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ABSTRACT 

Thermoelastic transient response of multilayered annular cylinders of infinite lengths subjected to known inner pressure 
and outer surfaces cooling are considered. A method based on the Laplace transformation and finite difference method 
has been developed to analyze the thermoelasticity problem. Using the Laplace transform with respect to time, the gen-
eral solutions of the governing equations are obtained in transform domain. The solution is obtained by using the matrix 
similarity transformation and inverse Laplace transform. Solutions for the temperature and thermal stress distributions 
in a transient state were obtained. It was found that the temperature distribution, the displacement and the thermal 
stresses change slightly as time increases. 
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1. Introduction 

A thermal problem arises when the composed materials 
are generated by a sudden change in temperature. Shell 
structures are widely used in contemporary industries, so 
we must take care of the thermal problem. The shell 
structures may be affected due to the pressure change or 
the various temperature distributions. It is necessary to 
solve for temperature or pressure at first. 

The dynamic thermoelastic response of circular shell 
rapidly change of thermal environments is important for 
the design of many engineering structures. Due to the 
complexity of the governing equations and the mathe-
matical difficulties associated with the solution, several 
simplifications have been used. For example, Sherief and 
Anwar [1] discussed the problem of an annular infinitely 
long elastic circular. They have neglected both the inertia 
terms and the relaxation effects of the problem. Sherief 
and Anwar [2] considered the thermoelasticity problem 
of an infinitely long annular cylinder composed of two 
different materials with axial symmetry. The solution 
was obtained in the Laplace transform domain by using 
the potential function approach. 

The present work deals with the one-dimensional qua-
sistatic coupled thermoelastic problems of an infinitely 
long annular multilayered cylinder composed of multi-

layered different materials. The medium has a pressure at 
the inner layer, the temperature to be heated at the outer 
layer, without body forces and internal heat generation. 
Derivatives are approximated by central differences re-
sulting in an algebraic representation of the partial dif-
ferential equation. By taking the Laplace transform with 
respect to time, the general solutions in the transform 
domain are first obtained. The final solutions in the real 
domain can be obtained by inverting the Laplace trans-
form. 

2. Formulation 

This work deals with the one-dimensional, quasi-static 
coupled, thermoelastic problems of an infinitely long 
annular cylinder composed of multilayered laminated 
materials with axial symmetry under the following as-
sumptions: 1) Materials of each layer are assumed to be 
non-homogeneous; 2) Deformation and strain satisfy the 
Hooke’s law and small strain theory; 3) The composite 
cylinder is constructed of multilayered laminates bonded 
together perfectly; 4) The medium is initially undisturbed, 
and without body forces and internal heat sources; 5) The 
medium is applied by a force, which is the function of 
time; 6) The temperature at inner layer and outer layer 
are the functions of time. 

We now consider an infinitely long annular cylinder *Corresponding author. 
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made of multiple layers of different materials. The inner 
and outer radii of the cylinder are denoted by i  and o , 
respectively. The multilayered composite is assumed to 
be heated suddenly at the inner and outer surface under 
temperatures 

r r

1f  and 2f  respectively. 
The transient heat conduction equation for the  

layer in dimensional form can be written as (see Equation 
(1) below) 
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in which  is the radial component of displacement, 
 is radius,  and 

U
r vC   are specific heat and density 
of material, r  and r  are the Poisson’s ratio , rk
k  are radial, circumferential thermal conductivity, r , 

  are radial and circumferential thermal expansion 
coefficient, r , E E  are radial and circumferential 
Young’s modulus,  , 0  are the temperature, refer-
ence temperature, and 


  is time, respectively.  

If the body forces are absent, the equation of equilib-
rium for a cylinder along the radial direction can be writ-
ten as 
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The stress-displacement relations are  
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where  , r
 , 

  are Lame’s constant, radial and 
circumferential stresses respectively. 

Let the boundary conditions of multilayered cylinder 
be at 
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where 1f , 2f , 0 , rP   are inner and outer surround-
ing temperatures, initial inner pressure, the initial tem-
perature at the outer layer respectively. 

The non-dimensional variables are defined as fol-
lows: 
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3. Computational Procedures 

Applying central difference in Equations (5)-(8), we ar-
rive at the following discretized equations: 
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lowing equation in matrix form (see Equations (15) be-
low) 
where 
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              


         
         
                 



     





1 1

2 2 2

1 1 1 1 1N N N N N

N N N N

u G

u G

D E F u G

D E u G
    

    
    
    
     
    
    
         

    

       (15)

1 1 1 1 11

2 2 2 2 2 2 22

1 1 1 1 1 1 11

0

0

0

0
N N N N N N NN

N N N N NN

I J L M uT

H I J K L M uT

H I J K L M uT

H I K L uT
      

      
      
      
       
      
      
           

       

 
 
 
 
 
 
  

    (16)
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Equations (15) and (16) can be rewritten in the following 
matrix forms 

          

     
1

2

1

1 1

j j j

j j j

M s I T s N u X
s c

Y Z G
s c s

  


  


(17) 

      0j jR T Q u                (18) 

where the matrix  M ,  N ,  R  and  Q  are the 
corresponding matrix in Equations (15) and (16). Substi-
tuting Equation (17) into (18), we have 

       

     
1

2

1

1 1

j j

j j j

A s I T B
s c

C D F
s c s

 


  


       (19) 

where 

            
11 1 1

A N Q R N M
     

            
11 1 1

j jB N Q R N X
     

            
11 1 1

j jC N Q R N Y
     

            
11 1 1

j jD N Q R N Z
     

            
11 1 1

j jF N Q R N G
     

Since the  matrix N N   A  is a nonsingular real 
matrix, the matrix  A  possesses a set of  linearly 
independent eigenvectors, hence the matrix 

N
A  is di-

agonalizable. There exist a nonsingular transition matrix 
 P  such that     , that is, the ma-
trices 

   P g A1
P A


dia

 A  and  diag A  are similar, where the ma- 
trix  diag

 1, 2j 
A

, N
 is a diagonal matrix with elements 

j , where , j  is the eigenvalue of ma-
trix  A . 

The equation can be obtained as 

              

           

1 1

1

1 1 1

2

1

1 1

1

j j

j j

P A P s I P T P B
s c

P C P D P F
s c s

 

  

 


  
 j



 (20) 

Equation (20) can be rewritten as  

       

     
1

2

1

1 1

j j

j j j

diag A s I T B
s c

C D F
s c s

 

  

 


  


   (21) 

where  

     1

j jT P T
  ,      1

j jB P B
   

     1

j jC P C
  ,      1

j jD P D
   

and 

     1

j jF P F
   

From Equation (21), the following solutions can be 
obtained immediately. 

       1 2

j j j
j

i i i

F B C D
T j

is s c s s c s s s  

  
    





     
 

(22) 

By applying the inverse Laplace transforms to Equa-
tion (22), we get the solution jT  . The eigenvalue, ei-
genvector and inverse Laplace transform of matrix  
can be solved by applying the IMSL MATH/LIBRARY 
subroutines. 

][A

After we have obtained jT  , then we can use Equa-
tions (23) and (24) to obtain the solutions jT  and ju  

    j jT P T                (23) 

      1

j ju Q R T
              (24)  

Substituting jT  and ju  into Equations (11) and (12), 
we obtain the radial and circumferential stresses. 

4. Numerical Results and Discussions 

In this section, we present some numerical results of the 
temperature distribution in a long multilayered composite 
hollow cylinder, and displacement and thermal stresses 
under temperature changes. 

The inner and outer radii of the cylinder are assumed 
to be 1.0 and 4.5 respectively. For an infinitely long an-
nular multilayered cylinder, the geometry and material 
quantities of the cylinder (in the case of three layers, 
layer 1:E = 58E6, k = 22,  = 0.2,  = 2.8E – 6,  = 0.095, 
Cv = 0.31 and layer 2 :E = 30E6, k = 21,  = 0.35,  = 
2.3E – 6,  = 0.053, Cv = 0.25 and layer 3 : E = 22E6, k = 
17,  = 0.2,  = 2.8E – 6,  = 0.09, Cv = 0.17 ; in the case 
of five layers, layer 1 : E = 58E6, k = 22,  = 0.2,  = 
2.8E – 6,  = 0.095, Cv = 0.31 and layer 2 : E = 30E6, k = 
21,  = 0.35,  = 2.3E – 6,  = 0.053, Cv = 0.25 and layer 
3:E = 22E6, k = 17,  = 0.2,  = 2.8E – 6,  = 0.09, Cv = 
0.17 and layer 4:E = 30E6, k = 21,  = 0.35,  = 2.3E – 6, 
 = 0.053, Cv = 0.25 and layer 5 : E = 22E6, k = 17,  = 
0.2,  = 2.8E – 6,  = 0.09, Cv = 0.17). Each layer is as-
sumed to have a different thickness (in the case of three 
layers, r1 = 1.5, r2 = 0.5 and r3 = 1.5; in the case of five 
layers, r1 = 1.0, r2 = 0.5, r3 = 1.0, r4 = 0.5 and r5 = 0.5). 
The pressure of the inner surface is assumed to be P0 = 
1.5E6. The constant coefficient c1 = c2 = 1.0. The tem-
perature at inner surface is assumed to be 300, at outer 
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surface which is a function of time is assumed to be 0 to 
100. Figures 1-4 show some numerical results of three 
and five layered cylinders at time step t = 0.5, 1, 2, 5 and 
10. 

Figures 1 and 2 show the temperature distributions 
along radial direction for 3 and 5 layers case. Because of 
the difference in thermal conductivity and the effect of 
the outer layer is to be heated. As time is small,  
say t = 0.5, the outer layer temperature which is to be 
heated is not so more, so the distribution decreasing at 
first and then increasing. Figures 3 and 4 show the dis-
placement along the radial direction. The maximum dis-
placement occurred at the interface of first and second 
layers. Figures 5 and 6 show the radial stress distribution 

r  along the radial direction. Figures 7 and 8 show the 
circumferential stress   along the circumferential di-
rection. 
 

 

Figure 1. Temperature distribution along radial direction 
for 3 layers case. 
 

 

Figure 2. Temperature distribution along radial direction 
for 5 layers case. 

 

Figure 3. Radial displacement distribution along radial 
direction for 3 layers case. 
 

 

Figure 4. Radial displacement distribution along radial 
direction for 5 layers case. 
 

 

Figure 5. Radial stress distribution along radial direction 
for 3 layers case. 
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Figure 8. Circumferential stress distribution along radial 
direction for 5 layers case. Figure 6. Radial stress distribution along radial direction 

for 5 layers case.  
 distributions have been obtained, all of which can be 

used to design useful structures or machines for engi-
neering applications. There is no limit to the number 
of annular layers in a cylinder. Exemplifying numerical 
results from three- and five- layered cylinders at different 
time steps have been presented. The discontinuity in cir- 
cumferential stress at each interface was found. It was 
found that the temperature distribution, the displacement 
and the thermal stresses vary slightly as the time in- 
creases.  
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Figure 7. Circumferential stress distribution along radial 
direction for 3 layers case. 
 

A method based on the finite difference and Laplace 
transformation has been developed to obtain numerical 
results. The temperature, displacement and thermal stress  
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