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Abstract

The dispersion of a solute in peristaltic motion of a magneto-Newtonian fluid flow through a
porous medium in an asymmetric channel is studied in the presence of both homogeneous and
heterogeneous chemical reaction as well. The fluid is electrically conducting by a transverse
magnetic field. The channel asymmetry is produced by choosing the peristaltic wave train on the
walls to have different amplitudes and phase. Applying long wavelength approximation and
using Taylor's limiting condition, the effective dispersion coefficient has been found in explicit
form for the two cases (homogeneous and heterogeneous chemical reactions). Moreover, the
effects of various emerging parameters on the average coefficient of dispersion are discussed
with the help of graphs. The results reveal that the peristaltic wave enhances dispersion of a
solute but the phase difference between the two waves reduces it.
Keywords: Asymmetric channel, dispersion, chemical reaction, peristalsis.

1 Introduction

The dispersion of a solute in a solvent flowing in conduit (pipe or channel) has wide applications
in chemical engineering, biomedical engineering, environmental sciences and physiological fluid
dynamics. First fundamental theory on dispersion was made by Taylor [1-3], who discussed the
dispersion of solute matter in the viscous, incompressible, laminar flow of a fluid in a circular
pipe. He observed that, relative to a plane moving with the average speed of the flow, the solute
disperses with an equivalent dispersion coefficient, which depends upon the average speed of the
flow, the radius of the tube, and the molecular diffusion coefficient. In his analysis, Taylor [1]
assumed that the solute does not chemically react with the fluid. However, in a variety of
problems in chemical engineering, diffusion of solute takes place in the presence of irreversible
first order chemical reaction. Therefore, many investigations on dispersion problem with
simultaneous chemical reaction for both Newtonian and non-Newtonian have been considered [4-
10]. Further, a number of authors have studied the dispersion of a solute in a porous medium
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under different conditions [11-13].

Peristalsis is a mechanism for pumping fluids by means of a contraction wave travelling along the
tube. This mechanism is found in many physiological situations like urine transport from the
kidney to bladder through the ureter, swallowing food through the oesophagus, movement of the
chyme in the gastrointestinal tract, the movements of spermatozoa in the ductus efferentes of the
male reproductive tract and the ovum in the female fallopian tube. Moreover, peristaltic
mechanism is involved in transporting the lump in the lymphatic vessels, movement of the bile in
the bile duct and the circulation of the blood in small blood vessels such as arterioles, venules and
capillaries. In addition, the importance of such flows has also been recognized in transport of
slurries, corrosive fluids, sanitary fluid and noxious fluids in the nuclear industry. Further, roller
and finger pumps are widely operated under such mechanism. Some recent attempts dealing with
peristaltic flow in different situations are reported in a paper of Sobh [14].

The magnetohydrodynamic (MHD) flow of a fluid in a channel with elastic, rhythmically
contracting walls is of interest in connection with certain problems of the movement of conductive
physiological fluids, e.g. the blood and blood pump machines. Recently, many contributions have
been done to understand the MHD flow in peristaltic ducts. Some of recent papers dealing with
MHD peristaltic flow are given by Abd El Naby et al. [15], Hayat et al. [16], Mekheimer and Abd
elmaboud [17], Kothandapani and S. Srinivas [18], and Sobh [19].

The early studies on peristaltic transport were done in symmetric channels or tubes. Recently,
physiologists observed that peristaltic motion may occur in both symmetric and asymmetric
directions. After this observation, Eytan and Elad [20] have presented a mathematical model of
wall-induced peristaltic fluid flow in a two-dimensional channel with wave trains having a phase
difference moving independently on the upper and lower walls to simulate intra-uterine fluid
motion in a sagittal cross section of the uterus. They have obtained a time independent flow
solution in fixed frame by using lubrication approach. After this study, many investigations have
been done to understand the mechanism of peristalsis in asymmetric channels [21-27].

Dispersion of a solute in peristaltic motion problems has not received much attention. In their
recent papers, Alemayehu and Radhakrishnamacharya [28-29] have investigated the effect of
peristalsis on dispersion in a micropolar fluid flowing in symmetric channel. Since peristalsis,
diffusion, MHD and porosity are very important aspects in biological, chemical, environmental
and bio-medical processes (Paul [30]), and since peristaltic motion may occur in both symmetric
and asymmetric directions, we propose to analyze the dispersion of a solute in peristaltic flow of a
Newtonian fluid in an asymmetric channel in the presence of transverse magnetic field and porous
medium. The transport of nutrients in blood vessels can be considered as application to this
problem, as the blood vessels have peristalsis on its walls [31]. Under long wavelength
assumption and using Taylor's approach, the dispersion coefficient has been obtained in closed
form for both the cases of homogeneous and heterogeneous chemical reactions. Furthermore,
average effective dispersion coefficient is computed numerically and the results were discussed
for various values of parameters of interest through graphics.

2 Formulations and Analysis

Consider the motion of an incompressible Newtonian fluid through a porous medium in an
asymmetric channel induced by sinusoidal wave trains propagating with constant speed ¢ along
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the channel walls. The fluid is subjected to uniform magnetic field B, , applied transversely to the

flow. Let d,+d, be the channel width. We select a rectangular coordinate system for the channel in
such a way that x lies in the direction of wave propagation and y transverse to it. The wall surfaces
are given by (Fig. 1)

Ay
A

BO

N\ @

Fig. 1. Geometry of the problem

H (x,t)=d, +q, COS|:277Z(X —Cl‘)} upper wall ()

2r
H,(x,t)=-d, —a, COS|:7 (x—ct)+ ¢}, lower wall ()
In the above equations, @, and a, are the amplitudes of the waves, A is the wavelength, c is the

wave speed, and @(0 < @ < 1) is the phase difference.

The equations governing the flow of Newtonian fluid through a porous medium in the presence of
transverse magnetic field are

ou ov
—+—=0,
ox oy 3)
2 2
p@_u+u6_u+va_u :—a—p+,u 6_u+6_u —4u—aB§u,
ot ox oy oX ox® oy’ ) k

“

666



British Journal of Mathematics & Computer Science 3(4), 664-679, 2013

ov v v o[> ) u
pl—+U—+Vv— |=———+ | —+— |- =V,
ot ox oy oy x® oy’ k

6))

where u(x, y,t) and v(x,y,t) are the velocity components in the x and y directions, p is the

denisty, u is the fluid viscosity, k is the permeability parameter, O is the electrical conductivity

of the fluid, B, is the strength of the magnetic field.

Under long wavelength approximation and low Reynolds number, the equations (3-5) become

[18,19, 21]
8_u+8_V:07
ox oy
o %u u 2
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The relevant boundary conditions are

u=0, at  y=Hy(x),
u=0, at y =Hy(x).

Solving Egs. (6-8), subject to the boundary conditions (9) and (10), we obtain

u(x,y)= %[a_pj [A1* cosh(myy)+ A sinh(mqy)—1
pumyi (X

b

Further, the mean velocity can be found as

—_ 1 Hl
u= mhz u(y)dy
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If we now assume that the convection is across a plane moving with the mean speed of the flow,
then relative to this plane, the fluid velocity can be obtained as

Uy —u-m=—_[P [A;‘ cosh(miy) + A3 sinh(my) + A% |
g ﬂm12 ox (13)
1 O'Bg * * %
where my = P , A, A5 and A; are stated in the appendix.
u

2.1 Diffusion with Homogeneous First-Order Chemical Reaction

If we assume that the solute diffuses and simultaneously undergoes a first order irreversible
chemical reaction in peristaltic transport of a magneto-Newtonian fluid in asymmetric channel
filled with porous medium, then under isothermal condition, the concentration equation of the
solute is given by [10]

2 2

L u o[ 2828 ke
X

ox oy (14)

where D is the molecular diffusion coefficient, assumed to be independent of C, and k; is the first
order reaction rate constant.

For typical values of physiologically relevant parameters of this problem, it is realized that

U = C where the solute is dispersed relative to a plane moving with the mean velocity of the

fluid [28].
2 2C
Using this condition and following Taylor [1-3], with the assumption that 5 <<—%> equation
ox oy

(14) and its boundary conditions can be written in dimensionless form as

0°C kit _dt |, oC

2 - X

on D AD © o0& ’ (15)

E =0, for n=~h,

on (16)
and

Q =0, for n=ho,

on (17)

where the following non-dimensional quantities have been used
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Further, the relative velocity % in dimensionless form becomes
d? op
= > [a—j[A1 cosh(mn)+ Ay sinh(mn)+A3],
pmeL (19)

1
where m=mydq = (F + sz , A1, A», and A5 are defined in the appendix.

. oc . . . . . .
Assuming that E is independent of # at any cross section, the solution of concentration equation

(15) subject to the boundary conditions (16) & (17) is given by

af  oc( g
Cln) = — 2(”]
ADum* 05\ ox
l:Aecosh(yry)+A7sinh(yn)+A4cosh(m77)+A5sinh(m77)—Ag
Y

) (20)

}k . . .
where y = 31 d4, is the homogeneous reaction rate parameter and A4s,...,4; are defined in the

appendix.

Now the volume rate Q at which the solute is transported across a section of the channel of unit
breadth is given by

h
szh;Cuxdn

21

Inserting for C and u, from (20) and (19) in (21) and carrying out the integration, we get

2df oC(op)’

Q = _—1_(_pj F(§3a5b7d7¢57/3M5k)5

AuD 0& \ Ox @)
where
F(§9a7b7d7¢77’M’k) =

1
Sy (" — 1) [(mz - 72){— 4y’ A,(A,B, +4sB,) — 4ymA,(A;B; + A,B,)
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+4A3(ABy + AyBy) — 12 Ay(AsByg + AyBag) — 7* Ax(A4Brg + AsByp)
+2m(2A5 + 72 AgAs — 2 AAy )y — hy )}— 4my®(AABys — AArBrg

+ A2 A6B17 - A2A7B18)]’ (23)

By,...,By are stated in the appendix.

Comparing (22) with Fick's law of diffusion, we find that the solute is dispersed relative to a plane

moving with the mean speed of the flow with an effective dispersion coefficient D given by

6 2
D* :%[Z_"] F(£a,b,d,4,7,M,k)
u?D\ ox , (24)
The average effective dispersion coefficient can be found as
r_
F = jOF(f,a,b,d,gb,y,M,k)dé' 25)

2.2 Diffusion with Combined Homogeneous and Heterogeneous Chemical
Reactions

In this subsection, we discuss the problem of diffusion with a first order irreversible chemical
reaction taking place both in the bulk of the medium (homogeneous) as well as at the walls of the
channel (heterogeneous). The channel walls are assumed to be catalytic to chemical reaction. The
diffusion equation (14) still holds and the differential material balance at the walls gives the
boundary conditions [32]

£+f0=0, at y=H,,
o (26)
E—fC=O, at y =H,
o @7)

Using the dimensionless variables (18) and assuming the limiting condition of Taylor [1-3], the
diffusion equation remains to the non-dimensional form (15) and the boundary conditions (26) &
(27) become

£+ﬂC=O, at y=m,
24 (28)
Q—ﬂc=0, at y=h2,
% (29)
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where [ = f d,is the heterogencous reaction rate parameter corresponding to catalytic reaction
at the walls.

The solution of diffusion equation (15) subject to the boundary conditions (27) & (28) is given by

Ag cosh(yn) + Ag sinh(yn)
con)- d»ﬁ % a_p 8 m 9 i )
Ve Dum? 98\ ax ) + Ag cosh(mn) + Ag sinh(mi) - =2
7, (30)
Where Ag, Ay are defined in the appendix.
Substituting (19) and (30) into (21) and integrating, we obtain the volume rate Q as
2
2d% aC (g
Q:__1_ _p G(évayb!d!¢!}/!ﬂ!M!k)y
AuD o0& \ 0x 31

Where

G(&.a,b,d,.7, B, M.K) =
St = 0 74T ACAB +ABe) 4 (AB, + AB,)

+4A3(ABy + AgBy) — 72 Ai(AsBrg + AyBog) — 72 Ax(A4Brg + AsByg )
+2m(2A5 + 72 Ao s — 2 s — ho) |~ Ay (APeBrs — AvAoBre + 4, 4By~ 4, 4B (3

Again, comparing (31) with Fick's law of diffusion, we find that the solute is depressed relative to

a plane moving with the mean speed of the flow with an effective dispersion coefficient D* given
by

6 2
D* = 2‘;1 [a_p) G(¢.a,b,d,¢,7,8,M,k)
12D\ ox _ (33)
The average effective dispersion coefficient for this case is given by
~_1
G =[,G(&,a,b,d,¢,7,8,M,k)dE (34)

3 Results and Discussion

It is clear that our results calculate the effective dispersion coefficient for both the two cases of
homogeneous and heterogeneous chemical reactions respectively in the case of peristaltic flow in
asymmetric channel. It is important to note that the case ¢=0 corresponds to an asymmetric
channel with waves out of phase. Moreover, when (¢=0, d=1, a=b) we obtain the results for
symmetric channel (the special case). Further, equations (24) and (33) reveal that the effective
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dispersion coefficient depends on the dimensionless parameters: ¢ (the phase difference of the two
waves), M (the Hartmann number), & (the permeability parameter), a, b, (the amplitude ratios), the
non-dimensional quantity d, and the homogeneous reaction parameter y, for homogeneous
reaction case, and the heterogeneous reaction rate parameter £, for heterogeneous reaction case.

In order to have an estimate of the quantitative effects of the various parameters involved in the
results of the present analysis, we use the MATHEMATICA software to carry out the integrals in
equations (22) and (31) numerically. The effects of emerging parameters on the average effective
dispersion coefficient are illustrated graphically through Figs. (2-13).

3.1 Homogeneous Chemical Reaction

The effect of phase difference ¢ on the average effective dispersion coefficient F' is shown in
Fig. (2) at a=0.7, b=0.8, d=1.5, M=1, k=1 and (¢ =0, n/6, m/4, n/3). It is noted that an increase in
the phase difference decreases the dispersion. This means that the phase difference between the
wave on the upper wall of the channel and the wave on the lower wall tends to decrease the
dispersion of the solute in the flow of peristaltic transport. In other words, the dispersion of a
solute in peristaltic flow through symmetric channel is greater than the dispersion in the flow
through asymmetric one.

Fig. (3-5) represent the variation of the average effective dispersion coefficient F versus y for
various values of (a, b, d) and fixed values of other physical parameters. The graphical results

reveal that £ increases by increasing the non-dimensional quantities a, b, and d. It is deduced that
peristaltic pumping enhances the dispersion. In other words, the values of the effective dispersion

coefficient for peristaltic flow (a,b # 0)are greater than its values for the flow between two
parallel plates (a=b=0).

The effect of magnetic field on average effective dispersion coefficient is shown in Fig. (6) at
a=0.7, b=0.8, d=1.5, ¢=n/6, k=1 and (M=1.1, 1.2, 1.3, 1.4). The graph indicates that the average
effective dispersion coefficient decreases by increasing the Hartmann number M. This result
agrees with the result obtained by Alemayehu and Radhakrishnamacharya [28], for the flow of
micropolar fluids in symmetric channel.

Figs. (7) is the graph of the average effective dispersion coefficient F' versus y at a=0.7, b=0.8,
d=1.5, ¢=n/6, M=1 and (k=0.7, 0.8, 0.9, 1). We observe that an increasing in permeability
parameter k£ yields a decrease in the dispersion. In other words, the dispersion of a solute increases
with the flow in porous medium.

Furthermore, as important general result from the Figs. (2-7), it is noticed that the average

effective dispersion coefficient F decreases with homogeneous reaction rate parameter y. This
means that homogeneous chemical reaction tends to decrease the dispersion of the solute. This is
because an increase in y leads to increasing number of moles of solute undergoing chemical
reaction, which results in the decrease of dispersion. Also, this result agrees with the previous
work of Padma and Ramana [4], Gupta and Gupta [5], Ramana and Padma [6-7], and Dutta et al.

[8].
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3.2 Combined Homogeneous and Heterogeneous Chemical Reactions

Figs.(8-13) are made to see the effects of homogeneous reaction parameter y, phase difference ¢,
amplitude ratios a and b, Magnetic parameter M, and permeability parameter k£ on the average

effective dispersion coefficient G for the case of combined first order chemical reactions both in
the bulk and at the walls. The graphical results of these six figures indicate that the average

dispersion coefficient G decreases with increasing homogeneous reaction parameter, phase

difference, and magnetic parameter. But G increases by increasing the amplitude ratio and the
permeability parameter. Also, it is noticed from the figures that the dispersion decreases with
heterogeneous reaction rate parameter S, and the decrease in the effective dispersion coefficient is
sharp in a region near to the wall. This agrees with chemical point of view since the reaction
which affect dispersal happens only at the surface for heterogeneous chemical reaction. This
means that heterogeneous chemical reaction tends to decrease the dispersion of the solute.

4 Conclusions

The dispersion of a solute in peristaltic flow of MHD Newtonian fluid through asymmetric
channel filled with porous medium is studied under long wavelength approximation and Taylor's
limiting condition for both homogeneous and heterogeneous chemical reactions. The average
effective dispersion coefficient is computed numerically and explained graphically in both cases.
The results reveal that dispersion of a solute in peristaltic flow through symmetric channel is
greater than the dispersion in the flow through asymmetric one. Furthermore, the average effective
dispersion coefficient tends to decrease with homogeneous chemical reaction rate parameter y and
magnetic parameter M while it increases with increasing amplitude ratios a, b, and permeability
parameter k.
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Appendix
s sinh(m, H,)—sinh(m H ) __cosh(m H,)—cosh(m,H,)
sinh[m,(H, - H,)] 2 sinh[m,(H, -H,)] ~
A sinh(m H,) —sinh(m H,) 4 cosh(m, H,)—cosh(m H )
P m,(H, — H,) ? m,(H, — H,) ’

B, =sinh(mhy)—sinh(mhy), B, = cosh(mhy) —cosh(mh,), By = sinh(yh;) —sinh(h,),

B4 =cosh(yhy) —cosh(yh,), Bs =sinh(yh)+ sinh(yhy,), Bg = cosh(yhy)+ cosh(yh,),

B, = cosh(yh)cosh(mhy) — cosh(mhy ) cosh(yhy ), Bg = cosh(yh) sinh(mhs,) — sinh(mhy ) cosh(yhy),
Bgy = cosh(mhy)sinh(3h, ) — cosh(mhy ) sinh(344), By = sinh(mhy)sinh(3h, ) — sinh(yh) sinh(mh, ),
By1 = cosh(yn)cosh(mhy) — cosh(mhy )cosh(y#12), By, = cosh(yhy)sinh(mby) - sinh(mhy )cosh(41;),
By3 = cosh(mhy)sinh(yhy) — cosh(mhy)sinh(yh2), By 4 = sinh(yhy)sinh(mhy) — sinh(mh; ) sinh(3h7),
Bis = mBy3 — yB13, Big = yB11 —MByy, Bi7 = MByq — yBy4, Byg = B2 —mbBy3,

Big = cosh(2mhy) — cosh(2mh,), By = sinh(2mhy) — sinh(2mhy),

By1 = cosh( sy )cosh(mhy )+ cosh(mhy)cosh(h1),Bay = sinh(yhy)sinh(mhsy)+ sinh(mhy)sinh(hy),

By3 = cosh(yhy) sinh(mh,) + sinh(mhy) cosh(yh, ), Boy = sinh(yh, ) cosh(mhy) + cosh(mh, ) sinh(yhy),

A B A B, fo - (AB1+ABy) o A

' sinh[m(h— )] "2 sinh[m(h—mp)] 0T m—hy) Tt 22
po__Po p _ MAsBr +ABg) , _ m(AsBg +A4Bro)

5 — 2 2 6 — . y 7 = N ’

m?—y sinh[y(hy —hy)] sinh[y(hy — hy)]
pg = PPaliBs + BBs)+ 1 Aa(myBs + B°Bo - ﬂBz1+mﬁBzz)+7 As(myBy + fBro ~ 1Bps + MPBas)
2% peoshly(ty — )1+ 7*(B% + y*)sinhly(hy - hp)]

Ao _—BA(Bs + By +1° A4(m7510 + BBy + 1Bos - mﬂ523 + 72 As(myBy + BBy + 1/3Baa - mPBo1)

2y Beoshly(hy — hp)l+72(B% + y%)sinh[y(by — hy)]
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Fig. 6. Variation of F with y for a=0.7,
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Fig. 7. Variation of FF with y for a=0.7,
b=0.8, d=1.5, o=m/6, M=1
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Fig.13. Variation of 7 with g for
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