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Abstract: In this paper, we investigate the nonlinear dynamics for an attraction-repulsion chemotaxis
Keller-Segel model with logistic source term

u1t = d1∆u1 − χ∇(u1∇u2) + ξ∇(u1∇u3) + g(u), x ∈ Td, t > 0,
u2t = d2∆u2 + αu1 − βu2, x ∈ Td, t > 0,
u3t = d3∆u3 + γu1 − ηu3, x ∈ Td, t > 0,
∂u1
∂xi

= ∂u2
∂xi

= ∂u3
∂xi

= 0, xi = 0, π, 1 ≤ i ≤ d,

u1(x, 0) = u10(x), u2(x, 0) = u20(x), u3(x, 0) = u30(x), x ∈ Td(d = 1, 2, 3).

Under the assumptions of the unequal diffusion coefficients, the conditions of chemotaxis-driven instability
are given in a d-dimensional box Td = (0, π)d(d = 1, 2, 3). It is proved that in the condition of the unique
positive constant equilibrium point wc = (u1c, u2c, u3c) of above model is nonlinearly unstable. Moreover,
our results provide a quantitative characterization for the early-stage pattern formation in the model.
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1. Introduction

I n this paper , we deal with attraction-repolsion chemotaxis system

u1t = d1∆u1 − χ∇(u1∇u2) + ξ∇(u1∇u3) + g(u), x ∈ Td, t > 0,

u2t = d2∆u2 + αu1 − βu2, x ∈ Td, t > 0,

u3t = d3∆u3 + γu1 − ηu3, x ∈ Td, t > 0,
∂u1

∂xi
=

∂u2

∂xi
=

∂u3

∂xi
= 0, xi = 0, π, 1 ≤ i ≤ d,

u1(x, 0) = u10(x), u2(x, 0) = u20(x), u3(x, 0) = u30(x), x ∈ Td(d = 1, 2, 3).

(1)

in a d-dimensional box Td = (0, π)d(d = 1, 2, 3) is a bounded domain with smooth boundary
α, β, µ, χ, ξ, β, γ, η > 0. In the model (1) u1, u2 and u3 represent the cell density, the concentration of the
chemoattractant (attractive signal) and the concentration of the chemorepellent (repulsive signal) respectively,
g(u) is logistic source. The classical Keller-Segel system can be obtained by setting di = 1, (i = 1, 2, 3), ξ =

0, u3 ≡ 0, g(u) ≡ 0 in (1) which models the mechanism of chemotaxis and has been extensively studied since
1970, we refer to [1–4] and the references therein. Apart form the aforementioned system a source of logistic
type is included in (1) to describe the spontaneous growth of cells. The effect of preventing ultimate growth
has been widely studied.

Open J. Math. Anal. 2020, 3(1), 98-118; doi:10.30538/psrp-oma2020.0056 https://pisrt.org/psr-press/journals/oma

https://pisrt.org/psr-press/journals/oma/
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/oma


Open J. Math. Anal. 2020, 3(1), 98-118 99

Chemotaxis is a chemosensitive movement of species which may detect and respond to chemical
substances in the environment. The first model about chemotaxis was proposed by Keller and Segel [5]

∂u
∂t

= ∆u− χ∇(u∇v), x ∈ Ω,
∂v
∂t

= ∆v− v + u, x ∈ Ω,
(2)

which describes the aggregation process of the slime mold formation in Dictyostelium Discoidium, where v
denotes the chemical concentration and u is the concentration of species. For this system, there have been
abundant results. Osaki and Yagi [6] found that when n = 1, all the solutions are global and bounded. When
n ≥ 2, blow-up may happen (see Horstmann and Wang [7]; Herrero et al., [8]; Winkler et al., [9]). A detailed
introduction into the mathematic of the Keller-Segel model for chemotaxis is presented in Horstmann [1,10,11].

In the study of chemotaxis-diffusion-growth models, the pattern dynamics is another mathematically
challenging and physically important research project (see Tello and Winkler [12], Aida and Yagi [13], Kurata
et al., [14], Painter and Hillen [15], Okuda and Osaki [16], Kuto et al., [17] and Banerjee et al., [18]. Guo and
Hwang [19] investigated nonlinear dynamics near an unstable constant equilibrium in the classical Keller-Segel
model. Their result can be interpreted as a rigorous mathematical characterization for pattern formation in the
Keller-Segel model. By using the similar method, Fu and Liu [20] proved that the linear unstable positive
constant equilibrium in the Keller-Segel model with a logistic source is also unstable in the full nonlinear
sense. The emergence of patterns is a phenomenon frequently observed in the physical world [21].

Many authors have investigated the formation of patterns by using self-diffusive reaction-diffusion
models [21–25]. Recently, some researchers made attempts to discover the effect of cross-diffusion on the
pattern formation, and found that with appropriate cross-diffusion coefcients, linear reaction terms are
sufficient to produce pattern formation [26–28], but there is only few attention having been paid to this
direction. Therefore, based on the model (1): First, we analyse criteria of linear stability and instability of
the positive constant equilibrium wc (see Theorem 1). Second, by applying the higher-order energy estimates,
the embedding theorem and the Guo-Strauss’ bootstrap technique (see Guo and Strauss [29]), it is proved that
for given any general perturbation of magnitude δ, its nonlinear evolution is dominated by the corresponding
linear dynamics along a fixed finite number of fastest growing modes, over a time period of ln 1

δ (see Theorem
2). We assert further that the positive constant equilibrium point wc is nonlinearly unstable in the above
conditions (Corollary 1). Each initial perturbation certainly can behave drastically differently from another,
which gives rise to the richness of patterns. Our results provide a quantitative characterization for the
nonlinear evolution of early-stage spatiotemporal pattern formation in the model (1).

The organization of this paper is as follows: in Section 2, we first prove Turing instability does not take
place in the absence of chemotactic effect. Second, we give linear stability and instability criterions for the
model (1), and discuss some properties of solutions for the corresponding linearized system. In Section 3, we
consider the growing modes of (1), and prove the Bootstrap lemma. In Section 4, quantitative characterization
for pattern formation and proof of nonlinear instability are given.

2. Linear stability and instability criterions

In this section, we study in detail linear Stability,linear instability of positive constant equilibrium point
wc = (1, α

β , γ
η ) to the model (1) in a d-dimensional box Ω = Td = (0, π)d(d = 1, 2, 3), and g(u) = µu1(1− u1).

2.1. Stability of positive constant equilibrium point for (1) without chemotaxis

We consider the stability of wc for the corresponding system (1) without chemotaxis

u1t = d1∆u1 + µu1(1− u1), x ∈ Td, t > 0,

u2t = d2∆u2 + αu1 − βu2, x ∈ Td, t > 0,

u3t = d3∆u3 + γu1 − ηu3, x ∈ Td, t > 0,
∂u1

∂xi
=

∂u2

∂xi
=

∂u3

∂xi
= 0, xi = 0, π, 1 ≤ i ≤ d,

u1(x, 0) = u10(x), u2(x, 0) = u20(x), u3(x, 0) = u30(x), x ∈ Td(d = 1, 2, 3).

(3)
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For sake convenience, take w(x, t) = (U1(x, t), U2(x, t), U3(x, t))T and

G(w) =

 g1(w)

g2(w)

g3(w))

 =

 µu1(1− u1)

αu1 − βu2

γu1 − ηu3)

 ,

then

∂G
∂w
|wc ≡ Gw(wc) =

 −µ 0 0
α −β 0
ν 0 −η

 .

Lemma 1. The positive equilibrium point wc of (3) is locally asymptotically stable.

Proof. Let 0 = k1 < k2 < k3 < · · · be the eigenvalues of the operator −∆ on Td with the homogeneous
Neumann boundary condition, and E(ki) be the eigenspace corresponding to ki in H1(Td). Let X = [H1(Td)]3

and Xij =
{

c · φij|c ∈ R3}, where
{

φij, j = 1, · · ·, dim E(ki)
}

is an orthonormal basis of E(ki). Then X = ⊕∞
i=1Xi,

Xi = ⊕
dim E(µi)
j=1 Xij.

Let D = diag(d1, d2, d3). The linearization of (3) at wc is

wt = (D∆ + Gw(wc))w.

For each i ≥ 1, Xi is invariant under the operator D∆ + Gw(wc), and λ is an eigenvalue of this operator
on Xi if and only if it is an eigenvalue of the matrix −kiD + Gw(wc). The characteristic polynomial of −kiD +

Gw(wc) is given by

det(λI − (−kiD + Gw(wc))) =

 λ + kid1 + µ 0 0
−α λ + kid2 + β 0
−γ 0 λ + kid3 + η

 = 0

implies Ψ(λ) = (λ + kid1 + µ)(λ + kid2 + β)(λ + kid3 + η) = 0, then λ1 = −(kid1 + µ), λ2 = −(kid2 + β) and
λ3 = −(kid3 + η). So all the eigenvalues are negative, hence wc is locally asymptotically stable, this complete
the proof.

2.2. Criteria of linear stability and instability

Let û1(x, t) = u1(x, t)− u1c, û2(x, t) = u2(x, t)− u2c, û3(x, t) = u3(x, t)− u3c be nonlinear evolution of a
perturbation around (u1c, u2c, u3c) = (1, α

β , ν
η ), and omitting the symbol “∧ ”, then we rewrite (3) with



u1t = d1∆u1 − χ∆u2 + ξ∆u3 − χ∇(u1∇u2) + ξ∇(u1∇u3)− µu1(1 + u1), x ∈ Td

u2t = d2∆u2 + αu1 − βu2, x ∈ Td, t > 0,

u3t = d3∆u3 + γu1 − ηu3, x ∈ Td, t > 0,
∂u1

∂xi
=

∂u2

∂xi
=

∂u3

∂xi
= 0, xi = 0, π, 1 ≤ i ≤ d,

u1(x, 0) = u10(x), u2(x, 0) = u20(x), u3(x, 0) = u30(x), x ∈ Td(d = 1, 2, 3).

(4)

The corresponding linearized system can be written as

u1t = d1∆u1 − χ∆u2 + ξ∆u3 − µu1, x ∈ Td, t > 0,

u2t = d2∆u2 + αu1 − βu2, x ∈ Td, t > 0,

u3t = d3∆u3 + γu1 − ηu3, x ∈ Td, t > 0,
∂u1

∂xi
=

∂u2

∂xi
=

∂u3

∂xi
= 0, xi = 0, π, 1 ≤ i ≤ d,

u1(x, 0) = u10(x), u2(x, 0) = u20(x), u3(x, 0) = u30(x), x ∈ Td(d = 1, 2, 3).

(5)
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Let w(x, t) ≡ (u1(x, t), u2(x, t), u3(x, t))T, q = (q1, . . . , qd) ∈ Nd and eq(x) =
d

∏
i=1

cos(qixi). Then

{eq(x)}q∈Nd forms a basis of the space of functions in Td that satisfy the homogeneous Neumann boundary
condition. We try to find a normal mode to the linearized system (5) of the following form

w(x, t) ≡ rqeλqteq(x), (6)

where rq is a vector depending on q. Substituting (6) into (5), we have

λqrq =

 −d1q2 − µ χq2 −ξq2

α −d2q2 − β 0
γ 0 −d3q2 − η

 rq := Lqrq,

where q2 = |q|2 =
d
∑

i=1
q2

i . Then the corresponding characteristic equation of Lq is

ψ(λq) = λ3
q + B̄2λ2

q + B̄1λq + B̄0 = 0, (7)

where 
B̄2 = (d1 + d2 + d3)q2 + (µ + β + η) := C21q2 + C22,

B̄1 = (d1d2 + d1d3 + d2d3)q4 + [µ(d2 + d3) + β(d1 + d3) + η(d1 + d2)− αχ

−γξ]q2 + (µβ + µη + βη) := C11q4 + C12q2 + C13,

B̄0 := C01q6 + C02q4 + C03q2 + C04

(8)

and 
C01 := d1d2d3,

C02 := βd1d3 + ηd1d3 + µd2d3 − αχd3 − νξd2,

C03 := βd1d2 + ηd1d3 + µd2d3 − ηαχ− βνξ

C04 := −det(Gw(wc)) = µβη.

(9)

In order to consider instability of wc, we make the following basic assumptions:

(H1) There exists q ∈ Nd such that the matrix Lq has at least one eigenvalue with positive real part;
(H2) d1, d2, d3 > 0 and di 6= dj, i 6= j, i, j = 1, 2, 3.

It is know that a first necessary condition for Turing instability to happen is that di 6= dj(i 6= j), implying that
u1, u2 and u3 must move with different diffusion constants.

For every λ1(q), λ2(q), λ3(q) be the solutions of det(λqI− Lq) = 0. It will be state by Lemma 3 that there
exist finitely many values q ∈ Nd such that

max {Reλ1(q), Reλ2(q), Reλ3(q)} > 0.

Hence there exists one q2 having the largest eigenvalue

λmax = max
q∈Nd

max
1≤i≤3

Reλi(q2) > 0. (10)

(H3) At q = (q1, · · ·, qd) ∈ Nd which attains λmax = Reλi(q), we assume that the Jordan canonical form of the

matrix Lq = Gw(wc) + Q(q2) is J = diag(λ1(q), λ2(q), λ3(q)), where q2 =
d
∑

i=1
q2

i and

Q(q2) :=

 −d1q2 χq2 ξq2

0 −d2q2 0
0 0 −d3q2

 .
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Let us carry on discussion on the characteristic equation (7). Denote

A := B̄2
2 − 3B̄1, B := B̄2B̄1 − 9B̄0, C := B̄2

1 − 3B̄2B̄0

and

∆ = B2 − 4AC = 3
{

4B̄3
1 + 4B̄3

2 B̄0 + 27B̄2
0 − B̄2

2 B̄2
1 − 18B̄2B̄1B̄0

}
:= Q6q12 + Q5q10 + Q4q8 + Q3q6 + Q2q4 + Q1q2 + Q0,

where

Q6 = 3
{

4C3
21C01 + 27C01 − C2

21C2
11 − 18C21C11C01

}
,

Q5 = 6
{

27C01C02 + 2C3
21C02 + 6C2

21C22C01 − C2
21C11C12 − C21C2

11C22

−9C21C11C02 − 9C21C12C01 − 9C22C11C01} ,

Q4 = 3
{

27C02 + 54C01C03 + 4C2
21C03 + 12C2

21C22C02 + 12C21C2
22C01 + 4C2

11

−C2
21C2

12 − 2C11C13C2
21 − 4C21C22C11C03 − C2

22C2
11 − 18C21C11C03

−18C21C12C02 − 18C21C13C01 − 18C22C11C02 − 18C22C12C01} ,

Q3 = 6
{

27C01C04 + 27C02C03 + 2C3
21C04 + 12C3

22C01 + 6C2
21C22C03

+6C21C2
22C02 + 4C11C12 − C2

21C12C13 − C21C22C2
12 − 2C21C22C11C13

−C2
22C11C12 − 9C21C11C04 − 9C21C12C03 − 9C21C13C02

−9C22C11C03 − 9C22C12C02 − 9C22C13C01} ,

Q2 = 3
{

27C03 + 54C02C04 + 4C3
22C02 + 12C2

21C22C04 + 4C2
12 + 12C21C2

22C03

+8C11C13 − C2
21C2

13 − 4C21C22C12C13 − C2
22C2

12 − 2C2
22C11C13 − 18C21C12C04

−18C21C13C03 − 18C22C11C04 − 18C22C13C02 − 18C22C12C03} ,

Q1 = 6
{

27C03C04 + 2C3
22C03 + 6C21C2

22C04 + 4C12C13 − C21C22C2
13 − C12C13C2

22

−9C21C13C04 − 9C22C12C04 − 9C22C13C03} ,

Q0 = 3
{

4C3
22C04 + 4C2

13 + 27C2
04 − C2

22C2
13 − 18C22C13C04

}
.

The derivative of ψ(λq) is ψ′(λq) = 3λ2
q + 2B̄2λq + B̄1. Obviously, equation ψ′(λq) = 0 has two roots as

follows

λ∗1,2(q)Z =
1
3

(
−B̄2 ±

√
B̄2

2 − 3B̄1

)
=

1
3

[
−(C21q2 + C22 ±

√
(C2

21 − 3C11)q4 + (2C21C22 − 3C12)q2 + (C2
22 − 3C13)

]
=

1
3

[
−(C21q2 + C22)±

√
(C21q2 + C22)2 − 3(C11q4 + C12q2 + C13)

]
. (11)

Next, let us give one result concerning the cubic equation in Hu et al., [30] (which was first introduced in
Fan [31]), which is used to discuss the linear stability and instability of positive constant equilibrium solution
for the model (1).

Lemma 2. Let equation x3 + bx2 + cx + d = 0, where b, c, d ∈ R. Let further A = b2 − 3c, B = bc − 9d, C =

c2 − 3bd and ∆ = B2 − 4AC. Then the equation has three real roots if and only if ∆ ≤ 0; the equation has one
real root and a pair of conjugate complex roots if and only if ∆ > 0. Furthermore, the conjugate complex roots are

w =
−2b+Y1/3

1 +Y1/3
2

6 ± i
√

3(Y1/3
1 −Y1/3

2 )
6 , where Y1,2 = bA +

3(−B±
√

B2−4AC)
2 .
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According to Lemma 2, on the one hand, if ∆ ≤ 0, then (7) has three real roots λ1(q), λ2(q), λ3(q), and
denote λ1(q) ≤ λ2(q) ≤ λ3(q). From this, we further infer that λ∗1,2(q) also are real. Moreover, recall that
B̄2 = −(λ1(q) + λ2(q) + λ3(q)) > 0, it means that (7) has at least one eigenvalue with negative real part. On
the other hand, if ∆ > 0, then Equation (7) has one real root λ1(q) and a pair of conjugate complex roots

λ2,3(q) =
−2B̄2 + Y1/3

1 + Y1/3
2

6
± i

√
3
(

Y1/3
1 −Y1/3

2

)
6

with

Y1,2 = B̄2 A +
3
(
−B±

√
B2 − 4AC

)
2

.

Notice by the Routh-Hurwitz criterion that q = 0, in the case of C22C13 > C04, then (8) has three negative
roots. So we consider the case q 6= 0 in the sequel.

In this section, our first main purpose is to give criteria for linear stability and instability of wc.

Theorem 1. (Linear stability and instability). Let wc be positive constant equilibrium solution of (1). Assume that
λ1, λ2 and λ3 are three roots of ψ(λ) = λ3 + B̄2λ2 + B̄1λ + B̄0 = 0, and that λ∗1 and λ∗2 are two roots of ψ′(λ) =

3λ2 + 2B̄2λ + B̄1 = 0, then we have the following conclusions:

(1) If one of the following conditions holds, then wc is linearly stable.

(HS1) ∆ ≤ 0, B̄0 > 0 and λ∗1 < λ∗2 < 0.
(HS2) ∆ > 0, B̄0 > 0 and the conjugate complex roots λ2, λ3 satisfy Reλ2 < 0, Reλ3 < 0.

(2) If one of the following conditions holds, then wc is linearly unstable.

(HU1) ∆ ≤ 0, and one of the following conditions holds:
(HU11) B̄0 > 0 and λ∗2 > λ∗1 > 0.
(HU12) B̄0 > 0 and λ∗2 > 0 > λ∗1 .
(HU13) B̄0 < 0 and λ∗2 > 0 > λ∗1 .
(HU14) B̄0 < 0 and λ∗1 < λ∗2 < 0.
(HU2) ∆ > 0, and one of the following conditions holds:

(HU21) B̄0 > 0 and the conjugate complex roots λ2, λ3 satisfy Reλ2 > 0, Reλ3 > 0.
(HU22) B̄0 < 0 and the conjugate complex roots λ2, λ3 satisfy Reλ2 < 0, Reλ3 < 0.

Here ∆ = B2 − 4AC, A := B̄2
2 − 3B̄1, B := B̄2B̄1 − 9B̄0, C := B̄2

1 − 3B̄2B̄0, in particular, B̄0 = ψ(0) =

−λ1λ2λ3.

Proof. Let ∆ ≤ 0. By Lemma 2, the equation ψ(λ) = λ3 + B̄2λ2 + B̄1λ + B̄0 = 0 has three real roots λ1, λ2 and
λ3 and assume λ1 ≤ λ2 ≤ λ3. Moreover, the equation ψ′(λ) = 3λ2 + 2B̄2λ + B̄1 = 0 has also two real roots λ∗1
and λ∗2 with λ∗1 ≤ λ∗2 , and

ψ′(λ) > 0, ∀λ ∈ (−∞, λ∗1) ∪ (λ∗2 ,+∞),
ψ′(λ) < 0, ∀λ ∈ (λ∗1 , λ∗2).

Therefore,
ψ(λ∗1) ≥ 0, ψ(λ∗2) ≤ 0

and
λ1 ∈ (−∞, λ∗1 ], λ2 ∈ [λ∗1 , λ∗2 ], λ3 ∈ [λ∗2 ,+∞).

Let condition (HU11) hold. If λ∗1 > 0, then λ2 > 0, λ3 > 0. Since ψ(λ) is increasing for all λ ∈ (−∞, λ∗1 ]

and ψ(0) = B̄0 > 0, one has λ1 < 0. If λ1 > 0, this contradicts B̄2 > 0. Hence, wc is linearly unstable.
Under the condition (HU12), if λ∗1 < 0, λ∗2 > 0, then λ1 < 0. Since ψ(λ) is decreasing for all λ ∈ (λ∗1 , λ∗2)

and B̄0 > 0, we have λ2 > 0, λ3 > 0. This means that wc is linearly unstable.
Similarly, it is proved that when condition (HU13) or (HU14) holds, eigenvalues λ1 < 0, λ2 < 0 and λ3 > 0,

that is, wc is linearly unstable.
In the case (HS1), By monotonicity of ψ(λ) for all λ ∈ (λ∗2 ,+∞), it holds λ1 < 0, λ2 < 0 and λ3 < 0.

Hence, wc is linearly stable.
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We now let ∆ > 0. In view of Lemma 2, ψ(λ) = 0 has one real root λ1 and a pair of conjugate complex
roots λ2, λ3. If condition (HU21) holds, then it follows from B̄0 > 0 that real root λ1 < 0. Therefore, wc is
linearly unstable based on Reλ2 > 0, Reλ3 > 0. Similarly, we can also prove that if condition (HU22) holds,
then wc is linearly unstable. If condition (HS2) holds, it is easily to obtain that wc is linearly stable. This
completes the proof.

2.3. Some properties of solutions of the linearized system (5)

Lemma 3. If q ∈ Nd and q2 sufficiently large, then all eigenvalues of Lq have negative real parts.

Proof. Notice that C21, C22, C11, C13, C01, C04 and B̄2 are all positive, where the parameters are mentioned in
(8) and (9). In addition, B̄2, B̄1, B̄0 and B̄2B̄1 − B̄0 are positive if q ∈ Nd sufficiently large. It is follows from the
Routh-Hurwitz criterion that all eigenvalues of Lq have negative real parts for q ∈ Nd sufficiently large.

For given q ∈ Nd, let λ1(q), λ2(q), λ3(q) be the eigenvalues of Lq and the corresponding eigenvectors by
r1(q), r2(q), r3(q). According to eigenvectors, we divide q into the following four cases to analyze:
Case 1: q ∈ Nd

R1:
Lq has three real eigenvalues λ1(q), λ2(q) and λ3(q), and three corresponding linearly independent

eigenvectors r1(q), r2(q) and r3(q). In the case we arrange λ1(q) ≤ λ2(q) ≤ λ3(q).
Case 2: q ∈ Nd

R2:
Lq has a single root λ1(q) = λs(q) and a double root λ2(q) = λ3(q) = λd(q) (or Lq has three repeated

real root λs(q) = λd(q)), meanwhile, there are only two linearly independent real eigenvectors rs(q) and
rd(q). In this case we need find another independent vector r′d(q) satisfying

(Lq − λd(q)I)r
′
d(q) = rd(q).

Case 3: q ∈ Nd
R3:

(7) has a triple eigenvalue λ(q) which only corresponding one linearly independent eigenvector r(q). In
this case, we need to supplement another two independent vectors r′(q) and r′′(q), which satisfy

(Lq − λ(q)I)r′(q) = r(q), (Lq − λ(q)I)r′′(q) = r′(q).

Case 4: q ∈ Nd
C = Nd − (Nd

R1
⋃
Nd

R2
⋃
Nd

R3):
The characteristic equation (7) has one real root and a pair of conjugate complex roots. The eigenvalues

and the corresponding eigenvectors are denoted by λr(q), Reλc(q) + iImλc(q), Reλc(q)− iImλc(q) and r(q),
Rerc(q)+ iImrc(q), Rerc(q)− iImrc(q), respectively. Notice that Rerc(q) and Imrc(q) are linearly independent
vectors.

Given any initial perturbation w(x, 0), it can be expressed as

w(x, 0) = w0(x) = ∑
q∈Nd

wqeq(x)

= ∑
q∈Nd

R1

[w1(q)r1(q) + w2(q)r2(q) + w3(q)r3(q)]eq(x)

+ ∑
q∈Nd

R2

[wd(q)rd(q) + w′d(q)r
′
d(q) + ws(q)rs(q)]eq(x)

+ ∑
q∈Nd

R3

[w(q)r(q) + w′(q)r′(q) + w′′(q)r′′(q)]eq(x)

+ ∑
q∈Nd

C

[wRe(q)Rerc(q) + wIm(q)Imrc(q) + wr(q)rr(q)]eq(x), (12)

where wi(q), wd(q), w′d(q), ws(q), w(q), w′(q), w′′(q), wRe(q), wIm(q), wr(q) ∈ R, i = 1, 2, 3 and
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
wq = w1(q)r1(q) + w2(q)r2(q) + w3(q)r3(q), q ∈ Nd

R1,

wq = wd(q)rd(q) + w′d(q)r
′
d(q) + ws(q)rs(q), q ∈ Nd

R2,

wq = w(q)r(q) + w′(q)r′(q) + w′′(q)r′′(q), q ∈ Nd
R3,

wq = wRe(q)Rerc(q) + wIm(q)Imrc(q) + wr(q)rr(q), q ∈ Nd
C.

(13)

Thus, the unique solution w(x, t) to the linearized system (5) can be written in the following form.

w(x, t) = ∑
q∈Nd

R1

[
w1(q)r1(q)eλ1(q)t + w2(q)r2(q)eλ2(q)t + w3(q)r3(q)eλ3(q)t

]
eq(x)

+ ∑
q∈Nd

R2

{[
wd(q)rd(q) + w′d(q)(r

′
d(q) + rd(q)t)

]
eλd(q)t + ws(q)rs(q)eλs(q)t

}
eq(x)

+ ∑
q∈Nd

R3

[
w(q)r(q) + w′(q)

(
r′(q) + r(q)t

)
+ w′′(q)

(
r′′(q) + r′(q)t + r(q)t2

)]
×eλ(q)teq(x) + ∑

q∈Nd
C

{[
wRe(q) (Rerc(q) cos[(Imλc(q))t]− Imrc(q) sin[(Imλc(q))t])

+wIm(q) (Rerc(q) sin[(Imλc(q))t] + Imrc(q) cos[(Imλc(q))t])
]

e(Reλc(q))t

+ wr(q)rr(q)eλr(q)t
}

eq(x)

:= ∑
q∈Nd

R1

TR1(wq)(x, t) + ∑
q∈Nd

R2

TR2(wq)(x, t) + ∑
q∈Nd

R3

TR3(wq)(x, t) + ∑
q∈Nd

C

Tc(wq)(x, t)

≡ eLtw0(x). (14)

Recall that
λmax = max

q∈Nd
max
1≤i≤3

Reλi(q) > 0,

where λ1(q), λ2(q), λ3(q) are the solutions of (7). Denote

Nd
max = {q ∈ Nd|Reλi(q) = λmax, i = 1, 2, 3}. (15)

By the assumption (H3), the largest eigenvalue λmax can be obtained, provided that q belongs to Nd
R1 or

Nd
C.

In the sequel, we define

I = {i|1 ≤ i ≤ 3}, I1 = {i|λi(q) = λmax, 1 ≤ i ≤ 3},

and
ΛR1 = Nd

R1 ∩Nd
max, ΛC = Nd

C ∩Nd
max,

ΛC1 = {q ∈ ΛC|Reλc(q) = λmax},
ΛC2 = {q ∈ ΛC|λr(q) = λmax},
ΛC3 = {q ∈ ΛC|Reλc(q) = λmax, λr(q) = λmax}.

Let eMtw0(x) be the dominant part of the solution eLtw0(x) of the linearied system (5) and

eMtw0(x) = ∑
q∈ΛR1

∑
i∈I1

wi(q)ri(q)eλmaxteq(x)

+ ∑
q∈ΛC1

[
wRe(q) (Rerc(q) cos[(Imλc(q))t]− Imrc(q) sin[(Imλc(q))t])

+wIm(q) (Rerc(q) sin[(Imλc(q))t] + Imrc(q) cos[(Imλc(q))t])
]

eλmaxt

+ ∑
q∈ΛC2

wr(q)rr(q)eλmaxteq(x)
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+ ∑
q∈ΛC3

{[
wRe(q) (Rerc(q) cos[(Imλc(q))t]− Imrc(q) sin[(Imλc(q))t])

+wIm(q) (Rerc(q) sin[(Imλc(q))t] + Imrc(q) cos[(Imλc(q))t])
]

+ wr(q)rr(q)} eλmaxteq(x). (16)

Since λ1(q), λ2(q), λ3(q) are the roots of (7), let βi(q) = 1
q2 λi(q), then β1(q), β2(q), β3(q) are the three

roots of Fq(βq) = det
(

βqI− 1
q2 Lq

)
= 0 and

Fq(βq) = det


βq + d1 +

µ

q2 −χ ξ

−α βq + d2 +
β

q2 0

−γ 0 βq + d3 +
η

q2


= β3

q + b̄2(q)β2
q + b̄1(q)βq + b̄0(q)

with

b̄2(q) = (d1 + d2 + d3) +
1
q2 (µ + β + η),

b̄1(q) = (d1d2 − αχ− γξ + d1d3 + d2d3 + αχ + γξ),

+
1
q2 [µ(d2 + d3) + β(d1 + d3) + η(d1 + d2)] +

1
q4 (µβ + βη + µη) ,

b̄0(q) = d1d2d3 − αχd3 − γξd2 +
1
q2 (µd2d3 + βd1d2 + ηd1d2) +

1
q4 [µηd2 + βηd2 + µβd3] +

µβη

q6 .

(17)

Moreover, 
lim

q2→∞
b̄2(q) = d1 + d2 + d3 := b̄2,

lim
q2→∞

b̄1(q) = d1d2 + d1d3 + d2d3 := b̄1,

lim
q2→∞

b̄0(q) = d1d2d3 := b̄0.

(18)

One can define a function F∗(βq) of the form

F∗(βq) := β3
q + b̄2β2

q + b̄1βq + b̄0 = (βq + d1)(βq + d2)(βq + d3).

It is clear from the assumption (H2) that the equation F∗(βq) = 0 has different negative roots −d1, −d2, −d3.
For q2 sufficiently large, it follows from Lemma 3 that Reβi(q) < 0, ∀1 ≤ i ≤ 3. Thus

0 > Reβi(q) >
3

∑
j=1

Reβ j(q) = −Reb̄2(q) (19)

and
b̄1(q) = β1(q)β2(q) + β1(q)β3(q) + β2(q)β3(q) ≥ (Imβi(q))2. (20)

For q2 large enough, by (18) and (19), we have

0 > Reβi(q) > −b̄2 − 1 > −∞. (21)

Again combining (18) and (20) yields for q2 sufficiently large

|Imβi(q)| <
√

b̄1 + 1 < +∞. (22)

Applying (21) and (22), for every sequence {qm} ∈ Nd, there exists a subsequence of {qn} such that for
1 ≤ i ≤ 3 there exist limits

lim
n→∞

Reβi(qn), lim
n→∞

Imβi(qn).
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Hence
lim

n→∞
βi(qn) = βi ∈ C. (23)

Notice by (18) and (23) that
−(β1 + β2 + β3) = b̄2 = d1 + d2 + d3,

β1β2 + β1β3 + β2β3 = b̄1 = d1d2 + d1d3 + d2d3,

−β1β2β3 = b̄0 = d1d2d3.

(24)

This means that {β1, β2, β3} is a permutation of {−d1,−d2,−d3}. So for every sequence {qn} ∈ Nd, there
exists a subsequence {qnj} such that

lim
j→∞

βi(qnj) = βi.

Hence we can assume that
lim

q2→∞
βi(q) = −di, ∀1 ≤ i ≤ 3,

or equivalently

lim
q2→∞

1
q2 λi(q) = −di, ∀1 ≤ i ≤ 3. (25)

Using the similar arguments of Lemma 4 in Hoang [? ], the following lemma can be derived.

Lemma 4. If q ∈ Nd and q2 sufficiently large, then λ1(q), λ2(q), λ3(q) are real numbers and λi(q) 6= λj(q),
i 6= j, i, j = 1, 2, 3.

Proof. It follows from the assumptions (H2) and (25) that Reλi(q) 6= Reλj(q), i 6= j. If there exists a sequence
{qn} ∈ Nd such that the sequence λin(qn) /∈ R, then we can choose a subsequence {nm} of {n} and an integer
j, 1 ≤ j ≤ 3 such that inm ≡ j. Hence

lim
q2

nm→∞

1
q2

nm

λj(qnm) = −dj,

and
lim

q2
nm→∞

1
q2

nm

λj(qnm) = −dj,

where λj(qnm) is the complex conjugation of λj(qnm).
Notice that λ1(qnm) ∈ {λ2(qnm), λ3(qnm)}, λ2(qnm) ∈ {λ1(qnm), λ3(qnm)} and λ3(qnm) ∈

{λ1(qnm), λ2(qnm)}, then there exists a subsequence of {nm}, still denoted by {nm} and 1 ≤ l ≤ 3, l 6= j
such that λj(qnm) = λl(qnm), one can obtain

−dj = lim
q2

nm→∞

1
q2

nm

λj(qnm) = lim
q2

nm→∞

1
q2

nm

λl(qnm) = −dl , ∀m ∈ N.

So dj = dl and j 6= l, in contradiction to the assumption (H2). Therefore, for q2 sufficiently large λ1(q),
λ2(q), λ3(q) are real numbers, and we deduce by Reλi(q) 6= Reλj(q) that λi(q) 6= λj(q) whenever i 6= j,
which completes the proof.

3. Growing modes and Bootstrap lemma

3.1. Growing modes in the model (1)

For convenience we will always denote universal positive constants depending on di, χ, ξ, µ, α, β, γ, η

(i = 1, 2, 3) by Ck(k = 1, 2, · · ·). Norm in L2(Td) is denoted by ‖ · ‖.
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Lemma 5. Suppose that (H1)and(H3) hold, and w(x, t) ≡ eLtw0(x) is a solution to the linearized system (5)
with initial condition w0(x). Then there exists a constant Ĉ1 > 0 depending on di, χ, ξ, µ, α, β, γ, η (i = 1, 2, 3)
such that

‖w(·, t)‖ ≤ Ĉ1eλmaxt‖w(·, 0)‖, ∀t ≥ 0. (26)

Proof. We will proceed in the following two cases.
Case 1: For t ≥ 0 ,q ∈ Nd, q2 sufficiently large. By Lemma 4, for q2 sufficiently large, the matrix Lq has three
distinct eigenvalues λ1(q), λ2(q), λ3(q) and the corresponding linearly independent eigenvectors r1(q), r2(q),
r3(q). We first look for eigenvector r1(q) such that

r1(q) = (1, r12(q), r13(q))T,

where r12(q), r13(q) are the solutions of the linear system

(−d2q2 − β− λ1(q))r12(q) + 0 = −α,
0 + (−d3q2 − η − λ1(q))r13(q) = −γ.

r12(q) = α
(d2q2+β+λ1(q))

,

r13(q) =
γ

(d3q2+η+λ1(q))
,

lim
q2→∞

r12 = 0,

lim
q2→∞

r13 = 0,

hence
lim

q2→∞
r1 = (1, 0, 0)T. (27)

Let r2(q) = (r21(q), 1, r23(q))T, r3(q) = (r31(q), r32(q), 1)T be eigenvectors corresponding to the
eigenvalues λ2(q), λ3(q), respectively. Then

lim
q2→∞

r21(q)q2 =
χ

(d2 − d1)
, lim

q2→∞
r23(q)q2 = 0,

and
lim

q2→∞
r31(q)q2 =

−ξ

(d3 − d1)
, lim

q2→∞
r32(q)q2 = 0.

Therefore

lim
q2→∞

r2(q) =
(

χ

(d2 − d3)
, 1, 0

)T
, lim

q2→∞
r3(q) =

(
−ξ

(d1 − d3)
, 0, 1

)T
. (28)

By (27) and (28), we deduce that there exists a constant C1 > 0 such that

|ri(q)| ≤ C1, ∀q ∈ Ω, i = 1, 2, 3. (29)

For q2 sufficiently large, it is follows from (13) that wq =
3
∑

i=1
wi(q)ri(q). Based on Cramer’s Rule and

Hadamard inequality, we have 

|w1(q)| ≤
|r2(q)| × |r3(q)| × |wq|
|det[r1(q), r2(q), r3(q)]|

,

|w2(q)| ≤
|r1(q)| × |r3(q)| × |wq|
|det[r1(q), r2(q), r3(q)]|

,

|w3(q)| ≤
|r1(q)| × |r2(q)| × |wq|
|det[r1(q), r2(q), r3(q)]|

.

(30)
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In terms of (27) and (28), one can obtain

lim
q2→∞

det[r1(q), r2(q), r3(q)] = 1. (31)

Applying (30) and (31) yields

|wi(q)| ≤ C2|wq|, ∀q ∈ Ω, i = 1, 2, 3, (32)

where C2 := max
{

1,
√
( χ

d2−d1
)2 + 1,

√
( ξ

d2−d3
)2 + 1

}
> 0. Then, using (29), (32) and λi(q) ≤ λmax, this shows

that for q2 sufficiently large there exists a constant C3 > 0 independent of q such that∣∣∣wi(q)ri(q)eλi(q)t
∣∣∣ ≤ C1C2eλmaxt|wq|,

which leads to ∥∥∥∥∥ 3

∑
i=1

wi(q)ri(q)eλi(q)teq(x)

∥∥∥∥∥
2

≤ 9C2
3

(π

2

)d
e2λmaxt|wq|2. (33)

Case 2: For t ≤ 1. It is sufficiently to derive standard estimate in L2. From Neumann boundary condition , we
can multiplying the first equation in (6) by u1, the second equation by ku2 and the third by u3, adding them
together, and integrating the result in Td, we have

1
2

d
dt

∫
Td
{|u1|2 + k|u2|2 + |u3|2}dx +

∫
Td
{d1|∇u + 1|2 + kd2|∇u2|2 + d3|∇u3|2 − χ(∇u1∇u2) + ξ(∇u1∇u3)}dx

= −µ
∫
Td

u2
1dx− kβ

∫
Td

u2
2dx− η

∫
Td

u2
3dx + αk

∫
Td

u1u2dx + γ
∫
Td

u1u3dx.

where k = χ2d3
d1d2d3+d2ξ2 .

Then the integrand of the second integral can be estimated as follows

d1|∇u + 1|2 + kd2|∇u2|2 + d3|∇u3|2 − χ(∇u1∇u2) + ξ(∇u1∇u3)

≥ d1

2
|∇u1|2 +

kd2

2
|∇u2|2 +

3d3

2
|∇u3|2 ≥ 0. (34)

Using Young inequality, we deduce that

−µ
∫
Td

u2
1dx− kβ

∫
Td

u2
2dx− η

∫
Td

u2
3dx + αk

∫
Td

u1u2dx + γ
∫
Td

u1u3dx

≤ (−µ +
kα2

2β
+

ν2

2η
)|u1|2 −

kβ

2
|u2|2 −

η

2
|u3|2

≤ max(−µ +
kα2

2β
+

γ2

2η
,− β

2
,

η

2
)
∫
Td
(|u1|2 + k|u2|2 + |u3|2)dx. (35)

Then

1
2

d
dt

∫
Td
{|u1|2 + k|u2|2 + |u3|2}dx ≤ max(−µ +

kα2

2β
+

γ2

2η
,− β

2
,

η

2
)
∫
Td
(|u1|2 + k|u2|2 + |u3|2)dx.

By Grownwall inequality, we can obtain ‖w(·, t)‖ ≤ Ĉ1eλmaxt‖w(·, 0)‖, where Ĉ1 = max(−µ + kα2

2β +

γ2

2η ,− β
2 , η

2 ). This completes the proof.

3.2. Bootstrap lemma and H2-estimate in the model (1)

Denote

∂xixj u =
∂2u

∂xi∂xj
, ∂xi u =

∂u
∂xi

, Dαu =
∂|α|u

∂xα1
1 · · · ∂xαd

d
,
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where α = (α1, · · · , αd), |α| =
d
∑

i=1
αi, i, j = 1, · · · , d. Let us introduce

k =
χ2d3

d1d2d3 + d2ξ2
(36)

By standard theory of parabolic equation, we can establish the existence of local solutions for the model
(4).

Lemma 6. (Local existence). For s ≥ 1(d = 1) and s ≥ 2(d = 2, 3), there exist a T0 > 0 such that the problem
(4) with u1(·, 0), u2(·, 0), u3(·, 0) ∈ Hs(Td) has a unique solution w(·, t) on (0, T0) which satisfies

‖w(t)‖Hs(Td) ≤ C‖w(0)‖Hs(Td),

where C is a positive constant depending on di, ξ, χ, α, β, γ, η(i = 1, 2, 3).

Lemma 7. Let w(x, t) = (u1(x, t), u2(x, t), v(x, t))T be a solution of the nonlinear perturbation system (3). Then

1
2

d
dt ∑
|α|=2

∫
Td

{
|Dαu1|2 + k|Dαu2|2 + |Dαu3|2

}
dx

+ ∑
|α|=2

∫
Td

{
d1

4
|∇(Dαu1)|2 +

kd2

2
|∇(Dαu2)|2 +

3d3

2
|∇(Dαu3)|2

}
dx

+
βk
2 ∑
|α|=2

∫
Td
|Dαu2|2dx +

η

2 ∑
|α|=2

∫
Td
|Dαu3|2dx

≤ Ĉ2‖w‖H2(Td)‖∇
3w‖2 + Ĉ3‖u1‖2,

where Ĉ2 and C0 are the generic constants and Ĉ3 = ( α2ηk+ν2

8βηa2 )c0.

Proof. Let w(x, t) be a solution of (4). It is not hard to verify that if w̃(x, t) = (ũ1(x, t), ũ2(x, t), ũ3(x, t))T is
the even extension of w(x, t) on 2Td = (−π, π)d(d = 1, 2, 3). The w̃(x, t) is also the solution of (4) with the
homogeneous Neumann boundary conditions and periodical boundary conditions on 2Td.

Therefore,

1
2

d
dt

∫
2Td

[
|∂xixj ũ1|2 + k|∂xixj ũ2|2 + |∂xixj ũ3|2

]
dx +

∫
2Td

[
d1|∇(∂xixj ũ1)|2 + kd2|∇(∂xixj ũ2)|2 + d3|∇(∂xixj ũ3)|2

−χ∇(∂xixj ũ1) · ∇(∂xixj ũ2) + ξ∇(∂xixj ũ1) · ∇(∂xixj ũ3)
]

dx

+µ
∫

2Td
|∂xixj ũ1|2dx + kβ

∫
2Td
|∂xixj ũ2|2dx + η

∫
2Td
|∂xixj ũ3|2dx

=
∫

2Td

[
χ∇(∂xixj ũ1) · ∂xixj(ũ1∇ũ2)− ξ∇(∂xixj ũ1) · ∂xixj(ũ1∇ũ3)

]
dx

+αk
∫

2Td
∂xixj ũ1 · ∂xixj ũ2dx + γ

∫
2Td

∂xixj ũ1 · ∂xixj ũ3dx− 2µ
∫

2Td

[
u1|∂xixj ũ1|2 + |∂xi ũ1||∂xj ũ1||∂xixj ũ1|

]
dx

:= J1 + J2 + J3 + J4. (37)

Using Young inequality, we get[
d1|∇(∂xixj ũ1)|2 + kd2|∇(∂xixj ũ2)|2 + d3|∇(∂xixj ũ3)|2 −χ∇(∂xixj ũ1) · ∇(∂xixj ũ2) + ξ∇(∂xixj ũ1) · ∇(∂xixj ũ3)

]
≥ d1

2
|∇(∂xixj ũ1)|2 +

kd2

2
|∇(∂xixj ũ2)|2 +

3d3

2
|∇(∂xixj ũ3)|2. (38)
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The nonlinear term J1 is bounded by

J1 ≤ χ
∫

2Td
|∇(∂xixj ũ1)||∂xixj ũ1 · ∇ũ2|dx + χ

∫
2Td
|∇(∂xixj ũ1)||∂xj ũ1 · ∇(∂xi ũ2)|dx

+χ
∫

2Td
|∇(∂xixj ũ1)||∂xi ũ1 · ∇(∂xj ũ2)|dx + χ

∫
2Td
|∇(∂xixj ũ1)||ũ1∇(∂xixj ũ2)|dx

−ξ
∫

2Td
|∇(∂xixj ũ1)||∂xixj ũ1 · ∇ũ3|dx− ξ

∫
2Td
|∇(∂xixj ũ1)||∂xj ũ1 · ∇(∂xi ũ3)|dx

−ξ
∫

2Td
|∇(∂xixj ũ1)||∂xi ũ1 · ∇(∂xj ũ3)|dx− ξ

∫
2Td
|∇(∂xixj ũ1)||ũ1∇(∂xixj ũ3)|dx

≤ χ‖∇ũ2‖L∞(2Td)‖∇(∂xixj ũ1)‖ · ‖∂xixj ũ1‖ − ξ‖∇ũ3‖L∞(2Td)‖∇(∂xixj ũ1)‖ · ‖∂xixj ũ1‖
+χ‖ũ1‖L∞(2Td)‖∇(∂xixj ũ1)‖‖∇(∂xixj ũ2)‖ − ξ‖ũ1‖L∞(2Td)‖∇(∂xixj ũ1)‖‖∇(∂xixj ũ3)‖

+2χ
d

∑
i=1
‖∇ũ1‖L∞(2Td)‖∂xixj ũ2‖‖∇(∂xixj ũ1)‖ − 2ξ

d

∑
i=1
‖∇ũ1‖L∞(2Td)‖∂xixj ũ3‖‖∇(∂xixj ũ1)‖. (39)

Recalling that the Sobolev imbedding H2(Td) ↪→ L∞(Td) for d ≤ 3, we have

‖g‖L∞(2Td) ≤ C4‖g‖H2(2Td), (40)

‖g‖L4(2Td) ≤ C5‖g‖H2(2Td), (41)

‖g‖L6(2Td) ≤ C6‖g‖H2(2Td). (42)

Notice that 
∫

2Td
∇ũ1dx =

∫
2Td
∇ũ2dx =

∫
2Td
∇ũ3dx = 0,∫

2Td
∂xixj ũ1dx =

∫
2Td

∂xixj ũ2dx =
∫

2Td
∂xixj ũ3dx = 0.

(43)

Moreover, if g ∈ H1(2Td) with
∫

2Td g = 0, then

‖g‖ ≤ (2π)
d
4 ‖g‖L4(2Td) ≤ C7‖g‖H1(2Td) ≤ C8‖∇g‖, d ≤ 3. (44)

It follows from (43) and (44) that

‖∂xi g‖ ≤ C9‖∇(∂xi g)‖, ‖∂xixj g‖ ≤ C9‖∇(∂xixj g)‖

and

‖∇g‖ ≤ C9

(
d

∑
i,j=1,2

‖∂xixj g‖
2

) 1
2

≤ C2
9

 ∑
|α|=2
‖∇(Dαg))‖2

 1
2

. (45)

Together with (40) and (45), we further get

‖∇g‖L∞(2Td) ≤ C10‖∇g‖H2(2Td) ≤ C11‖∇3g‖L2(2Td). (46)

Then as a consequence of(40) and (45), one can obtain

∑
|α|=2

J1 ≤ (χ− ξ)C12‖w̃‖H2(2Td)‖∇
3w̃‖2, (47)

where C12 := C4 + (1 + 2d)C9.
Applying interpolation, we can deduce that for all ε > 0,

‖∂xixj ũ‖
2 ≤ C0

(
ε‖∇(∂xixj ũ)‖

2 +
‖ũ‖2

4ε2

)
. (48)
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By the choice of ε > 0 in (48) such that
(

α2kη+βν2

2βη

)
C0ε = d1/4, then

J2 + J3 ≤ αk
∫

2Td
∂xixj ũ1 · ∂xixj ũ2dx + γ

∫
2Td

∂xixj ũ1 · ∂xixj ũ3dx

≤ α2kη + βγ2

2βη

∫
2Td
|∂xixj ũ1|2dx +

βk
2

∫
2Td
|∂xixj ũ2|2dx +

η

2

∫
2Td
|∂xixj ũ3|2dx

≤ d1

4
‖∇(∂xixj ũ1)‖2 +

βk
2

∫
2Td
|∂xixj ũ2|2dx +

η

2

∫
2Td
|∂xixj ũ3|2dx +

(
α2kη + ν2β

8βηε2

)
C0‖ũ1‖2. (49)

Then as a consequence of(40) ,(41),(42)and (45), one can obtain

∑
|α|=2

J4 ≤ 4µC10‖w̃‖H2(2Td)‖∇
3w̃‖2. (50)

Substituting (47), (49)-(50) into (37), we have

1
2

d
dt ∑
|α|=2

∫
Td

{
|Dαu1|2 + k|Dαu2|2 + |Dαu3|2

}
dx

+ ∑
|α|=2

∫
Td

{
d1

4
|∇(Dαu1)|2 +

kd2

2
|∇(Dαu2)|2 +

3d3

2
|∇(Dαu3)|2

}
dx

+
βk
2 ∑
|α|=2

∫
Td
|Dαu2|2dx +

η

2 ∑
|α|=2

∫
Td
|Dαu3|2dx

≤ Ĉ2‖w‖H2(Td)‖∇
3w‖2 + Ĉ3‖u1‖2,

where Ĉ2 and C0 are the generic constants and Ĉ3 = ( α2ηk+γ2

8βηa2 )c0.This completes the proof of Lemma 7.

Lemma 8. Let w(x, t) be a solution to the system (4) such that for 0 ≤ t ≤ T,

‖w(·, t)‖H2(Td) ≤
1

Ĉ2
min

{
d1

4
,

kd2

2
,

3d3

2

}
(51)

and
‖w(·, t)‖ ≤ 2Ĉ1eλmaxt‖w(·, 0)‖. (52)

Then for 0 ≤ t ≤ T,

‖w(·, t)‖2
H2(Td)

≤ Ĉ4

{
‖w(·, 0)‖2

H2(Td)
+ e2λmaxt‖w(·, 0)‖2

}
, (53)

where Ĉ4 = max{(1 + C2
9)k, 4Ĉ2

1 [1 + Ĉ3(1 + C2
9)/(2λmax)]} ≥ 1, if k ≥ 1. Ĉ4 = max{(1 + C2

9)/k, 4Ĉ2
1 [1 +

Ĉ3(1 + C2
9)/(2λmaxk)]} ≥ 1, if k < 1.

Proof. It follows from (45) that
‖∇w(·, t)‖2 ≤ C2

9 ∑
|α|=2
‖Dαw(·, t)‖2. (54)

So
‖w(·, t)‖2

H2(Td)
≤ ‖w(·, t)‖2 + (1 + C2

9) ∑
|α|=2
‖Dαw(·, t)‖2. (55)

By Lemma 7 and (51), we infer

d
dt ∑
|α|=2

∫
Td

{
|Dαu1|2 + k|Dαu2|2 + |Dαu3|2

}
dx ≤ Ĉ3‖u1‖2+ ≤ Ĉ3‖w(·, t)‖2. (56)
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Integrating (57) and using (52), we conclude

1
2 ∑
|α|=2

∫
Td

{
|Dαu1(·, t)|2 + k|Dαu2(·, t)|2 + |Dαu3(·, t)|2

}
dx

≤ ∑
|α|=2

∫
Td

{
|Dαu1(·, 0)|2 + k|Dαu2(·, 0)|2 + |Dαu3(·, 0)|2

}
dx +

4Ĉ2
1Ĉ3

λmax
e2λmaxt‖w(·, 0)‖2. (57)

We first consider the case k ≥ 1. By (57), we have

∑
|α|=2
‖Dαw(·, t)‖2 ≤ k ∑

|α|=2
‖Dαw(·, 0)‖2 +

4Ĉ2
1Ĉ3

λmax
e2λmaxt‖w(·, 0)‖2.

We see from this estimate and (55) that

‖w(·, t)‖2
H2(Td)

≤ Ĉ4

{
‖w(·, 0)‖2

H2(Td)
+ e2λmaxt‖w(·, 0)‖2

}
, (58)

where Ĉ4 := max
{
(1 + C2

9)k, 4Ĉ2
1

[
1 + Ĉ3(1+C2

9)
λmax

]}
.

On the other hand, for K < 1, we deduce by (57) that

∑
|α|=2
‖Dαw(·, t)‖2 ≤ 1

K

 ∑
|α|=2
‖Dαw(·, 0)‖2 +

4Ĉ2
1Ĉ3

λmax
e2λmaxt‖w(·, 0)‖2

 .

This estimate, combined with (52) and (55) gives

‖w(·, t)‖2
H2(Td)

≤ Ĉ4

{
‖w(·, 0)‖2

H2(Td)
+ e2λmaxt‖w(·, 0)‖2

}
, (59)

where Ĉ4 := max
{

1+C2
9

k , 4Ĉ2
1

[
1 + Ĉ3(1+C2

9)
λmaxk

]}
. This completes the proof of Lemma 8.

4. Main result

Assume θ be a small fixed constant. For δ > 0 arbitrary small, we define the escape time Tδ by

θ = δeλmaxTδ
, (60)

where λmax is the dominant eigenvalue which is the maximal growth rate (see (10)). Obviously,

Tδ =
1

λmax
ln

θ

δ
. (61)

Our main result in this paper is as follows:

Theorem 2. Suppose that (H1),(H2)and(H3) are satisfied. Let w0(x) ∈ H2(Td) with ‖w0(x)‖ = 1. Then there
exist constants δ0 > 0, Ĉ > 0, and θ > 0 depending on di, χ, ξ, µ, α, β, η, γ, (i = 1, 2, 3) such that ∀0 < δ ≤ δ0, if
the initial perturbation of the steady state wc is wδ(·, 0) = δw0, then its nonlinear evolution wδ(·, t) satisfies

‖wδ(·, t)− δeMtw0(x)‖ ≤ Ĉ
{

e−ρt + δ‖w0‖2
H2(Td)

+ δeλmaxt
}

δeλmaxt (62)

for 0 ≤ t ≤ Tδ, and ρ > 0 is the gap between the largest growth rate λmax and the rest of Reλi(q) in (7),
eMtw0(x) defined in (16) is the dominant part of the solution of the linearized system (5).
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Proof. Let wδ(x, t) be the solutions to (4) with initial data wδ(·, 0) = δw0. Define

T∗ = sup

{
t
∣∣∣∣ ∥∥∥wδ(·, t)− δeLtw0

∥∥∥ ≤ Ĉ1

2
δeλmaxt

}
, (63)

T∗∗ = sup
{

t
∣∣∣∣ ∥∥∥wδ(·, t)

∥∥∥
H2(Td)

≤ 1
Ĉ2

min
{

d1

4
,

kd2

2
,

3d3

2

}}
. (64)

From the definition of T∗ and Lemma 5, for ∀0 ≤ t ≤ T∗, we can obtain∥∥∥wδ(·, t)
∥∥∥ ≤ 3

2
Ĉ1δeλmaxt. (65)

Furthermore, by Lemma 8 and the bootstrap argument, we possess∥∥∥wδ(·, t)
∥∥∥

H2(Td)
≤
√

Ĉ4

{
δ‖w0‖H2(Td) + δeλmaxt

}
. (66)

Applying Duhamel’s principle, we know that the solution of (4)

wδ(·, t) = δeLtw0 −
∫ t

0
eL(t−τ)

[
χ∇(uδ

1(τ)∇uδ
2(τ)) + ξ∇(uδ

1(τ)∇uδ
3(τ)) + µuδ

1(τ)(1 + uδ
1(τ)), 0, 0

]
dτ.

(67)
It follows from Lemma 5, (40), (44) and Lemma 8 that for 0 ≤ t ≤ min {Tδ, T∗, T∗∗},∥∥∥wδ(·, t)− δeLtw0

∥∥∥ ≤ Ĉ1Ĉ5

∫ t

0
eλmax(t−τ)‖wδ(τ)‖2

H2(Td)
dτ, (68)

where Ĉ5 = max C2
9{χ + χ C4

C2
9
+ ξ + ξ C4

C2
9
+ µC1}. By (66) and (68), we see that for t ≤ min {Tδ, T∗, T∗∗},

∥∥∥wδ(·, t)− δeLtw0

∥∥∥ ≤ Ĉ1Ĉ4Ĉ5

{
δ‖w0‖2

H2

λmax
+

δeλmaxt

λmax

}
δeλmaxt. (69)

We now prove that if δ0 and θ are chosen such that

θ <
1

Ĉ2Ĉ4
min

{
λmax

4
,

d1

8
,

kd2

4
,

3d3

4

}
, (70)

and √
Ĉ4δ0‖w0‖H2(Td) ≤

1
2Ĉ2

min
{

d1

4
,

kd2

2
,

3d3

2

}
, (71)

as well as

Ĉ4Ĉ5

δ0‖w0‖2
H2(Td)

λmax
<

1
4

, (72)

then Tδ = min {Tδ, T∗, T∗∗} for δ ≤ δ0.
If T∗∗ is the smallest, we can let t = T∗∗ ≤ Tδ in (67). By (70) and (71) we have∥∥∥wδ(T∗∗)

∥∥∥
H2(Td)

≤
√

Ĉ4

∥∥∥wδ
0

∥∥∥
H2(Td)

+
√

C4θ <
1

Ĉ2
min

{
d1

4
,

d2

4
,

d3K
2

}
,

for δ sufficiently small and Ĉ4 ≥ 1, in contradiction to the definition of T∗∗. On the other hand, if T∗ is the
minimum, we can let t = T∗ in (67), so that

∥∥∥wδ(·, T∗)− δeLT∗w0

∥∥∥ ≤ Ĉ1Ĉ4Ĉ5

 δ‖w0‖2
H2(Td)

λmax
+

θ

λmax

 δeλmaxT∗ <
Ĉ1

2
δe,
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for sufficiently small δ0 in (73) and Ĉ5/Ĉ2 ≤ 1. This again contradicts the definition of T∗. Therefore, the
desired assertion follows. Finally, we prove the inequality (62). Notice by (14) that∥∥∥wδ(·, t)− δeMtw0

∥∥∥ ≤ ∥∥wδ(·, t)− δeLtw0
∥∥+ ∥∥∥∥δ ∑

q∈ΛR1

∑
i∈I\I1

wi(q)ri(q)eλiteq(x)
∥∥∥∥

+

∥∥∥∥δ ∑
q∈Nd

R1\ΛR1

∑
i∈I

wi(q)ri(q)eλiteq(x)
∥∥∥∥

+

∥∥∥∥δ ∑
q∈Nd

R2

{[
wd(q)rd(q) + w′d(q)(r

′
d(q) + rd(q)t)

]
eλd(q)t +ws(q)rs(q)eλs(q)t

}
eq(x)

∥∥∥∥
+

∥∥∥∥δ ∑
q∈Nd

R3

[
w(q)r(q) + w′(q)

(
r′(q) + r(q)t

)
+ w′′(q)

(
r′′(q) + r′(q)t + r(q)t2

)]
eλ(q)teq(x)

∥∥∥∥
+

∥∥∥∥δ ∑
q∈ΛC1

wr(q)rr(q)eλr(q)teq(x)
∥∥∥∥+ ∥∥∥∥δ ∑

q∈ΛC2

[
wRe(q) (Rerc(q) cos[(Imλc(q))t]− Imrc(q) sin[(Imλc(q))t])

+wIm(q) (Rerc(q) sin[(Imλc(q))t] + Imrc(q) cos[(Imλc(q))t])
]

e(Reλc(q))teq(x)
∥∥∥∥

+

∥∥∥∥δ ∑
q∈Nd

C\ΛC3

{[
wRe(q) (Rerc(q) cos[(Imλc(q))t]− Imrc(q) sin[(Imλc(q))t])

+wIm(q) (Rerc(q) sin[(Imλc(q))t] + Imrc(q) cos[(Imλc(q))t])
]

e(Reλc(q))t + wr(q)rr(q)eλr(q)t
}

eq(x)
∥∥∥∥

:=
∥∥∥wδ(·, t)− δeLtw0

∥∥∥+ J6 + J7 + J8 + J9 + J10 + J11 + J12. (73)

We next estimate each term Ji(i = 6, 7, 8, · · · , 12) on the right-hand sides of (73). It is not difficult to know
that there are finitely many values q ∈ Nd satisfying Reλi(q) = λmax and |q| is bounded for each q ∈ Nd

max.
For each q ∈ Nd, q2 < N there exists a constant C∗ > 0 such that

|r1(q)|, |r2(q)|, |r3(q)| ≤ C∗, q ∈ Nd
R1,

|rd(q)|, |r′(q)|, |rs(q)| ≤ C∗, q ∈ Nd
R2,

|r(q)|, |r′(q)|, |r′′(q)| ≤ C∗, q ∈ Nd
R3,

|Rerc(q)|, |Imrc(q)|, |rr(q)| ≤ C∗, q ∈ Nd
C.

(74)

By the similar method to prove (32), using (74) and (13) there exists a constant C∗∗ > 0 such that
|w1(q)|, |w2(q)|, |w3(q)| ≤ C∗∗|wq|, q ∈ Nd

R1,

|wd(q)|, |w′d(q)|, |ws(q)| ≤ C∗∗|wq|, q ∈ Nd
R2,

|w(q)|, |w′(q)|, |w′′(q)| ≤ C∗∗|wq|, q ∈ Nd
R3,

|wRe(q)|, |wIm(q)|, |wr(q)| ≤ C∗∗|wq|, q ∈ Nd
C

(75)

and
teλd(q)t ≤ C∗∗, forq ∈ Nd

R2, teλ(q)t, t2eλ(q)t ≤ C∗∗, forq ∈ Nd
R3. (76)

By (29), (32),(74), (75) and ‖w0‖ = 1, there exists a constant Ĉ6 > 0 such that

J2
7 ≤ δ2Ĉ2

6e2(λmax−ρ)t
(π

2

)d
∑

q∈ΛR1

|wq|2 ≤ δ2Ĉ2
6e2(λmax−ρ)t‖w0‖2 ≤ δ2Ĉ2

6e2(λmax−ρ)t,

that is,
J6 ≤ δĈ6e(λmax−ρ)t. (77)

Moreover,
J7 ≤ δe(λmax−ρ)t. (78)
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Similarly, there exists a constant Ĉ7 > 0 such that

Ji ≤ δĈ7e(λmax−ρ)t, i = 8, · · · , 12. (79)

Substituting (69), (77)-(81) into (73) yields

∥∥∥wδ(·, t)− δeMtw0

∥∥∥ ≤ Ĉ1Ĉ4Ĉ5

{
δ‖w0‖2

H2

λmax
+

δeλmaxt

λmax

}
δeλmaxt + Ĉ6δe(λmax−ρ)t + δe(λmax−ρ)t + 5Ĉ7δe(λmax−ρ)t

≤
{
(1 + Ĉ6 + 5Ĉ7)e−ρt +

Ĉ1Ĉ4Ĉ5

λmax

(
δ‖w0‖2

H2(Td)
+ δeλmaxt

)}
δeλmaxt

≤ Ĉ
{

e−ρt + δ‖w0‖2
H2(Td)

+ δeλmaxt
}

δeλmaxt, ∀0 ≤ t ≤ Tδ,

where Ĉ := max{1 + Ĉ6 + 5Ĉ7, Ĉ1Ĉ4Ĉ5
λmax

} and thereby completes the proof.

Corollary 1. (Nonlinear instability). Let the conditions ( H1),(H2) and (H3 ) are holds. Then the positive constant
equilibrium point wc of the problem (1) is nonlinearly unstable in the sense of the L2-norm.

Proof. Notice that Lq0 has an eigenvalue Reλq0 = λmax, if there exists q0 = (q01, . . . , q0d) ∈ Nd
max, and denote

the corresponding eigenvector by rq0 . Assume

w0(x) = κ
r(q0)

|r(q0)|
eq0(x)

with κ = 1/‖eq0‖ =
√
(2/π)d so that ‖w0(x)‖ = 1. In addition, if t = Tδ then for δ sufficiently small, we

require 

δ‖w0(x)‖2
H2(Td)

≤ 1
4Ĉ

,

e−ρTδ
=

(
δ

θ

) ρ
λmax

<
1

8Ĉ
,

θ = δeλmaxTδ
<

1
8Ĉ

.

(80)

It follows from Theorem 2 and (80) that

‖δeMTδ
w0‖ − ‖wδ(·, Tδ)‖ ≤ ‖wδ(·, Tδ)− δeMTδ

w0‖ ≤ Ĉ
{

e−ρTδ
+ δ‖w0‖2

H2(Td)
+ θ
}

θ <
1
2

θ. (81)

Notice that the dominant part of the solution of the linearized system (5) satisfies

‖δeMTδ
w0‖ = ‖δeλmaxTδ

w0‖ = δeλmaxTδ
= θ. (82)

By (81) and (82), we deduce that

‖wδ(·, Tδ)‖ > 1
2

θ > 0.
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de Mathématiques Pures et Appliquées, 100(5), 748-767.

[5] Keller, E. F., & Segel, L. A. (1970). Initiation of slime mold aggregation viewed as an instability. Journal of theoretical
biology, 26(3), 399-415.

[6] Osaki, K., & Yagi, A. (1999). Structure of the stationary solution to Keller–Segel equation in one dimension (Nonlinear
Evolution Equations and Applications). Journal of Mathematical Understanding and Analysis, (1105), 1-9.

[7] Horstmann, D., & Wang, G. (2001). Blow–up in a chemotaxis model without symmetry assumptions. European Journal
of Applied Mathematics, 12(2), 159-177.

[8] Herrero, M. A., & Velázquez, J. J. (1996). Singularity patterns in a chemotaxis model. Mathematische Annalen, 306(1),
583-623.

[9] Winkler, M. (2011). Blow-up in a higher–dimensional chemotaxis system despite logistic growth restriction. Journal
of Mathematical Analysis and Applications, 384(2), 261-272.

[10] Horstmann, D. (2004). From 1970 until present: the Keller–Segel model in chemotaxis and its consequences.
IIJahresbericht der Deutschen Mathematiker-Vereinigung 106, 51-69.

[11] Horstmann, D. (2011). Generalizing the Keller–Segel model: Lyapunov functionals, steady state analysis, and
blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive
interacting species. Journal of nonlinear science, 21(2), 231-270.

[12] Tello, J. I., & Winkler, M. (2007). A chemotaxis system with logistic source. Communications in Partial Differential
Equations, 32(6), 849-877.

[13] Aida, M., & Yagi, A. (2004). Target pattern solutions for chemotaxis–growth system. Scientiae Mathematicae Japonicae,
59(3), 577-590.

[14] Kurata, N. (2008). Bifurcation phenomena of pattern solution to Mimura–Tsujikawa model in one dimension,
GAKUTO International Series. Mathematical Sciences and Applications, 29, 265-278.

[15] Painter, K. J., & Hillen, T. (2011). Spatio–temporal chaos in a chemotaxis model. Physica D: Nonlinear Phenomena,
240(4-5), 363-375.

[16] Okuda, T., & Osaki, K. (2011). Bifurcation of hexagonal patterns in a chemotaxis–diffusion–growth system. Nonlinear
Analysis: Real World Applications, 12(6), 3294-3305.

[17] Kuto, K., Osaki, K., Sakurai, T., & Tsujikawa, T. (2012). Spatial pattern formation in a chemotaxis–diffusion–growth
model. Physica D: Nonlinear Phenomena, 241(19), 1629-1639.

[18] Banerjee, S., Misra, A. P., & Rondoni, L. (2012). Spatiotemporal evolution in a (2+ 1)-dimensional chemotaxis model.
Physica A: Statistical Mechanics and its Applications, 391(1-2), 107-112.

[19] Guo, Y., & Hwang, H. J. (2010). Pattern formation (I): the Keller–Segel model. Journal of Differential Equations, 249(7),
1519-1530.

[20] Fu, S., & Liu, J. (2013). Spatial pattern formation in the Keller–Segel model with a logistic source. Computers &
Mathematics with Applications, 66(3), 403-417.

[21] Zhang, T., & Zang, H. (2014). Delay-induced Turing instability in reaction–diffusion equations. Physical Review E,
90(5), 052908.

[22] Zhang, T., Xing, Y., Zang, H., & Han, M. (2014). Spatio–temporal dynamics of a reaction-diffusion system for a
predator–prey model with hyperbolic mortality. Nonlinear Dynamics, 78(1), 265-277.

[23] Okubo, A. (1980). Diffusion and ecological problems: mathematical models, Biomathematics. Springer-Verlag, Berlin
Heidelberg.

[24] Segel, L. A., & Jackson, J. L. (1972). Dissipative structure: an explanation and an ecological example. Journal of
theoretical biology, 37(3), 545-559.

[25] Peng, Y., & Zhang, T. (2014). Stability and Hopf bifurcation analysis of a gene expression model with diffusion and
time delay. In Abstract and Applied Analysis (Vol. 2014). Hindawi. Article ID 738682.

[26] Tang, X., & Song, Y. (2015). Cross-diffusion induced spatiotemporal patterns in a predator–prey model with herd
behavior. Nonlinear Analysis: Real World Applications, 24, 36-49.

[27] Almirantis, Y., & Papageorgiou, S. (1991). Cross–diffusion effects on chemical and biological pattern formation.
Journal of theoretical biology, 151(3), 289-311.
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