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Abstract 
 
In this paper, the hydromagnetic stability of homogeneous shear flows in sea straits type region 
of arbitrary cross section has been discussed. A weak magnetic field is applied parallel to the 
flow of incompressible fluid. Different bounds of unstable modes have been obtained. 

Keywords: Hydromagnetic stability, homogeneous shear flow and sea straits. 
 

1 Introduction 
 
The stability of homogeneous shear flows and stratified shear flows of an inviscid fluid to 
infinitesimal normal mode disturbances has been studied extensively by several researchers such 
as [1,2,3,4,5]. These studies are restricted to rectangular cross sections of fluid flows. But in the 
case of sea straits these cross sections are rarely rectangular. Therefore in the study of such flows 
it is necessary to consider transversely uniform shear flows contained in straits with arbitrary cross 
sections. The velocity and stratification are considered to vary in the vertical (y) direction only. [6] 
Derived an extended version of the Taylor-Goldstein equation for non-rectangular cross section by 
applying the linear theory. [7] Laid out a more general theory for transversely uniform, time 
dependent, stratified flow in a channel of arbitrary cross section and established the stability 
equation of homogeneous shear flows. [8] Proved the boundedness of the wave velocity of neutral 
modes and the Howard’s conjecture for the stability problem of homogeneous shear flows in sea 
straits of arbitrary cross section. They also obtained two estimates for the growth rates and the two 
parabolic instability regions. 
 
In this paper, the hydromagnetic stability of homogeneous shear flows in sea straits type region of 
arbitrary cross section has been discussed. Thus in this paper, the work of [8] has been extended 
for the case of weak applied magnetic applied along the flow direction. 
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2 The Governing Stability Equation 
 
Let the waves be linearly propagating in a shear flow with velocity U(y), magnetic field H applied 

in x-direction and density 0ρ  (constant). The channel is assumed in x-direction and the bottom 

elevation ( )zh  has a single minimum with respect to cross channel coordinate z. The width of the 

channel at any elevation y is denoted by ( )yb . If there are several minima of ( )zh then ( )yb  

represents the sum of widths of individual topographic troughs. Let  u, p and ( )zyx hhh ,, denote 

small perturbations from  the x velocity, hydrostatic pressure of the background flow and 
component of perturbations in magnetic field and let w and v denote the associated lateral and 
vertical velocity components. The shear flow in the strait considered here is shown in the 
following figure  

 

 
 

Cross section of flow 
 

The linearized, inviscid, hydrostatic equations of motion describing these fields are given by 
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We have to study the waves for which ( )zyx hhh ,, , p, u, v and w are uniform in y, implying that 

the isopycnal surfaces rise and fall uniformly across the channel. Such solutions are dynamically 
consistent only in the limit of long wave length compared to channel width. Integrating (7) across 

the channel at any z and applying the conditions   � = �
��

��
  at the two side walls leads to 
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where  ( ) ( )
dy

bd
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byT

log1 == − . 

 
Now applying the normal mode technique, i.e. the transformations 
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in the equations (1) to (9), omitting the bar signs and eliminating all variables except v, we get 
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The governing stability equation of homogeneous shear flows in sea straits of arbitrary cross 

section for the case of weak applied magnetic is obtained by neglecting the term vS ′′  in 

comparison to vSk2  in the equation (10). Thus we have 
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The boundary conditions are given by  
 

( ) ( )Dvv == 00 ,         (12) 
 

Here U is the basic velocity ( )yb  is the width function of the channel, k  is the wave number and 
a prime denotes the differentiation with respect to y, the vertical axis, v is the vertical velocity of 
the disturbance and S is the magnetic parameter. 
 

3 Stability Analysis 
 
Now we establish the following results: 
 
Theorem 1: The wave velocity of neutral modes is bounded. 
 
Proof: For neutral modes the wave velocity c is real. As shown by Deng et al. for singular neutral 

modes maxmin UcU ≤≤ and therefore the wave velocity c is bounded. For non-singular neutral 

modes 0≠− cU  in flow field (0,D). 
 

Multiplying equation (11) by vb , integrating the resulting equation over the flow domain (0,D) 
and using the boundary conditions , we get 
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This gives the quadratic inequality 
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So the quadratic equation obtained by taking the equality sign in inequality (15) has two real 
unequal roots. This concludes that c satisfying inequality (15) should lie between these two roots. 
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This shows the boundedness of wave velocity of all neutral modes.  
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Using this inequality in the above analysis we can obtain the bounds for c given by 
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Theorem 2: The growth rate of an unstable mode is given by  
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Proof: The real part of equation (13) is given by 
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Further by the semicircle theorem, we have 
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By the application of (19) and the Rayleigh-Ritz inequality, equation (18) reduces to 
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This gives the estimate of growth rate given by 
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From this expression it can be seen that 0→ic as ∞→k . 

 
Theorem 3: An estimate for the growth rate of an unstable mode is given by 
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Proof: For an unstable mode, i.e. 0>ic , 0≠− cU . Therefore 2
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)( cU − is well defined. 
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The corresponding boundary conditions are ( ) ( )DGG == 00 .    (22) 
 

Multiplying (21) by Gb  (G  is the complex conjugate of G), integrating the resulting equation 
over the flow domain and using the boundary conditions (22), we get  
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This gives the estimate of growth rate as follows 
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This is the required estimate of growth rate of an arbitrary unstable mode. 
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Multiplying equation (24) by rmc− and adding the resulting equation in (27), we get 
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Therefore there exists a point 0y  in the flow domain such that 
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Theorem 5: If ( )Gc,  is a solution of equation (21) under the condition (2.22) and  
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UbcmU r .       (35) 

 
This implies that 
 

( ) ( )( ) 0]12[
222 ≤+−′+∫ dyGbcmUUcyg ri ,      (36) 

 

where ( ) ( ) 012 min
2

max
2

min
2

max >







+++

′







 ′
= Sk

bD

b
U

b

U
byg

π
. 

 

Therefore there exists a point 1y  in the flow domain such that 
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( ) ( ) ( )( ) 012 1
22

1 <+−′+ ri cmyUUcyg . 

 
and hence, we have 
 

( )







+
−≤

1
min

1
2

m

U
cc ri λ .        (37) 

 
From the above results, it is concluded that the magnetic parameter S reduces the unstable region. 
This shows the stabilizing role of the magnetic field. 
 

4 Concluding Remarks 
 
In this paper, the hydromagnetic stability of homogeneous shear flows in sea straits type region of 
arbitrary cross section has been discussed in the case of weak magnetic field applied in the 
horizontal direction. Different forms of growth rate of unstable modes have been obtained. The 
stabilizing role of magnetic field has been shown.  
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