Lie
group’. Hence in this context, we are discussing equivalence relations
on these penalty factors Z~Z’. As mentioned above, this equivalence
relation is meaningful as stated for anon-compact Lie group in which
the diameter of the geometry isinfinite with any reasonable choice of
penalty factors. For sequences of compact Lie groups X,, forexample,
U(2"), we consider corresponding sequences of penalty factors {Z,;}
and define an equivalence relation between such sequences{Z,} - {Z}.

More generally, we can imagine adjusting this criterion in various
directions. For example, we could require that @ and c are not inde-
pendent of n but have amild n dependence. In the Supplementary
Information, we mention a bound** that was proved in the context of
nilpotent Lie groups of the form

|d(x, %) —d’'(x,%)| <0(d0g, x,)*) +a (23)
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where 0 <a <1. Thisimplies that the fractional error vanishes at large
d atarate no slower than d*. This is a stronger statement than equa-
tion (22) if cis left unspecified, butitis aslightly weaker statement than
equation (22) ifit requiresc=1.

In the context of discrete groups, an elementary result is that the
coarse geometry defined by the Cayley graph is independent of the
choice of generating set*. Thatis, we can consideragroup G thatis gener-
atedbysomeset of easy elementsg,, ..., g,. The distance fromthe identity
tosomegroup elementgisthe minimum length of the word formed from
g, ..., S thatexpresses g. Although the metric depends on the choice of
generating set (or more generally, the penalty factors associated with
each group element), the claim is that different choices of generating
sets give distance functions that satisfy equation (22). Furthermore,
we can consider properties of the geometry that depend on only the
equivalenceclass. A particularly interesting property is 6-hyperbolicity,
whichisanotion of negative curvature thatapplies evenin this discrete
context. We canidentify negative curvature by observing that all trian-
glesinnegatively curved spaces are slim—that is, any point on one side
of the triangle is close to some point on another side of the triangle,
with the maximum separation set by the curvature scale. This property
defines whatis known as Gromov hyperbolic groups* and is the subject
of ongoing mathematical work. A simple exampleis afree group, where
the Cayley graphisaninfinite tree. This notion of negative curvature may
explain our conjecture that the critical metric has negative sectional
curvatures”, In particular, the notion of §-hyperbolicity shows that the
concept oflarge-scale curvature is not a contradiction. In the context of
Lie groups, we expect that although many members of a given equiva-
lence class exhibit extremelocal curvatures, their large-scale curvatures
(forexample, that probed by large triangles) should approximately agree
with the large-scale curvatures of the critical metric.

This work calls for an extension of the geometric group theory pro-
gram to cover non-compact Lie groups and sequences of compact
Lie groups. Furthermore, in analogy to the Cayley graph and discrete
groups, we believe that in many cases, the number of equivalence
classes of coarse geometries is small, despite there being a naively
infinite number of different right-invariant metrics on Lie groups.
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