
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Graph prolongation convolutional networks: explicitly multiscale machine
learning on graphs with applications to modeling of cytoskeleton
To cite this article: Cory B Scott and Eric Mjolsness 2021 Mach. Learn.: Sci. Technol. 2 015009

View the article online for updates and enhancements.

This content was downloaded from IP address 106.213.19.213 on 30/06/2023 at 08:58

https://doi.org/10.1088/2632-2153/abb6d2

Mach. Learn.: Sci. Technol. 2 (2021) 015009 https://doi.org/10.1088/2632-2153/abb6d2

OPEN ACCESS

RECEIVED

20 March 2020

REVISED

28 July 2020

ACCEPTED FOR PUBLICATION

9 September 2020

PUBLISHED

1 December 2020

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Graph prolongation convolutional networks: explicitly multiscale
machine learning on graphs with applications to modeling
of cytoskeleton
Cory B Scott and Eric Mjolsness
Department of Computer Science, University of California Irvine, Irvine, California, United States of America

E-mail: scottcb@uci.edu

Keywords:machine learning, graph convolutional networks, molecular dynamics, microtubules

Abstract
We define a novel type of ensemble graph convolutional network (GCN) model. Using optimized
linear projection operators to map between spatial scales of graph, this ensemble model learns to
aggregate information from each scale for its final prediction. We calculate these linear projection
operators as the infima of an objective function relating the structure matrices used for each GCN.
Equipped with these projections, our model (a Graph Prolongation-Convolutional Network)
outperforms other GCN ensemble models at predicting the potential energy of monomer subunits
in a coarse-grained mechanochemical simulation of microtubule bending. We demonstrate these
performance gains by measuring an estimate of the Floating Point OPerations spent to train each
model, as well as wall-clock time. Because our model learns at multiple scales, it is possible to train
at each scale according to a predetermined schedule of coarse vs. fine training. We examine several
such schedules adapted from the algebraic multigrid literature, and quantify the computational
benefit of each. We also compare this model to another model which features an optimized
coarsening of the input graph. Finally, we derive backpropagation rules for the input of our
network model with respect to its output, and discuss how our method may be extended to very
large graphs.

1. Introduction

1.1. Convolution and graph convolution
Recent successes of deep learning have demonstrated that the inductive bias of convolutional neural
networks (CNNs) makes them extremely efficient for analyzing data with an inherent grid structure, such as
images or video. In particular, many applications use these models to make per-node (per-pixel) predictions
over grid graphs: examples include image segmentation, optical flow prediction, anticipating motion of
objects in a scene, and facial detection/identification. Further work applies these methods to emulate physical
models, by discretizing the input domain. Computational Fluid Dynamics and other scientific tasks featuring
partial differential equations (PDEs) or ordinary differential equations (ODEs) on a domain discretized by a
rectangular lattice have seen recent breakthroughs applying machine learning models, like CNNs to handle
data which is structured this way. These models learn a set of local filters whose size is much smaller than the
size of the domain—these filters may then be applied simultaneously across the entire domain, leveraging the
fact that at a given scale the local behavior of the neighborhood around a pixel (voxel) is likely to be similar at
all grid points.

Graph convolutional networks (GCNs) are a natural extension of the above idea of image ‘filters’ to
arbitrary graphs rather than nD grids, which may be more suitable in some scientific contexts. Intuitively,
GCNs replace the image filtering operation of CNNs with repeated passes of: (1) aggregation of information
between nodes according to some structure matrix (2) non-linear processing of data at each node according
to some rule (most commonly a flat neural network which takes as separate input(s) the current vector at

© 2020 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/abb6d2
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/abb6d2&domain=pdf&date_stamp=2020-12-1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5561-2368
https://orcid.org/0000-0002-9085-9171
mailto:scottcb@uci.edu

Mach. Learn.: Sci. Technol. 2 (2021) 015009 C B Scott and E Mjolsness

each node). We refer the reader to a recent survey by Bacciu et al (2019) for a more complete exploration of
the taxonomy graph neural networks.

1.2. Microtubules
As an example of a dataset whose underlying graph is not a grid, we consider a coarse-grained simulation of
a microtubule. Microtubules (MTs) are self-assembling nanostructures, ubiquitous in living cells, that along
with actin filaments comprise a major portion of the dynamic cytoskeleton governing cell shape and
mechanics. Whole-MT biomechanical models would be a useful tool for modeling cytoskeletal dynamics at
the cellular scale. MTs play important structural roles during cell division, cell growth, and separation of
chromosomes (in eukaryotic cells) (Chakrabortty et al 2018). MTs are comprised of a lattice structure of two
conformations (α and β) of tubulin. Free-floating tubulin monomers associate energetically into dimer
subunits, which then associate head-to-tail to form long chain-like complexes called protofilaments.
Protofilaments associate side-to side in a sheet; at some critical number of protofilaments (which varies
between species and cell type) the sheet wraps closed to form a repeating helical lattice with a seam. See
Pampaloni and Florin 2008), Page 303, figure 1. Key properties of MTs are:
Dynamic instability:MTs grow from one end by attracting free-floating tubulin monomers (VanBuren

et al 2005). MTs can spontaneously enter a ‘catastrophe’ phase, in which they rapidly unravel, but can also
‘rescue’ themselves from the catastrophe state and resume growth (Gardner et al 2013, Shaw et al 2003).
Interactions:MTs interact with one another: they can dynamically avoid one another during the growth

phase, or collide and bundle up, or collide and enter catastrophe (Tindemans et al 2014). The exact
mechanism governing these interactions is an area of current research.
Structural strength:MTs are very stiff, with a Young’s Modulus estimated at≈1 GPa for some cases

(Pampaloni and Florin 2008). This stiffness is thought to play a role in reinforcing cell walls (Kis et al 2002).
In this work we introduce a model which learns to reproduce the dynamics of a graph signal (defined as

an association of each node in the network with a vector of discrete or real-valued labels) at multiple scales of
graph resolution. We apply this model framework to predict the potential energy of each tubulin monomer
in a simplified mechanochemical simulation of a microtubule. This trial dataset illustrates the efficiency of
our proposed type of GCN and is a solid proof-of-concept for applying this model to more biologically
accurate microtubule models in the future. In the next section, we discuss the wide variety of MT simulations
which have been previously studied.

1.3. Simulation of MTs and prior work
Non-continuum, non-event-based simulation of large molecules is typically done by representing some
molecular subunit as a particle/rigid body, and then defining rules for how these subunits interact
energetically. Molecular dynamics (MD) simulation is an expansive area of study and a detailed overview is
beyond the scope of this paper. Instead, we describe in general terms some basic ideas relevant to the
numerical simulation detailed in section 3.1. Simulation of MTs is an area of active research, and there are
many fundamental questions yet to be answered. A brief review of previous MT simulation studies (Stewman
and Ma 2018, Gardner et al 2008, Molodtsov et al 2005, VanBuren et al 2005, Wang and Nogales 2005,
Margolin et al 2012) finds a wide variety of different simulation techniques and assumptions. For this reason,
we choose a simple model which is in a qualitative sense the ‘lowest common denominator’ of many of these
models. Our MT simulation is a fixed structure of tubulin with energy terms defined only for
tubulin-tubulin associations (consisting of angle and edge length constraints between monomers). We
simulated the behavior of this structure under bending load in the MD software package LAMMPS
(Plimpton 1993) using Verlet integration (Verlet 1967) and an implicit surrounding solvent (Schneider and
Stoll 1978). For more details of our simulation, see section 3.1 and the source code, available in the
Supplementary Material accompanying this paper (available online at stacks.iop.org/MLST/
1/015001/mmedia). Each timestep of our simulator produces a vector consisting of each monomer’s
contribution to the total potential energy of the structure at that timestep, as detailed in section 3.1. This
vector is the target output we want our machine learning model to predict. In this work, we apply GCNs,
trained via a method we introduce, to predict these energy values for a section of microtubule.

2. Model architecture andmathematical details

2.1. Model description
Many approaches to scientific problems benefit from the use ofmultiscale analysis: separating the behavior at
hand into multiple scale lengths and analyzing each separately. We expect in general to have different
phenomena at different scales, therefore necessitating varying treatments; a typical example would be a
hybrid computational mechanics solver which uses both a continuum model at the largest spatial scale, but

2

https://stacks.iop.org/MLST/1/015001/mmedia
https://stacks.iop.org/MLST/1/015001/mmedia

Mach. Learn.: Sci. Technol. 2 (2021) 015009 C B Scott and E Mjolsness

models spatially smaller interactions with an all-atom simulation (Stüben 2001, Wesseling and Oosterlee
2001). Even when phenomena are the same across multiple spatial scales (i.e. solving the Navier–Stokes
equations on irregular domains (Raw 1996)) we expect to see acceleration of simulations when we use a
multiscale architecture, as in the case of Multigrid solvers for iterative systems. These methods work on the
premise that it if the wavelength of an error is large in comparison to the scale length considered by a solver,
it may take many iterative steps at that scale to resolve the error. It is therefore advantageous to resolve errors
at a scale similar to their characteristic wavelength, which is accomplished by building a hierarchy of solvers
which each address error at a particular scale length. The exact method for reduction in error (a ‘smoothing’
step) is problem dependent; however, strategies for stepping between spatial scales have been invented, with
good theoretical guarantees for accelerated error reduction of the entire system.

It is here necessary to note that the scheduling dictates which scale of error is reduced at a given step in
the algorithm. In multigrid methods, the actual fine-to-coarse mapping (or vice versa) is given by
multiplying the current solution by either a restriction or prolongation matrix, respectively. Typically these
matrices are constrained, for example to be norm-preserving. This is similar in both motivation and practice
to the matrix multiplication we use in our model architecture, detailed below and in section 2.4.

Multiscale architectures are also a staple of machine learning methods. CNNs, as described in section 1.1,
are an example of such a system: features are propagated through the network so that the nodes in the final
layer are aggregating information from a wide visual area. Motivated by both CNNs and the multiscale
method literature, we develop a model which uses a multiscale architecture to learn MD at multiple spatial
scales. Input is coarsened to each of these scales by applying an optimized linear projection (for details of this
optimization, see section 3.2). At each scale, a GCN processes that scale’s information, analogous to the
lateral connections in U-Net (Ronneberger et al 2015). Again analogously to the ‘upscaling’ connection in
U-Net, the output of these GCNs is upsampled using the inverse of the same optimized linear projection
used in the prior downsampling step. These outputs are all summed to produce a final model prediction at
the finest scale. In the rest of this section, we first provide some general mathematical background (section
2.2), formally define Graph Convolution (section 2.3), and finally use these definitions to formally specify
our model architecture in (section 2.4).

2.2. Mathematical background
Definitions: For all basic terms (graph, edge, vertex, degree) we use standard definitions. We use the
notation {xi}bi=a to represent the sequence of xi indexed by the integers a, a+ 1, a+ 2,…b. When X is a
matrix, we will write [X]ij to denote the entry in the ith row, jth column.
Graph Laplacian: The graph Laplacian is the matrix given by L(G) = A(G)− diag(A(G) · 1) where A(G)

is the adjacency matrix of G, and 1 is an appropriately sized vector of 1 s. The graph Laplacian is given by
some authors as the opposite sign.
Linear graph diffusion distance (GDD): Given two graphs G1 and G2, with |G1| ≤ |G2| the Linear GDD

D(G1,G2) is given by:

D(G1,G2) = inf
P|C(P)
α>0

∣∣∣∣∣∣∣∣ 1αPL(G1)−αL(G2)P

∣∣∣∣∣∣∣∣
F

(1)

where C(P) represents some set of constraints on P, α is a scalar with α> 0, and || · ||F represents the
Frobenius norm. We take C(P) to be orthogonality: PTP = I. Note that since in general P is a rectangular
matrix, it may not be the case that PPT = I. Unless stated otherwise all P matrices detailed in this work were
calculated with α = 1, using the procedure laid out in the following section, in which we briefly detail an
algorithm for efficiently computing the distance in the case where α is allowed to vary. The efficiency of this
algorithm is necessary to enable the computation of the LGDD between very large graphs, as discussed in
section 5.3.
Prolongationmatrix: we use the term ‘prolongation matrix’ to refer to a matrix which is the optimum of

the minimization given in the definition of the LGDD.

2.3. Graph convolutional layer definition
We follow the GCN formulation given by Kipf and Welling (2016). Assuming an input tensor X of
dimensions n× F (where n is the number of nodes in the graph and F is the dimension of the label at each

node), we inductively define the layerwise update rules for a GCN GCN

(
Zi,X,

{
θ
(i)
l

}m

l=1

)
as:

X0 = X

Xm = gm
(
ZiXm−1W

(i)
m + b(i)m

)
,

3

Mach. Learn.: Sci. Technol. 2 (2021) 015009 C B Scott and E Mjolsness

where gm is the activation function of themth layer.

2.4. Graph prolongation convolutional networks
The model we propose is an ensemble of GCNs at multiple scales, with optimized projection matrices
performing the mapping in between scales (i.e. between ensemble members). More formally, Let {Gi}ki=1

represent a sequence of graphs with |G1| ≥ |G2| . . .≥ |Gk|, and let {Zi = z(Gi)}ki=1 be their structure matrices
(for some chosen method z of calculating the structure matrix given the graph). In all experiments in this
paper, we take z(G) = L(G), the graph Laplacian, as previously defined1. In an ensemble of GCNs, let

θ
(i)
l =

{
W(i)

l ,b(i)l

}
represent the parameters (filter matrix and bias vector) in layer l of the ith network.

When i = j− 1, let Pi,j be an optimal (in either the sense of GDD, or in the sense we detail in section 4.5)
prolongation matrix from L(Gj) to L(Gi), i.e. Pi,j = arg infP|C(P)

∣∣∣∣PL(Gj)− L(Gi)P
∣∣∣∣
F
. Then, for i< j− 1, let

Pi,j be shorthand for the matrix product Pi,i+1Pi+1,i+2 . . .Pj−1,j. For example, P1,4 = P1,2P2,3P3,4.
Our multiscale ensemble model is then constructed as:

GPCN

(
{Zi}ki=1 ,X,

{{
θ
(i)
l

}mi

l=1

}k

i=1
,{Pi,i+1}k−1

i=1

)
= GCN

(
Z1,X,

{
θ
(1)
l

}m1

l=1

)
+

k∑
i=2

P1iGCN
(
Zi,P

T
1iX,

{
θ
(i)
l

}mi

l=1

)
(2)

This model architecture is illustrated in figure 1. When the P matrices are constant/fixed, we will refer to this
model as a GPCN, for Graph Prolongation-Convolutional Network. However, we find in our experiments in
section 4.5 that validation error is further reduced when the P operators are tuned during the same gradient
update step which updates the filter weights, which we refer to as an ‘adaptive’ GPCN or A-GPCN. We
explain our method for choosing Zi and optimizing P matrices in section 4.5.

3. Dataset generation and reducedmodel construction

In this section we describe some of the ancillary numerical results needed to reproduce and understand our
main machine learning results in section 4.

3.1. Dataset
In this section we detail the process for generating the simulated microtubule data for comparison of our
model with other GCN ensemble models. Our MT structure has 13 protofilaments (each 48 tubulin
monomers long). As in a biological microtubule, each tubulin monomer is offset (along the axis parallel to
the protofilaments) from its neighbors in adjacent protofilaments, resulting in a helical structrure with a
pitch of 3 tubulin units. We refer to this pitch as the ‘offset’ in section 3.3. Each monomer subunit (624 total)
is represented as a point mass of 50 Dalton (8.30× 10−15 ng). The diameter of the whole structure is 26 nm,
and the length is≈260 nm. The model itself was constructed using Moltemplate (Jewett et al 2013), a tool for
constructing large regular molecules to be used in LAMMPS simulations. Our Moltemplate structure files
were organized hierarchically, with: tubulin monomers arranged into α-β dimer pairs; which were then
arranged into rings of 13 dimers; which were then stacked to create a molecule 48 dimers long. Note that this
organization has no effect on the final LAMMPS simulation: we report it here for reproducibility, as well as
providing the template files in the supplementary material accompanying this paper.

For this model, we define energetic interactions for angles and associations only. No steric or dihedral
interactions were used: for dihedrals, this was because the lattice structure of the tube meant any set of four
molecules contributed to multiple, contradictory dihedral interactions2. Interaction energy of an association
b was calculated using the ‘harmonic’ bond style in LAMMPS, i.e. E(b) = Ltype(b)(length(b)− b0)

2
, where b0

is the resting length and L is the strength of that interaction (L varies according to bond type). The energy of
an angle ϕ was similarly calculated using the ‘harmonic’ angle style, i.e. E(ϕ) = Ltype(ϕ)(ϕ−ϕ0)

2
, where ϕ0 is

the resting angle and k is again the interaction strength, and L again depends on the angle type of ϕ3. The

1 Other GCN research uses powers of the Laplacian, the normalized Laplacian, the symmetric normalized Laplacian, etc. Comparison of
these structure matrices is beyond the scope of this paper.
2Association and angle constraints were sufficient to replicate the bending resistance behavior ofMTs.Wehope to run a similar experiment
using higher-order particle interactions (which may be more biologically plausible), in future work.
3 The LAMMPS manual uses the character K to represent the interaction coefficient; we have used L to distinguish it from the spring
constant k, for which we have L= k

2
.

4

Mach. Learn.: Sci. Technol. 2 (2021) 015009 C B Scott and E Mjolsness

Figure 1. Top: Schematic of GPCN model. Data matrix X is fed into the model and repeatedly coarsened using optimized
projection matrices Pik, illustrated by purple arrows. These coarsened data matrices are separately fed into GCN models,
producing predictions at each scale. Each blue arrow represents an upsample-and-add operation, where the upsampling is
performed with the transpose of the Pik. The final output of the ensemble is the projected sum of the outputs of each component
GCN. Middle and bottom: mathematical details of upsampling and downsampling steps from top diagram. See equation (2) for
details.

resting lengths and angles for all energetic interactions were calculated using the resting geometry of our
microtubule graph Gmt: a LAMMPS script was used to print the value of every angle interaction in the
model, and these were collected and grouped based on value (all 153◦ angles, all 102◦ angles, etc). Each
strength parameter was varied over the values in {3.0, 9.0, 18.0, 30.0, 39.0, 48.0, 57.0}, producing 75 parameter
combinations. Langevin dynamics were used, but with small temperature, to ensure stability and emphasize
mechanical interactions. See table 1 and figure 3 for details on each strength parameter. See figure 4 for an
illustration of varying resting positions and final energies as a result of varying these interaction parameters.

GNU Parallel (Tange 2011) was used to run a simulation for each combination of interaction parameters,
using the particle dynamics simulation engine LAMMPS. In each simulation, we clamp the first two rings of
tubulin monomers (nodes 1–26) in place, and apply force (in the negative y direction) to the final two rings
of monomers (nodes 599–624). This force starts at 0 and ramps up during the first 128 000 timesteps (one
step= 0.018 ns) to its maximum value of 9× 10−14 N. Once maximum force is reached, the simulation runs
for 256 000 additional timesteps, which in our experience was long enough for all particles to come to rest.
See figure 2 for an illustration (visualized with Stukowski (2010)) of the potential energy per-particle at the
final frame of a typical simulation run. Every K = 32 000 timesteps, we save the following for every particle:
the position x, y, z; components of velocity vx,vy,vz; components of force Fx,Fy,Fz; and the potential energy
of the particle E. The dataset is then a concatenation of the 12 saved frames from every simulation run,
comprising all combinations of input parameter values, where for each frame we have:

xi, the input graph signal, a 624× 10 matrix holding the position and velocity of each particle, as well as
values of the four interaction coefficients; and

yi, the output graph signal, a 624× 1 matrix holding the potential energy calculated for each particle.
We note here that none of the inputs to the model encode information about any of the statistics of the

system as a whole (for example, the total energy, the temperature or density of the surrounding solvent, etc).
This was not necessary in our example simulations because these factors did not vary in our experiment.

5

Mach. Learn.: Sci. Technol. 2 (2021) 015009 C B Scott and E Mjolsness

Figure 2.Microtubule model under bending load. Color of each particle indicates the sum of that particle’s share of all of the
energetic interactions in which it participates. This view is on the claimed end; the other end, out of view, has a constant force
applied. The flexural rigidity (EI) we measure from the stiffest MTs we simulate is within the (broad) range of values found by
prior work for taxol-stabilized MTs (both simulated and measured; see Kikumoto et al (2006), Takasone et al (2002), VanBuren
et al (2005)).

Figure 3.Microtubule model structure. Red spheres represent α-tubulin; purple spheres represent β-tubulin. Highlighted atoms
at center are labeled to show example energetic interactions: each type of interaction indicated in table 1 (using the particle labels
in this image) is applied everywhere in the model where that arrangement of particle and association types occurs in that position.

Figure 4. Changes in stiffness of microtubule model under constant load, as parameters controlling interaction strength are
varied. We see qualitative differences in behavior as spring constants are adjusted between 0.1 and 1.9. The left and right images
show the final timestep of simulations where all spring constants were set to the minimum and maximum strength, respectively.
Particles (tubulin monomers) are colored according to their contribution to total potential energy of the configuration, identically
to figure 2. All pictures show the microtubule at rest e.g. at the end of the simulation run using that parameter set.

A more detailed data input would likely be necessary for our model to be implemented in a more
complicated simulation scenario that tuned any of these system quantities between runs.

During training, after a training/validation split, we normalize the data by taking the mean and standard
deviation of the Ntrain × 624× 10 input and Ntrain × 624× 1 output tensors along their first axis. Each data
tensor is then reduced by the mean and divided by the standard deviation so that all 624× 10 inputs to the
network have zero mean and unit standard deviation. We normalize using the training data only.

3.2. Efficient calculation of GDD
The joint optimization given in the definition of Linear GDD (equation (1)) is a nested optimization
problem. If we set

f(α) = D(G1,G2|α)

= inf
P|C(P)

∣∣∣∣∣∣∣∣ 1αPL(G1)−αL(G2)P

∣∣∣∣∣∣∣∣
F

,

6

Mach. Learn.: Sci. Technol. 2 (2021) 015009 C B Scott and E Mjolsness

Table 1. Description of energetic interactions in microtubule simulation, according to the labels in figure 3.

ASSOCIATION INTERACTIONS

Description Examples Resting Length Strength Param.
Lateral association inside lattice 1, 3), (2, 4) 5.15639 nm LATASSOC

Lateral association across seam 5, 8), (6, 9) 5.15639 nm LATASSOC

Longitudinal association 1, 2), (3, 4) 5.0 nm LONGASSOC

ANGLE INTERACTIONS

Description Examples Resting Angle Strength Param.
Pitch angle inside lattice 1, 3, 5), (2, 4, 6) 153.023◦ LATANGLE

Longitudinal angle 5, 6, 7), (8, 9, 10) 180◦ LONGANGLE

Lattice cell acute angle 3, 4, 6), (3, 5, 6), (5, 8, 9), (6, 9, 10) 77.0694◦ QUADANGLES

Lattice cell obtuse angle 4, 3, 5), (4, 6, 5), (6, 5, 8), (6, 9, 8) 102.931◦ QUADANGLES

then each evaluation of f requires a full optimization of the matrix P subject to constraints C. When L(G1)
and L(G2) are Graph Laplacians, f (α) is continuous, but with discontinuous derivative, and has many local
minima (see figure 5). As a result, the naive approach of optimizing f (α) using a univariate optimization
method like Golden section Search is inefficient. In this section we briefly describe a procedure for
performing this joint optimization more efficiently. For a discussion of variants of the LGDD, as well as the
theoretical justification of this algorithm, see Scott and Mjolsness (2019b).

First, we note that by making the constraints on P more restrictive, we upper-bound the original
distance:

D(G1,G2) = inf
P|C(P)
α>0

∣∣∣∣∣∣∣∣ 1αPL(G1)−αL(G2)P

∣∣∣∣∣∣∣∣
F

≤ inf
P|S(P)
α>0

∣∣∣∣∣∣∣∣ 1αPL(G1)−αL(G2)P

∣∣∣∣∣∣∣∣
F

. (3)

In our case, C(P) represents orthogonality. As a restriction of our constraints we specify that P must be
related to a subpermutationmatrix (an orthogonal matrix having only 0 and 1 entries) P̃ as follows:
P= U2P̃UT

1 , where the U i are the fixed matrices which diagonalize L(Gi): L(Gi) = UiΛiUT
i . Then,

D(G1,G2)≤ inf
P|S(P)
α>0

∣∣∣∣∣∣∣∣ 1αPL(G1)−αL(G2)P

∣∣∣∣∣∣∣∣
F

= inf
P̃|subperm(P̃)

α>0

∣∣∣∣∣∣∣∣ 1αU2P̃U
T
1U1Λ1U

T
1

−αU2Λ2U
T
2U2P̃U

T
1

∣∣∣∣
F

= inf
P̃|subperm(P̃)

α>0

∣∣∣∣∣∣∣∣ 1αU2P̃Λ1U
T
1 −αU2Λ2P̃U

T
1

∣∣∣∣∣∣∣∣
F

= inf
P̃|subperm(P̃)

α>0

∣∣∣∣∣∣∣∣U2

(
1

α
P̃Λ1 −αΛ2P̃

)
UT
1

∣∣∣∣∣∣∣∣
F

.

Because the U i are rotation matrices (under which the Frobenius norm is invariant), this further simplifies to

D(G1,G2)≤ inf
P̃|subperm(P̃)

α>0

∣∣∣∣∣∣∣∣ 1α P̃Λ1 −αΛ2P̃

∣∣∣∣∣∣∣∣
F

.

Furthermore, because the Λi are diagonal, this optimization is equivalent to a rectangular linear

assignment problem (RLAP) (Bijsterbosch and Volgenant 2010), between the diagonal entries λ(1)
j and λ

(2)
l

of Λ1 and Λ2, respectively, with the α-dependent cost of an assignment given by:

cα(λ
(1)
j ,λ

(2)
l) =

(
1

α
λ
(1)
j −αλ

(2)
l

)2

.

RLAPs are extensively studied. We use the general LAP solving package lapsolver (Heindl 2018) to comute P̃.
In practice (and indeed in this paper) we set often set α = 1, in which case the solution P̃ of the RLAP only

7

Mach. Learn.: Sci. Technol. 2 (2021) 015009 C B Scott and E Mjolsness

Figure 5. Plot of Linear Graph Diffusion Distance between two small random graphs, as α is varied. Each gray curve shows the
objective function when P is fixed, as a function of α, and each curve represents a P matrix which is optimal at any value of α in
the plotted range. The red curve shows the lower convex hull of all gray curves. Note that it is continuous but has discontinuous
slope. Black arrows represent local optima. The discontinuous slope and high number of local optima illustrate why optimizing
this function using univariate search over α is inefficient.

Figure 6. Directed Graph Diffusion Distance (GDD) between offset tube graphs and Gmt. Table cells colored by value. We see
from this comparison that the two graphs which are closest to Gmt are GTube(24,3,0) and GTube(24,3,0) with an edge weight of 2 for
connections along the seam, motivating our choice of GTube(24,3,0) (unweighted) as the coarsest graph in our hierarchy.

acts as a preconditioner for the orthogonally-constrained optimization over P. More generally, when alpha is
allowed to vary (and therefore many RLAPs must be solved), a further speedup is attained by re-using partial
RLAP solutions from previously-tested values of α to find the optimal assignment at α ′. We detail how this
may be done in out recent work (Scott and Mjolsness 2019b).

For the P matrices used in the experiments in this work, we set α = 1 and used lapsolver to find an
optimal assignment P̃. We then initialized an orthogonally-constrained optimization of 1 with P= U2P̃UT

1 .
This constrained optimization was performed using Pymanopt (Townsend et al 2016).

3.3. Graph coarsening
In this section we outline a procedure for determining the coarsened structure matrices to use in the
hierarchy of GCNmodels comprising a GPCN. We use our microtubule graph as an example. In this case, we
have two a-priori guidelines for producing the reduced-order graphs: (1) the reduced models should still be a
tube and (2) it makes sense from a biological point of view to coarsen by combining the α-β pairs into single
subunits. Given these restrictions, we can explore the space of coarsened graphs and find the coarse graph
which is nearest to our original graph (under the GDD).

Our microtubule model is a tube of length 48 units, 13 units per complete ‘turn’, and with the seam offset
by three units. We generalize this notion as follows: Let p be the offset, and k be the number of monomers in

8

Mach. Learn.: Sci. Technol. 2 (2021) 015009 C B Scott and E Mjolsness

Figure 7. Three graphs used to create structure matrices for our GPCN model. Top: microtubule graph. Center: Offset tube with
13 subunits per turn, length 24, and offset 1. Bottom: Tube with 3 subunits per turn, no offset, and length 24.

one turn of the tube, and n the number of turns of a tube graph GTube(n,k,p). The graph used in our
simulation is thus Gmt = GTube(48,13,3). We pick the medium scale model Ginter to be GTube(24,13,1), as this is
the result of combining each α−β pair of tubulin monomer units in the fine scale, into one tubulin dimer
unit in the medium scale. We pick the coarsest graph Gcoarse by searching over possible offset tube graphs.
Namely, we vary k∈ {3, 4,… 12} and p∈ {0, 1, 2, 3}, and compute the optimal P* and its associated distance
D(GTube(24,k,p),Gmt|P= P∗). Figure 6 shows the distance between Gmt and various other tube graphs as
parameters p and k are varied. The nearest GTube(24,k,p) to Gmt is that with p = 0 and k = 3. Note that
figure 6 has two columns for each value of k: these represent the coarse edges along the seam having weight
(relative to the other edges) 1 (marked with an S) or having weight 2 (no S). This is motivated by the fact that
our initial condensing of each dimer pair condensed pairs of seam edges into single edges.

4. Machine learning experiments

4.1. Experimental procedure
This section contains several experiments comparing our model, and its variants, to other types of GCNs. All
models were trained using ADAM with default hyperparameters, in TensorFlow (Abadi et al 2016). Random
seeds for Python, TensorFlow, Numpy, and Scipy were all initialized to the same value for each training run,
to ensure that the train/validation split is the same across all experiments, and the batches of drawn data are
the same. See supplementary material for version numbers of all software packages used. Training batch size
was set to 8, all GCN layers have ReLU activation, and all dense layers have sigmoidal activation with the
exception of the output layer of each network (which is linear). All modes were trained for 1000 epochs of 20
batches each. The time per batch of each model is listed in table 4.

Since hardware implementations may differ, we estimate the computational cost in Floating Point
OPerations (FLOPs) of each operation in our models. The cost of a graph convolutional layer with n× n
structure matrix Z, n× F input data X, and F×C filter matrixW is estimated as: nF(|Z|+C), where |Z| is
the number of nonzero entries of Z. This is calculated as the sum of the costs of the two matrix
multiplications X ·W and Z ·XW, with the latter assumed to be implemented as sparse matrix multiplication
and therefore requiring O(|Z|nF) operations. For implementation reasons, our GCN layers (across all
models) do not use sparse multiplication; if support for arbitrary-dimensional sparse tensor outer products
is included in TensorFlow in the future, we would expect the wall-clock times in table 4 to decrease. The cost
of a dense layer (with n× F input data X, and F×C filter matrixW) applied to every node separately is
estimated as: O(nFC). The cost of taking the dot product between a n× kmatrix and a k×mmatrix (for
example, the restriction/prolongation by P) is estimated as O(nmk).

For GPCN models, P matrices were calculated using Pymanopt (Townsend et al 2016) to optimize
equation (1) subject to orthogonality constraints. The same P were used to initialize the (variable) Pmatrices
of A-GPCN models.

4.2. Evaluation of GPCN variants
Our proposed model uses a hierarchy of GCNs to predict energy of a molecule at several spatial scales. The
computational cost of a graph convolutional layer is approximately quadratic in the number of nodes in the

9

Mach. Learn.: Sci. Technol. 2 (2021) 015009 C B Scott and E Mjolsness

Figure 8. Comparison of mean squared error (MSE) on held-out validation data (normalized by averaging over the validation set)
as a function of FLOPs expended, for variants of our model. We see that the adaptive and non-adaptive models occupy separate
regimes (the adaptive models are superior), and within each the depth-3 model outperforms the depth-2 one.

underlying graph. We would therefore expect to see efficiency gains when some number of graph convolution
layers are operating on a reduced graph. In this subsection we present numerical experiments showing that
this is indeed the case: the accuracy gained (per unit of computational expenditure) is higher for deeper
hierarchies. Additionally, the adaptive model(s) universally outperform their non-adaptive counterparts.

We compare the following versions of our model:

• a two-level GPCN with static P-matrices;
• a three-level GPCN with static P-matrices;
• both of the above, butwithPmatrices allowed to vary during training (adjustedwith the same backpropaga-
tion signals which are used to modify the convolution weights).

Figure 8 and table 3 summarize these results.

4.3. Evaluation of training schedules
In contrast to the prior section, where we use the same training strategy and evaluate the efficiency of
different variants of our model, in this section we fix the model architecture and evaluate the effect of
different training schedules. Specifically, we compare the computational cost of training the entire GPCN at
once, versus training the different ‘resolutions’ (meaning the different GCNs in the hierarchy) of the network
according to a more complicated training schedule. This approach is motivated by recent work in
coarse-to-fine training of both flat and CNNs (Scott and Mjolsness 2019a, Zhao et al 2019, Haber et al 2018,
Dou and Wu 2015, Ke et al 2017), as well as the extensive literature on algebraic multigrid (AMG) methods
(Vanek et al 1996).

AMG solvers for differential equations on a mesh (which arises as the discretization of some volume to be
simulated) proceed by performing numerical ‘smoothing steps’ at multiple resolutions of discretization. The
intuition behind this approach is that modes of error should be smooth at a spatial scale which is equivalent
to their wavelength, i.e. the solver should not spend many cycles resolving long-wavelength errors at the
finest scale, since they can be resolved more efficiently at the coarse scale. Given a solver and a hierarchy of
discretizations, the AMG literature defines several types of training procedures or ‘cycle’ types (F-cycle,
V-cycle, W-cycle). These cycles can be understood as being specified by a recursion parameter γ, which
controls how many times the smoothing or training algorithm visits all of the coarser levels of the hierarchy
in between smoothing steps at a given scale. For example, when γ = 1 the algorithm proceeds from fine to
coarse and back again, performing one smoothing step at each resolution—a ‘V’ cycle.

We investigate the efficiency of training 3-level GPCN and A-GPCN (as described in section 4.2), using
multigrid-like training schedules with γ ∈ {0, 1, 2, 3}, as well as ‘coarse-to-fine’ training: training the coarse
model to convergence, then training the coarse and intermediate models together (until convergence), then
finally training all three models at once. Error was calculated at the fine-scale. For coarse-to-fine training
convergence was defined to have occurred once 10 epochs had passed without improvement of the validation
error.

Our experiments (see figure 9) show that these training schedules do result in a slight increase in
efficiency of the GPCN model, especially during the early phase of training. The increase is especially

10

Mach. Learn.: Sci. Technol. 2 (2021) 015009 C B Scott and E Mjolsness

Figure 9. Effect of varying training schedule for training a GPCN model. Notably, The various multigrid training cycles result in
models which are more accurate, and do so more efficiently. Top: FLOPs vs. NMSE for training GPCNs with multigrid training
schedules. Bottom: same, but with A-GPCNs.

pronounced for the schedules with γ = 2 and γ = 3. Furthermore, these multigrid training schedules
produce models which are more accurate than the GPCN and A-GPCN models trained in the default
manner. As a final note, previous work (Scott and Mjolsness 2019a) has shown that these types of multiscale
neural network architectures, with this type of multigrid training schedule may also be more efficient in a
‘statistical’ sense—that is, require much less data to find an equivalent or better local minimum of error. A
third type of efficiency results from the fact that once trained, querying the machine learning model is faster
than running an entire simulation. This means that the cost of generating the initial dataset and training the
model is amortized over the time gained by using the machine learning model as an approximator. We would
expect our model to also perform well under both of these latter measures of efficiency—one run of our
fine-scale simulation took approximately 20 min, whereas querying the trained GPCN takes tenths of
milliseconds. However, quantifying this possibility further is beyond the scope of this paper.

4.4. Comparison with DiffPool
Graph coarsening procedures are in general not differentiable. DiffPool (Ying et al 2018) aims to address this
by constructing an auxiliary GCN, whose output is a pooling matrix. Formally: Suppose that at layer l of a
GCN we have a nl × nl structure matrix Z(l) and a n× F data matrix X(l). In addition to GCN layers as
described in section 2, Ying et al define a pooling operation at layer l as:

S(l) = σ
(
GCNpool

(
Z(l),X(l),

{
θ
(i)
1

}m

l=1

))

where GCNpool is an auxillary GCN with its own set of parameters
{
θ
(i)
1

}m

l=1
, and σ is the softmax function.

The output of GCNpool is a n× ncoarse matrix, each row of which is softmaxed to produce an affinity matrix S
whose rows each sum to 1, representing each fine-scale node being connected to one unit’s worth of
coarse-scale nodes. The coarsened structural and data matrices for the next layer are then calculated as:

11

Mach. Learn.: Sci. Technol. 2 (2021) 015009 C B Scott and E Mjolsness

Figure 10. Comparison of 3-level GPCN and A-GPCN models to a 3-level GPCN which uses DIFFPOOL modules to coarsen the
input graph and data. Our models improve over DIFFPOOL in terms of both efficiency and final error.

Table 2. Filter specifications for ensemble models in comparison experiment.

Structure Matrix GCN Filters Dense Filters

Single GCN
Lmt 64, 64, 64 256, 32, 8, 1

2-GCN Ensemble
Lmt 64, 64, 64 256, 32, 8, 1
Lmt 32, 32, 32 256, 32, 8, 1

3-GCN Ensemble
Lmt 64, 64, 64 256, 32, 8, 1
Lmt 32, 32, 32 256, 32, 8, 1
Lmt 16, 16, 16 256, 32, 8, 1

2-level GPCN
Linter 64, 64, 64 256, 32, 8, 1
Lmt 32, 32, 32 256, 32, 8, 1

3-level GPCN
Lcoarse 64, 64, 64 256, 32, 8, 1
Linter 32, 32, 32 256, 32, 8, 1
Lmt 16, 16, 16 256, 32, 8, 1

N-GCN (radii 1,2,4)
Lrmt 64, 64, 64 256, 32, 8, 1

N-GCN (radii 1,2,4,8,16)
Lrmt 64, 64, 64 256, 32, 8, 1

X(l+1) = S(l)
T
X(l)

Z(l+1) = S(l)
T
Z(l)S(l) (5)

Clearly, the additional GCN layers required to produce S(l) incur additional computational cost. We compare
our 3-level GPCN (adaptive and not) models from the experiment in section 4.5 to a model which has the
same structure, but in which each P matrix is replaced by the appropriately-sized output of a DIFFPOOL
module, and furthermore the coarsened structure matrices are produced as in equation (5).

We see that our GPCN model achieves comparable validation loss with less computational work, and our
A-GPCN model additionally achieves lower absolute validation loss.

4.5. Comparison to other GCN ensemble models
In this experiment we demonstrate the efficiency advantages of our model by comparing our approach to
other ensemble GCNs. Within each ensemble, ours and others, each GCN model consists of several graph
convolution layers, followed by several dense layers which are applied to each node separately (node-wise
dense layers can be alternatively understood as a GCN layer with Z = I, although we implement it differently
for efficiency reasons). The input to the dense layers is the node-wise concatenation of the output of each
GCN layer. Each ensemble is the sum output of several such GCNs. We compare our models to 1, 2, and 3-
member GCN ensembles with the same number of filters (but all using the original fine-scale structure
matrix).

12

Mach. Learn.: Sci. Technol. 2 (2021) 015009 C B Scott and E Mjolsness

Figure 11. Comparison of Normalized MSE on held-out validation data as a function of FLOPs expended for a variety of
ensemble Graph Convolutional Network Models. Plotted error is is the minimum validation error of the model over training thus
far. We see that especially in early stages of training, our model formulation learns faster (e.g. requires fewer FLOPs) than an
ensemble of 2, 3 or 5 GCNs with the same number of filters.

Table 3.Mean error and uncertainty of several GCN ensemble models across ten random trials. For each trial, the random seed was set
to the same value for each model. Reported values are the minimum error on the validation set during training (not the error at the final
epoch). Normalized Mean Squared Error (NMSE) values are unitless. Only one trial was performed with the DIFFPOOL model.

Model Name Mean NMSE± Std. Dev (× 10−3) Min NMSE (× 10−3)

Single GCN 1.55± 0.10 1.45914
Ensemble—2 GCNs 1.44± 0.07 1.38313
Ensemble—3 GCNs 1.71± 0.20 1.43059
2-level GPCN 1.43± 0.12 1.24838
2-level A-GPCN 0.17± 0.05 0.08963
3-level GPCN 2.09± 0.32 1.57199
3-level A-GPCN 0.131± 0.030 0.10148
N-GCN radii (1,2,4) 1.30± 0.05 1.23875
N-GCN radii (1,2,4,8,16) 1.30± 0.06 1.22023
DiffPool 2.041± n/a 2.041

Table 4.Mean wall-clock time to perform feed-forward and backpropagation for one batch of data, for various GCN ensemble models.
Times were collected on a single Intel(R) Xeon(R) CPU core and an NVIDIA TITAN X GPU.

Model Name Mean time per batch (s)

Single GCN 0.042
Ensemble—2 GCNs 0.047
Ensemble—3 GCNs 0.056
2-level GPCN 0.056
2-level A-GPCN 0.056
3-level GPCN 0.061
3-level A-GPCN 0.059
N-GCN, radii (1, 2, 4) 0.067
N-GCN, radii (1, 2, 4, 8, 16) 0.086
DiffPool 0.0934

We also compare our model to the work of Abu-El-Haija et al (2018), who introduce the N-GCN model:
an ensemble GCN in which each ensemble member uses a different power Zr of the structure matrix (to
aggregate information from neighborhoods of radius r). We include a N-GCN with radii (1,2,4) and a
N-GCN with radii (1,2,4,8,16).

We summarize the structure of each of our models in table 2. In figure 11 we show a comparison between
each of these models, for one particular random seed (42). Error on the validation set is tracked as a function
of computational cost expended to train the model (under our cost assumption given above). We see that all
four GPCN models outperform the other types of ensemble model during early training, in the sense that
they reach lower levels of error for the same amount of computational work performed. Additionally, the
adaptive GPCN models outperform all other models in terms of absolute error: after the same number of
training epochs (using the same random seed) they reach an order of magnitude lower error. Table 3 shows

13

Mach. Learn.: Sci. Technol. 2 (2021) 015009 C B Scott and E Mjolsness

summary statistics for several runs of this experiment with varying random seeds; we see that the A-GPCN
models consistently outperform all other models considered. Note that figures 11,10, and 9 plot the
normalize mean squared error. This unitless value compares the output signal to the target after both are
normalized by the procedure described in section 3.1.

4.6. Machine learning summary
The machine learning model presented in section 2.4 is validated through numerical experiments on an
evaluation dataset. First, variations of our architecture are compared in section 4.2, demonstrating that
deeper versions of this architecture perform significantly better, and that re-training the P matrices leads to
further accuracy gains. In section 4.3, we fix the model architecture to be the best-performing of those
considered in section 4.2, and examine the effect of varying training schedules, including multigrid-like and
coarse-to-fine training. These experiments demonstrate that our model achieves comparable error in less
computation when trained in a multigrid fashion. Finally in sections 4.4 and 4.5, we validate our model by
training other types of GCN models on the same learning task. We show significant accuracy gains over
previous GCN ensemble models such as Abu-El-Haija et al (2018) and also outperform DiffPool (Ying et al
2018), which learns pooling maps during the training process. All results comparing our model to other
GCN models are summarized in tables 3 and 4. Together these experiments demonstrate the superior
accuracy and efficiency of our machine learning architecture.

5. Future work

5.1. Differentiable models of MD
This work demonstrates the use of feed-forward neural networks to approximate the energetic potentials of a
mechanochemical model of an organic molecule. Per-timestep, GCN models may not be as fast as
highly-parallelized, optimized MD codes. However, neural networks are highly flexible function
approximators: the GCN training approach outlined in this paper could also be used to train a GCN which
predicts the energy levels per particle at the end of a simulation (once equilibrium is reached), given the
boundary conditions and initial conditions of each particle. In the case of our MT experiments,
approximately 3× 105 steps were required to reach equilibrium. The computational work to generate a
suitably large and diverse training set would then be amortized by the GCN’s ability to generalize to initial
conditions, boundary conditions, and hyperparameters outside of this data set. Furthermore, this GCN
reduced model would be fully differentiable, making it possible to perform gradient descent with respect to
any of these inputs. In particular, we derive here the gradient of the input to a GCN model with respect to its
inputs.

5.1.1. Derivation of energy gradient w.r.t position
As described above, the output of our GCN (or GPCN) model is a n× 1 matrix (or vector) Y, representing
the energy of each simulated particle.. The total energy of the molecule at position X is given by a sum over
monomers, E=

∑n
i=1 [Y]i. Note that any GCN’s initial layer update is given by the update rule:

X‘ = g1 (ZXW1 + b1) .

During backpropagation, as an intermediate step of computing the partial derivatives of energy with respect
toW1 and b1, we must compute the partial ∂E

∂A1
of energy with respect to the input to the activation

function g1:

A1 = ZXW1 + b1

X‘ = g1(A1).

We therefore assume we have this derivative. By the Chain Rule for matrix derivatives:[
∂E

∂X

]
ij

=
∂E

∂[X]ij
=
∑
k,p

∂E

∂[A1]kp

∂[A1]kp
∂[xij]

.

Since

[A1]kp =

∑
c,d

[Z]kc[X]cd[W1]dp

+ [b1]kp

14

Mach. Learn.: Sci. Technol. 2 (2021) 015009 C B Scott and E Mjolsness

and therefore

∂[A1]kp
∂[X]ij

= [Z]ki[W1]jp,

∂E

∂[X]ij
=
∑
k,p

∂E

∂[A1]kp
[Z]ki[W1]jp

∂E

∂X
= ZT ∂E

∂A1
WT

1 . (6)

Furthermore, since our GPCN model is a sum of the output of several GCNs, we can also derive a
backpropagation equation for the gradient of the fine-scale input, X, with respect to the energy prediction of
the entire ensemble. Let E(i) represent the total4 fine-scale energy prediction of the ith member of the
ensemble, so that E=

∑k
i=1E

(i). Then, let

∂E(i)

∂X(i)
= Z(i)T ∂E

(i)

∂A(i)
1

W(i)
1

T

be the application of equation (6) to each GCN in the ensemble. Since the input to the ith member of the
ensemble is given by X(i) = PT1,iX, we can calculate the gradient of E

(i) with respect to X, again using the
Chain Rule:

∂E(i)

∂[X]mn

=

Ns∑
s=1

Nt∑
t=1

∂E(i)

∂
[
X(i)

]
st

∂
[
X(i)

]
st

∂[X]mn

=

Ns∑
s=1

Nt∑
t=1

∂E(i)

∂
[
X(i)

]
st

∂
[
PT1,iX

]
st

∂[X]mn

=

Ns∑
s=1

Nt∑
t=1

∂E(i)

∂
[
X(i)

]
st

δtm[P1,i]ns

=

Ns∑
s=1

∂E(i)

∂
[
X(i)

]
sm

[P1,i]ns

Therefore,

∂E(i)

∂[X]mn

= P1,i
∂E(i)

∂X(i)

and so

∂E

∂X
=

k∑
i=1

∂E(i)

∂X
=

k∑
i=1

P1,i
∂E(i)

∂X(i)

This backpropagation rule may then be used to adjust X, and thereby find low-energy configurations of the
molecular graph. Additionally, analogous to the GCN training procedure outlined in section 4.3, this
optimization over molecule positions could start at the coarse scale and be gradually refined.

5.2. Tensor factorization
Recent work has re-examined GCNs in the context of the extensive literature on tensor decompositions.
LanczosNet (Liao et al 2019), uses QR decomposition of the structure matrix to aggregate information from
large neighborhoods of the graph. The ‘Tensor Graph Convolutional Network’ of Zhang et al 2018, is a
different decomposition method, based on graph factorization; a product of GCNs operating on each factor
graph can be as accurate as a single GCN acting on the product graph. Since recent work (Scott and
Mjolsness 2019aa) has shown that the GDD of a graph product is bounded by the distances between the
factor graphs, it seems reasonable to combine both ideas into a model which uses a separate GPCN for each
factor. One major benefit of this approach would be that a transfer-learning style approach can be used. For
example, we could train a product of two GCNmodels on a short section of microtubule; and then re-use the
weights in a model that predicts energetic potentials for a longer microtubule. This would allow us to extend
our approach to MT models whose lengths are biologically relevant, e.g. 103 tubulin monomers.

4Meaning summed over all monomers, in contrast to the per-monomer predictions made in section 4.

15

Mach. Learn.: Sci. Technol. 2 (2021) 015009 C B Scott and E Mjolsness

Figure 12. Limiting behavior of two classes of distances between graphs, as a function of graph size. We plot
D(GTube(n,13,1),GTube(2n,13,3)) and D(GGrid(n,13),GTube(2n,13,3)) as a function of n, along with seventh-degree polynomial fit
curves of each. The smaller tube graphs are closer than the grid graphs to the larger tube, even in the large-graph limit.

5.3. Graph limits
Given that in vivoMTs are longer than the one simulated in this paper by a factor of as much as 200x, future
work will focus on scaling these methods to the limit of very large graphs. In particular, this means repeating
the experiments of Section 4, but with longer tube graphs. We hypothesise that tube graphs which are closer
to the microtubule graph (under the LGDD) as their length n→∞ will be more efficient reduced-order
models for a GPCN hierarchy. This idea is similar to the ‘graphons’ (which are the limits of sequences of
graphs which are Cauchy under the Cut-Distance of graphs) introduced by Lovász 2012). To show that it is
reasonable to define a ‘graph limit’ of microtubule graphs in this way, we plot the distance between
successively longer microtubule graphs. Using the same notation as in section 3.3, we define three families of
graphs:

• GGrid(n,13): Grids of dimensions n× 13, and;
• GTube(n,13,1): Microtubule graphs with 13 protofilaments, of length n, with offset 1, and;
• GTube(2n,13,3): Microtubule graphs with 13 protofilaments, of length 2n, with offset 3.

In this preliminary example, as n is increased, we see a clear distinction in the distances
D(GTube(n,13,1),GTube(2n,13,3)) and D(GGrid(n,13),GTube(2n,13,3)), with the former clearly limiting to a larger
value as n→∞.

6. Conclusion

We introduce a new type of graph ensemble model which explicitly learns to approximate behavior at
multiple levels of coarsening. Our model outperforms several other types of GCN, including both other
ensemble models and a model which coarsens the original graph using DiffPool. We also explore the effect of
various training schedules, discovering that A-GPCNs can be effectively trained using a coarse-to-fine
training schedule. We present the first use of GCNs to approximate energetic potentials in a model of a
microtubule.

Acknowledgments

Funding provided by from the U S National Institute of Aging grant AG059602, Human Frontiers Science
Program grant HFSP - RGP0023/2018, U S National Science Foundation NRT Award number 1633631, and
the Leverhulme Trust, and by the hospitality of the Sainsbury Laboratory Cambridge University.

ORCID iDs

Cory B Scott https://orcid.org/0000-0002-5561-2368
Eric Mjolsness https://orcid.org/0000-0002-9085-9171

References

Abadi M et al 2016 Tensorflow: A system for large-scale machine learning 12th Symp. on Operating Systems Design and Implementation
(OSDI 16) pp 265–283

16

https://orcid.org/0000-0002-5561-2368
https://orcid.org/0000-0002-5561-2368
https://orcid.org/0000-0002-9085-9171
https://orcid.org/0000-0002-9085-9171
https://doi.org/10.5555/3026877.3026899

Mach. Learn.: Sci. Technol. 2 (2021) 015009 C B Scott and E Mjolsness

Abu-El-Haija S, Kapoor A, Perozzi B and Lee J 2018 N-GCN: multi-scale graph convolution for semi-supervised node classification
(http://proceedings.mlr.press/v115/abu-el-haija20a.html)

Bacciu D, Errica F, Micheli A and Podda M 2019 A gentle introduction to deep learning for graphs arXiv:1912.12693
Bijsterbosch J and Volgenant A 2010 Solving the rectangular assignment problem and applications Ann. Oper. Res. 181 443–62
Chakrabortty B, Blilou I, Scheres B and Mulder B M 2018 A computational framework for cortical microtubule dynamics in realistically

shaped plant cells PLoS Comput. Biol. 14 e1005959
Dou H and Wu X 2015 Coarse-to-fine trained multi-scale convolutional neural networks for image classification 2015 Int. Conf. on

Neural Networks (IJCNN) IEEE pp 1–7
Gardner M K, Hunt A J, Goodson H V and Odde D J 2008 Microtubule assembly dynamics: new insights at the nanoscale Curr. Opin.

Cell Biol. 20 64–70
Gardner M K, Zanic M and Howard J 2013 Microtubule catastrophe and rescue Curr. Opin. Cell Biol. 25 14–22
Haber E, Ruthotto L, Holtham E and Jun S-H 2018 Learning across scales - multiscale methods for convolution neural networks

Thirty-Second AAAI Conf. on Artificial Intelligence
Heindl C 2018 Lapsolver: fast linear assignment problem (LAP) solvers for python based on c-extensions (https://github.com/

cheind/py-lapsolver)
Jewett A I, Zhuang Z and Shea J-E 2013 Moltemplate: A coarse-grained model assembly tool Biophys. J. 104 169a
Ke T-W, Maire M and Yu S X 2017 Multigrid neural architectures Proc. of the Conf. on Computer Vision and Pattern Recognition

pp 6665–6673
Kikumoto M, Kurachi M, Tosa V and Tashiro H 2006 Flexural rigidity of individual microtubules measured by a buckling force with

optical traps Biophys. J. 90 1687–96
Kipf T N and Welling M 2016 Semi-supervised classification with graph convolutional networks arXiv:1609.02907
Kis A, Kasas S, Babíc B, Kulik A, Benoit W, Briggs G, Schönenberger C, Catsicas S and Forro L 2002 Nanomechanics of microtubules

Phys. Rev. Lett. 89 248101
Liao R, Zhao Z, Urtasun R and Zemel R S 2019 LanczosNet: multi-scale deep graph convolutional networks arXiv:1901.01484
Lovász L 2012 Large Networks and Graph Limits vol 60 (Providence, RI: American Mathematical Society)
Margolin G, Gregoretti I V, Cickovski T M, Li C, Shi W, Alber M S and Goodson H V 2012 The mechanisms of microtubule catastrophe

and rescue: implications from analysis of a dimer-scale computational modelMol. Biol. Cell 23 642–56
Molodtsov M I, Ermakova E A, Shnol E E, Grishchuk E L, McIntosh J R and Ataullakhanov F I 2005 A molecular-mechanical model of

the microtubule Biophys. J. 88 3167–79
Pampaloni F and Florin E-L 2008 Microtubule architecture: inspiration for novel carbon nanotube-based biomimetic materials Trends

Biotechnol. 26 302–10
Plimpton S 1993 Fast parallel algorithms for short-range molecular dynamics Technical Report Sandia National Labs., Albuquerque, NM

(United States)
Raw M 1996 Robustness of coupled algebraic multigrid for the Navier-Stokes equations 34th Aerospace Sciences Meeting and Exhibit p

297
Ronneberger O, Fischer P and Brox T 2015 U-net: convolutional networks for biomedical image segmentation Int. Conf. on Medical

Image Computing and Computer-Assisted Intervention Springer pp 234–241
Schneider T and Stoll E 1978 Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions

Phys. Rev. B 17 1302
Scott C B and Mjolsness E 2019b Novel diffusion-derived distance measures for graphs (https://arxiv.org/abs/1909.04203)
Scott C and Mjolsness E 2019a Multilevel artificial neural network training for spatially correlated learning SIAM J. Sci. Comput.

41 S297–S320
Shaw S L, Kamyar R and Ehrhardt D W 2003 Sustained microtubule treadmilling in arabidopsis cortical arrays Science 300 1715–18
Stewman S F and Ma A 2018 A structural mechano-chemical model for dynamic instability of microtubule BioRxiv 291682
Stüben K 2001 A review of algebraic multigrid Numerical Analysis: Historical Developments in the 20th Century (Amsterdam: Elsevier)

pp 331–359
Stukowski A 2010 Visualization and analysis of atomistic simulation data with OVITO – the open visualization toolModel. Simul. Mater.

Sci. Eng. 18 015012
Takasone T, Juodkazis S, Kawagishi Y, Yamaguchi A, Matsuo S, Sakakibara H, Nakayama H and Misawa H 2002 Flexural rigidity of a

single microtubule Japan. J. Appl. Phys. 41 3015
Tange O 2011 GNU parallel - the command-line power tool ;login: The USENIX Magazine 36 42–7
Tindemans S H, Deinum E E, Lindeboom J J and Mulder B 2014 Efficient event-driven simulations shed new light on microtubule

organization in the plant cortical array Front. Phys. 2 19
Townsend J, Koep N and Weichwald S 2016 Pymanopt: A python toolbox for optimization on manifolds using automatic differentiation

J. Mach. Learn. Res. 17 4755–9 (http://jmlr.org/papers/v17/16-177.html)
VanBuren V, Cassimeris L and Odde D J 2005 Mechanochemical model of microtubule structure and self-assembly kinetics Biophys. J.

89 2911–26
Vaněk P, Mandel J and Brezina M 1996 Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems

Computing 56 179–96
Verlet L 1967 Computer ‘experiments’ on classical fluids. i. thermodynamical properties of Lennard-Jones molecules Phys. Rev. 159 98
Wang H-W and Nogales E 2005 Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly Nature 435 911–15
Wesseling P and Oosterlee C W 2001 Geometric multigrid with applications to computational fluid dynamics J. Comput. Appl. Math.

128 311–34
Ying Z, You J, Morris C, Ren X, Hamilton W and Leskovec J 2018 Hierarchical graph representation learning with differentiable pooling

Adv. Neural Information Process. Systems 4800–4810
Zhang T, Zheng W, Cui Z and Li Y 2018 Tensor graph convolutional neural network arXiv:1803.10071
Zhao J, Dai L, Zhang M, Yu F, Li M, Li H, Wang W and Zhang L 2019 PGU-net+: progressive growing of U-net+ for automated cervical

nuclei segmentation Lecture Notes Computer Sci. 51–58

17

http://proceedings.mlr.press/v115/abu-el-haija20a.html
http://arxiv.org/abs/1912.12693
https://doi.org/10.1007/s10479-010-0757-3
https://doi.org/10.1007/s10479-010-0757-3
https://doi.org/10.1371/journal.pcbi.1005959
https://doi.org/10.1371/journal.pcbi.1005959
https://doi.org/10.1109/IJCNN.2015.7280542
https://doi.org/10.1016/j.ceb.2007.12.003
https://doi.org/10.1016/j.ceb.2007.12.003
https://doi.org/10.1016/j.ceb.2012.09.006
https://doi.org/10.1016/j.ceb.2012.09.006
https://github.com/cheind/py-lapsolver
https://github.com/cheind/py-lapsolver
https://doi.org/10.1016/j.bpj.2012.11.953
https://doi.org/10.1016/j.bpj.2012.11.953
https://doi.org/10.1109/CVPR.2017.433
https://doi.org/10.1529/biophysj.104.055483
https://doi.org/10.1529/biophysj.104.055483
http://arxiv.org/abs/1609.02907
https://doi.org/10.1103/PhysRevLett.89.248101
https://doi.org/10.1103/PhysRevLett.89.248101
https://doi.org/10.1091/mbc.e11-08-0688
https://doi.org/10.1091/mbc.e11-08-0688
https://doi.org/10.1529/biophysj.104.051789
https://doi.org/10.1529/biophysj.104.051789
https://doi.org/10.1016/j.tibtech.2008.03.002
https://doi.org/10.1016/j.tibtech.2008.03.002
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1103/PhysRevB.17.1302
https://doi.org/10.1103/PhysRevB.17.1302
https://arxiv.org/abs/1909.04203
https://doi.org/10.1137/18M1191506
https://doi.org/10.1137/18M1191506
https://doi.org/10.1126/science.1083529
https://doi.org/10.1126/science.1083529
https://doi.org/10.1101/291682
https://doi.org/10.1016/S0377-0427(00)00516-1
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.3389/fphy.2014.00019
https://doi.org/10.3389/fphy.2014.00019
http://jmlr.org/papers/v17/16-177.html
https://doi.org/10.1529/biophysj.105.060913
https://doi.org/10.1529/biophysj.105.060913
https://doi.org/10.1007/BF02238511
https://doi.org/10.1007/BF02238511
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1038/nature03606
https://doi.org/10.1038/nature03606
https://doi.org/10.1016/S0377-0427(00)00517-3
https://doi.org/10.1016/S0377-0427(00)00517-3
https://doi.org/10.5555/3327345.3327389
http://arxiv.org/abs/1803.10071

	Graph prolongation convolutional networks: explicitly multiscale machine learning on graphs with applications to modeling of cytoskeleton
	1. Introduction
	1.1. Convolution and graph convolution
	1.2. Microtubules
	1.3. Simulation of MTs and prior work

	2. Model architecture and mathematical details
	2.1. Model description
	2.2. Mathematical background
	2.3. Graph convolutional layer definition
	2.4. Graph prolongation convolutional networks

	3. Dataset generation and reduced model construction
	3.1. Dataset
	3.2. Efficient calculation of GDD
	3.3. Graph coarsening

	4. Machine learning experiments
	4.1. Experimental procedure
	4.2. Evaluation of GPCN variants
	4.3. Evaluation of training schedules
	4.4. Comparison with DiffPool
	4.5. Comparison to other GCN ensemble models
	4.6. Machine learning summary

	5. Future work
	5.1. Differentiable models of MD
	5.1.1. Derivation of energy gradient w.r.t position

	5.2. Tensor factorization
	5.3. Graph limits

	6. Conclusion
	Acknowledgments
	References

