
Asian Journal of Probability and Statistics

Volume 23, Issue 1, Page 65-70, 2023; Article no.AJPAS.99007
ISSN: 2582-0230

Diversity on ℘fin (X)

Omprakash Atale a∗

aSchool of Mathematical Sciences, Moolji Jaitha College, India.

Author’s contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/AJPAS/2023/v23i1497

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and

additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc
are available here: https://www.sdiarticle5.com/review-history/99007

Received: 03/03/2023

Accepted: 09/05/2023

Original Research Article Published: 16/06/2023

Abstract
In tight-span theory, a diversity is a generalization of metric space where the metric is defined over the set
℘

fin (X) which is composed of finite subsets of X. In this paper we are going to generalize the results of D.
Silvestru and C. Gosa to derive some sharp inequalities for the diameter diversity. This sharp inequality can
be used to study models with diversity in a collective manner.
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1 Introduction
A diversity or Bryant-Tupper space (BT-space) is a generalization of metric space that have wide applications
in non-linear analysis [1]. In this paper, we are going to derive some inequalities for diversities using the results
of D. Silvestru and C. Gosa [2].

The study of diversity is also important to study the geometry of hypergraphs. It was shown by Bruant and
Tupper in (8) that generalizations of the multi-commodity flow and corresponding minimum cut problems can
be used to obtain some results on Steiner Tree Packing and Hypergraph Cut problems using some well known
examples of diversity.
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In this paper we have derived some shapr inequalities for diversity in general. This sharp inequality can be used
to study models with diversity in a collective manner (9-16). Applications of our main results are also presented
in last section.

The paper is organized as follows. In 1st section, we will provide some preliminary definitions that we would
be using throughout the paper. In 2nd section, we will derive the main results of this paper and finally in 3rd
section, we will apply the main results to diameter diversity.

Let X be a non empty set. Then the ordered pair 〈X, %〉 is known as a metric space if ∀x, y, z ∈ X, the function
% : X ×X → R satisfies

M1 %(x, y) ≥ 0 and %(x, y) = 0 if only if x = y.

M2 %(x, y) = %(y, x).

M3 %(x, y) ≤ %(x, z) + %(z, y).

Bryant and Tupper defined a slightly different mapping, instead of defining % on X × X, they defined it on
℘

fin (X) which is the set of finite subsets of X. Now again, if X is a non empty set, then the ordered pair 〈X, δ〉
is known as a diversity if ∀A,B,C ∈℘fin (X) the function δ :℘fin (X)→ R satisfies

D1 δ(A) ≥ 0 and δ(A) = 0 if and only if |A| ≤ 1.

D2 δ (A ∪ C) ≤ δ (A ∪B) + δ (B ∪ C) provided that B 6= φ.

D3 if A ⊆ B, then δ(A) ≤ δ(B).

To avoid using double summations for simplicity of notation purpose, the sum over two indices will be represented
under one sum.

2 Main Results
In this section, we are going to derive analogues of theorems derived by D. Silvestru and C. Gosa. For Theorem
1 and Corollary 1, readers can refer to [2] whereas for Theorem 2 readers can refer to [3].

Theorem 1. Let 〈X, δ〉 be a diversity and A,Ai ∈ ℘fin (X), pi ≥ 0 for i ∈ {1, 2, ..., n} such that
∑n

i=1 pi = 1.
Then ∑

1≤i<j≤n

pipjδ (Ai ∪Aj) ≤ inf
A∈℘fin(X)

[ ∑
1≤i≤n

piδ (Ai ∪A)
]
. (2.1)

The above inequality is sharp in the sense that any multiplicative constant c = 1 on the right hand side cannot
be replaced by a smaller quantity.

Proof. Let A,Ai, Aj ∈℘fin (X) for i, j ∈ {1, 2, ..., n} provided that A 6= φ. Then, using (D2) we get

δ (Ai ∪Aj) ≤ δ (Ai ∪A) + δ (A ∪Aj) (2.2)

Let pi ≥ 0 for i ∈ {1, 2, ..., n} such that
∑n

i=1 pi = 1. Now multiply pipj on both sides of Eqn.(2.2) and sum on
i and j from 1 to n to get∑

1≤i,j≤n

pipjδ (Ai ∪Aj) ≤
∑

1≤i,j≤n

pipj
[
δ (Ai ∪A) + δ (A ∪Aj)

]
. (2.3)

We can see that the function δ is symmetric i.e. δ(A ∪ B) = δ(B ∪ A). Therefore, using this property we can
rewrite left and right hand side of Eqn. (2.3) as∑

1≤i,j≤n

pipjδ (Ai ∪Aj) = 2
∑

1≤i<j≤n

pipjδ (Ai ∪Aj) (2.4)
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and ∑
1≤i,j≤n

pipj
[
δ (Ai ∪A) + δ (A ∪Aj)

]
= 2

∑
1≤i≤n

piδ (Ai ∪A) (2.5)

respectively. Therefore, substituting Eqn. (2.4) and (2.5) in Eqn. (2.3) gives∑
1≤i<j≤n

pipjδ (Ai ∪Aj) ≤
∑

1≤i≤n

piδ (Ai ∪A) . (2.6)

Now, taking infimum over A, we get the desired result. Suppose that Eqn. (2.1) is valid for some constant c > 0,
i.e. ∑

1≤i<j≤n

pipjδ (Ai ∪Aj) ≤ c inf
A∈℘fin(X)

[ ∑
1≤i≤n

piδ (Ai ∪A)
]
. (2.7)

Now, let n = 2, p1 = p, p2 = 1 − p where p ∈ (0, 1). Then, we get p(p − 1)δ(A1 ∪ A2) ≤ c
[
pδ(A1 ∪ A) + (p −

1)δ(A ∪ A2)
]
where A1, A2 ∈ X. Now, let |A1 ∪ A| ≤ 1. Then, to get pδ(A1 ∪ A2) ≤ cδ(A1 ∪ A2). And since

p ∈ (0, 1), the constant c should be greater than on equal to 1, i.e. c ≥ 1. This implies that Eqn. (2.1) is sharp
and any multiplicative constant on right hand side of the equation cannot be replaced by a smaller quantity.

Following is the corollary of Theorem 1 derived by choosing pi = 1
n
∀i ∈ {1, 2, ..., n}.

Corollary 1.1. Let 〈X, δ〉 be a diversity and A,Ai ∈ X for i ∈ {1, 2, ..., n}. Then∑
1≤i<j≤n

δ (Ai ∪Aj) ≤ n inf
A∈℘fin(X)

[ ∑
1≤i≤n

δ (Ai ∪A)
]
. (2.8)

Consider the function f(t) = ts defined on [0,∞) for s ≥ 1. Then, using convexity property of f(t), we get

(a+ b)s ≤ 2s−1(as + bs). (2.9)

If 0 < s < 1, then we have the following analogue [4]:

(a+ b)s ≤ (as + bs). (2.10)

Now, we are going to use above two results in deriving the following theorems.

Theorem 2. Let 〈X, δ〉 be a diversity and A,Ai ∈ ℘fin (X), pi ≥ 0 for i ∈ {1, 2, ..., n} such that
∑n

i=1 pi = 1.
Then for s ≥ 1, we have

2s−1

 ∑
1≤i<j≤n

pipjδ (Ai ∪Aj)

2

≤ S1 ≤ inf
A∈℘fin(X)

[
2s

8

∑
1≤k≤n

δs (Ak ∪A)
]

(2.11)

where
S1 =

∑
1≤i<j≤n

pipjδ
s (Ai ∪Aj) . (2.12)

Proof. Let 〈X, δ〉 be a diversity and s ≥ 1. Furthermore, let A,Ai, Aj ∈℘fin (X) for i, j ∈ {1, 2, ..., n} provided
that A 6= φ. Now, apply Eqn. (2.9) to Eqn. (2.2) to get

δs (Ai ∪Aj) ≤ 2s−1[δs (Ai ∪A) + δs (A ∪Aj)
]

(2.13)

Let pi ≥ 0 for i ∈ {1, 2, ..., n} such that
∑n

i=1 pi = 1. Now multiply pipj on both sides of Eqn.(2.13) and sum
on i and j over 1 ≤ i < j ≤ n to get∑

1≤i<j≤n

pipjδ
s (Ai ∪Aj) ≤ 2s−1

∑
1≤i<j≤n

pipj
[
δs (Ai ∪A) + δs (A ∪Aj)

]
. (2.14)
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For evaluating above sum, we can rely on the result that if aij is a symbol such that aij = aji where 1 ≤ i < j ≤ n,
then ∑

1≤i<j≤n

aij =
1

2

 ∑
1≤i,j≤n

aij −
∑

1≤k≤n

akk

 . (2.15)

Denote the left hand sum in Eqn. (2.14) by S1. Then,

S1 ≤
2s−1

2

 ∑
1≤i,j≤n

pipj
[
δs (Ai ∪A) + δs (A ∪Aj)

]
− 2

∑
1≤k≤n

p2
kδ

s (Ak ∪A)


= 2s−1

∑
1≤k≤n

pkδ
s (Ak ∪A)−

∑
1≤k≤n

p2
kδ

s (Ak ∪A)

= 2s−1
∑

1≤k≤n

pk(1− pk)δs (Ak ∪A)

≤ 2s−1

4

∑
1≤k≤n

δs (Ak ∪A) . (2.16)

In the last inequality above, we have used the property

pk(1− pk) ≤
1

4
(pk + 1− pk)2 =

1

4
.

Substituting above result in Eqn. (2.14) and taking infimum over A gives∑
1≤i<j≤n

pipjδ
s (Ai ∪Aj) ≤ inf

A∈℘fin(X)

[
2s

8

∑
1≤k≤n

δs (Ak ∪A)
]
. (2.17)

If we use discrete Jensen’s inequality on the function f(t) then we get∑
1≤i,j≤n

pipjδ
s (Ai ∪Aj)∑

1≤i,j≤n

pipj
≥


∑

1≤i,j≤n

pipjδ (Ai ∪Aj)∑
1≤i,j≤n

pipj


s

. (2.18)

The denominator on both the sides can be found equal to 1 using the definition of pi. The Numerator on left
and right hand side of Eqn. (2.18) can be found equal to∑

1≤i,j≤n

pipjδ
s (Ai ∪Aj) = 2

∑
1≤i<j≤n

pipjδ
s (Ai ∪Aj) (2.19)

and ∑
1≤i,j≤n

pipjδ (Ai ∪Aj) = 2
∑

1≤i<j≤n

pipjδ (Ai ∪Aj) (2.20)

respectively. Substituting above two values in Eqn. (2.18) and simplifying further, we get the following lower
bound

2s−1

 ∑
1≤i<j≤n

pipjδ (Ai ∪Aj)

2

≤
∑

1≤i<j≤n

pipjδ
s (Ai ∪Aj) . (2.21)

For the case of 0 < s < 1, the upper bound of S1 will be off by the factor of 2s−1. Now, we will apply Theorem
1 and Theorem 2 for deriving results on diameter diversity.
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3 Diameter Diversity
Let 〈X, d〉 be a metric space. For all A ∈℘fin (X) let

δ(A) = max
x,y∈A

d(x, y) = diamA. (3.1)

Then 〈X, δ〉 is known as a diameter diversity. Now,∑
1≤i<j≤n

pipjδ (Ai ∪Aj) =
∑

1≤i<j≤n

pipj max
x,y∈Ai∪Aj

d(x, y)

=
∑

1≤i<j≤n

pipjdiam (Ai ∪Aj). (3.2)

Similarly,

inf
A∈℘fin(X)

[ ∑
1≤i≤n

piδ (Ai ∪A)
]
= inf

A∈℘fin(X)

[ ∑
1≤i≤n

pi max
x,y∈Ai∪A

d(x, y)

]

= inf
A∈℘fin(X)

[ ∑
1≤i≤n

pi diam (Ai ∪A)
]

(3.3)

Now, substituting Eqn. (3.2) and (3.3) in Eqn. (2.1) gives∑
1≤i<j≤n

pipjdiam (Ai ∪Aj) ≤ inf
A∈℘fin(X)

[ ∑
1≤i≤n

pi diam (Ai ∪A)
]
. (3.5)

Similarly, from Theorem 2, we get

2s−1

 ∑
1≤i<j≤n

pipjdiam (Ai ∪Aj)

2

≤ S1 ≤ inf
A∈℘fin(X)

[
2s

8

∑
1≤k≤n

diams (Ak ∪A)
]

(3.6)

where
S1 =

∑
1≤i<j≤n

pipjdiam
s (Ai ∪Aj) . (3.7)

The results of Silvestru and Gosa from [2] were generalized later and other analogues were found [5]-[9]. This
generalized analogues can be also applied to derive further inequalities for diversities on ℘fin (X).

Some other examples of diversity include the L1 diversity, Phylogenetic diversity, Steiner diversity, Truncated
diversity and Clique diversity.

Let A ⊆ Rn, now if we define
δ(A) =

∑
i

max
a,b
{|ai − bi|, a, b ∈ A}

then the ordered pair (Rn, δ) is known as L1 diversity. If T is a phylogenetic tree with taxon set X. For each
finite A ⊆ X define δ(A) as the length of the smallest subtree of T connecting taxa in A. Then (X, δ) is a
(phylogenetic) diversity. Similarly, Steiner diversity corresponds to the Steiner tree.

Diversity has some important and wide applications in theoretical computer science. Bryantand Tupper have
shown in [17] that the theory of diversity can be generalized considerably to encompass Steiner tree packing
problems in both graphs and hypergraphs.
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