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Travel Plans in Public Transit Networks Using Artificial
Intelligence Planning Models
Fernando Elizalde-Ramírez , Romeo Sanchez Nigenda , Iris A. Martínez-
Salazar , and Yasmín Á. Ríos-Solís

Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México

ABSTRACT
Users of public transit networks require tools that generate
travel plans to traverse them. The main issue is that public
transit networks are time and space dependent. Travel plans
depend on the current location of users and transit units, along
with a set of user preferences and time restrictions. In this work,
we propose the design and development of artificial intelligence
(AI) planning models for engineering travel plans for such net-
works. The proposed models consider temporal actions, bus
locations, and user preferences as constraints, to restrict the
set of travel plans generated. Our approach decouples model
design from algorithm construction, providing a greater level of
flexibility and richness of solutions. We also introduce an integer
linear programming formulation, and a fast preprocessing pro-
cedure, to evaluate the quality of the solutions returned by the
proposed planning models. Experimental results show that AI
planning models can efficiently generate close to optimal solu-
tions. Furthermore, our analysis identifies user preferences as
the most critical factor that increases solution complexity for
planning models.

Introduction

The general road planning problem in a static transportation network with
fixed costs is equivalent to the problem of finding the shortest path between
an origin and a destination in a directed graph. Each arc in the network has
a nonnegative weight that represents the cost function for traversing the arc,
which usually correlates to time. The transportation research community has
made great strides in the development of road planning algorithms (Bast,
Funke, and Matijevic 2006; Sanders and Schultes 2005), which currently can
be several orders of magnitude more efficient than Dijkstra’s shortest path
algorithm (Bauer et al. 2010; Bauer and Delling 2010; Delling et al. 2011;
Goldberg, Kaplan, and Werneck 2006; Holzer et al. 2005; Sanders and
Schultes 2007).
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However, solution synthesis in public transit networks differs from the
general road planning problem because it is time and space dependent. We
are interested in finding the earliest arrival time to a destination given the
current location of the user, and the transportation units in the network,
which can change over time ( Pyrga et al. 2008). Furthermore, the optimiza-
tion problem needs to satisfy individual requirements rather than converging
to a single global objective function (Kikuchi 2012). The aim of this article is
to propose tools that can flexibly accommodate user preferences and con-
straints to compute journeys in public transit networks. This is an open area
of research, as pointed out by the Transportation Research Board, where
Artificial Intelligence models and algorithms could be potentially applied
(Kikuchi 2012).

Our work shares this motivation. We do not pretend, at this stage of
our work, to compete with domain-specific transportation algorithms yet.
Instead, we are interested in applying domain-independent AI algorithms
to generate travel plans for public transit networks that consider user
preferences. Our analysis sheds light on the current benefits of AI meth-
ods for this problem. It is necessary to identify the network properties
that increase solution complexity if we want AI models to be applicable to
large public transportation networks. To the best of our knowledge, there
are very few studies on the subject.

AI Planning is a natural formalism for representing public transit net-
works. Planning is the process of synthesizing courses of actions that, if
executed from a specified initial state (e.g., an initial location in the trans-
portation network), will achieve a set of objectives (e.g., the desired destina-
tion) (Ghallab, Nau, and Traverso 2004). Our models use the Planning
Domain Definition Language (PDDL – Fox and Long 2003) to encode transit
network information. The proposed models consider space information for
transportation units in the network (e.g., buses), and consider user prefer-
ences (e.g., cost, walking distances) as constraints on the travel plans gener-
ated. Given that we use standard AI knowledge representation techniques to
generate our models, we can leverage on any domain-independent planning
algorithm to compute travel plans. By decoupling model design from algo-
rithm construction, we gain on flexibility and richness of solutions since
different paradigms can be used to generate them.

Our empirical evaluation concentrates on assessing the feasibility of the plan-
ning models, as well as, the quality of the solutions (i.e., travel plans) generated
from them.Moreover, we introduce an integer linear programmingmodel as our
baseline to compute optimal journeys on transit networks of different scale, with
and without user preferences. We also provide a preprocessing step to prune
network size andmeasure its impact on solution quality. The results show that the
planning algorithms can efficiently scale up without compromising solution
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quality. Furthermore, our analysis identifies user preferences as the most critical
factor that increases solution complexity.

Our results constitute one of the first analysis on the application of AI
planning for public transportation networks. The next section introduces
related work on the subject. In Section 3, we formally describe the problem
that our planning and mathematical models are solving. Section 3.1 presents
our planning model representation and Section 4 introduces our integer
linear programming baseline. Then, we introduce in Section 5, the pruning
techniques implemented to scale up to bigger sized networks. Finally, we
present our empirical evaluation and the conclusions of our work.

Related Work

Travel planning in a public transit network greatly differs from the general
road planning problem. In a static network with fixed costs, a road planning
problem is equivalent to the problem of finding, in a directed graph, the
shortest path between two nodes (Dijkstra 1959; Schulz, Wagner, and Weihe
2000). As mentioned earlier, one important difference of public transporta-
tion networks with respect to general road networks is that they are time and
space dependent. That is, users can travel some parts of the network at
specific times, given bus schedules and their locations. Therefore, two of the
main challenges in public transit networks are to model the transit time-
tabling information (Bast et al. 2014), and to define the optimization metrics
to traverse such time-space sensitive networks (López and Lozano 2014).

Work by Ishizaki et al. 2010 circumvents the first modeling challenge by
calculating the location of buses in the network to update their arrival times
at bus stops. Their update procedures are done every minute, but walking
distances to bus stops are not considered, which can introduce further delays
for the user. Our approach follows the same idea, considering not only bus
locations but also walking distances in the planning models. Planning algo-
rithms can then use the available location information to compute better
heuristic estimates during their search process.

In addition, there are also approaches for directly modeling timetabling
information through time-expanded and time-dependent graphs (Delling,
Pajor, and Wagner 2009; Jariyasunant, Mai, and Sengupta 2011; López and
Lozano 2014; Pyrga et al. 2008). In time-expanded models, every event at
a location is modeled as a node in a graph. Time-dependent models, on the
other hand, consider only one node per location. Although we do not model
timetabling information yet, our planning models are suitable for answering
queries in real time given the location information from buses and users.

The second challenge, in modeling public transit networks, is the defini-
tion of the optimization criteria for traversing the network. The work by
Koszelew (2011) in genetic algorithms, optimizes over two criteria: total
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travel time (i.e., makespan), and the number of transfers in the network;
a criterion also considered by Olczyk and Galuszka (2014). Khoa et al.
(2014) generate multi-paths, that is, non-dominated paths between a source
and a destination that optimize trip makespan (i.e., travel, walking and
transfer time). Multi-modal paths that minimize cost (Huguet et al. 2013),
or time (Idri et al. 2017) to drive algorithms are also considered.

In our work, our models support optimization metrics as constraints to
restrict the set of travel plans generated. Currently, our models minimize travel
makespan, travel cost, and walking distances. However, the flexibility of our
models permits the incorporation of additional metrics through numeric PDDL
fluents (Fox and Long 2003). This is one major advantage of our proposed
models, the flexibility for users to accommodate their preferences, without
requiring significant algorithm re-engineering.

To solve the general road planning problem, there are advanced techni-
ques that consider priority queues (Meyer 2001; Thorup 2004), bidirectional
search (Dijkstra 1959), labeled arcs (KöHler, MöHring, and Schilling 2005;
MöHring et al. 2007), goal-oriented programming (Bauer and Delling 2010),
reach-based routing (Goldberg, Kaplan, and Werneck 2006; Gutman 2004),
highway-node routing (Holzer, Schulz, and Wagner 2009; Schultes and
Sanders 2007), and transit-node routing (2007a; Bast et al. 2007b). Most of
these techniques require and exploit the structure of the problem to generate
travel plans efficiently. As mentioned earlier, our research decouples model
design from algorithm construction. By using standard AI knowledge repre-
sentation techniques to model transit networks, we can leverage any available
domain-independent planning algorithm to compute travel plans.

Route Planning in a Real Public Transit Network Using Artificial
Intelligence Planners

For a user that has a set of specific preferences, the AI Public-Routing Planning
AI-PRP problem consists in traveling from an origin to a destination in a public
transportation network, taking into account the location information of the user
and the transportation units in the network. We use the PDDL language to
encode the transit network information together with the actions of the users to
generate solutions for the AI-PRP problem.

One of themain benefits of the AI planning languages is that they separate the
model of the planning problem in two parts: domain description and the related
problem description. Thus, a domain and a problem description form the
PDDL-model of a planning problem, and this is the input of a planner software
that aims to solve the given planning-problem with an appropriate planning
algorithm. The output of the planner is a sequence of actions that aims to
a specific route along the network to help users to reach their destinations.
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A public transit network PTN is a 5-tuple PTN ¼ hV;E;O;A;Wi com-
posed by a directed multigraph G ¼ ðV; EÞ where nodes in V correspond to
the full set of geographical locations of the network and E corresponds to the
set of arcs. Set O compounds the means of transport to traverse an arc
ðu; vÞ 2 E in the network (e.g., buses from transportation routes or walking).
Therefore, each action xiuv 2 O represents a transportation unit i traversing
the arc ðu; vÞ , where i> 1 . We set i ¼ 1 to represent the user walking of an
arc. Set A represents user actions a1iu and a0iu for getting on and off
respectively from transportation units i at geographical locations u 2 V of
the network.

Finally, W is the set of metric weights for each transportation action
xiuv 2 O and user action ajiu in the network. For the AI-PRP problem, the
duration of traversing arc ðu; vÞ with transportation unit i is tiuv , and for
walking the arc is t1uv . The time taken for boarding and getting off of
a transportation unit i at location u is given by ta1iu and ta0iu respectively. To
keep track of the walking distance of an arc ðu; vÞ we use duv , while the cost
of boarding unit i at node u is c1iu .

The planning problem AI-PRP of finding a travel plan for a user in a public
transit network PTN can be characterized by the 4-tuple hPTN;C; s; gi , where
s and g are, respectively, the initial geographical location and the destination
goal of the user (s and g 2 V ). C is the set of preference bounds provided by
the user. For example, if C ¼ Ccost;Cwalk;Ctimef g , a user can select Ccost to
restrict the maximum travel cost willing to spend, Cwalk to set the maximum
walking distance willing to engage, and Ctime to limit the maximum travel time
for the whole trip.

The power of AI planning models resides on their capacity to determine
the possible transportation actions xiuv 2 O that can be coupled with the user
transfers a1iuja0iu 2 A to efficiently traverse the transit network PTN from s
to g such that user preferences are satisfied. Therefore, a solution to an

instance of AI-PRP is a travel hPLANi ¼ a1is; xisu; a0iu; :::; xi0uv0 ; :::; xi0 0v0 0g
n o

with the following objective function

AI � PRP hPTN;C; s; gi ¼ min
X
i2O

X
ðu;vÞ2G

xiuvðtiuvÞ þ
X

ði;uÞ2A
a1iuðta1iuÞ (1)

s:t:
X

ðu;vÞ2G
x1uvduv � Cwalk

X
ði;uÞ2A

a1iuc1iu � Ccost

The cost weights associated with the plan should be less or equal than the
set of preferences over those costs provided by the user. In other words, a plan
is valid if their associated costs are less than the cost preferences specified by
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the user. Notice that with our representation we can easily modify the objective
function to minimize travel distances or costs. However, for the purposes of
this paper, we evaluate our models with Equation 1, the minimization of total
travel time subject to user preferences.

AI Planning Model

PDDL is an action-centered language, thus in Table 1 we summarize the
actions that make up our planning models. The first column of the table
describes the five main actions of the AI-PRP problem. The second column
contains the parameters that are considered to execute the related action. The
third column shows the applicability conditions of the actions, that is, the
conditions that must hold in the world for an action to be applicable. The
fourth column shows the intended effects of the actions. Finally, the last
column indicates the cost functions involved by the actions.

For example, walk takes as input parameters the passenger and two
locations u and v , where ðu; vÞ 2 E . In order for walk to be applicable,
passenger must be at location u , and the cumulative distance traveled must
be less than the passenger’s walking preference. At the end of walking,
passenger is at location v , increasing the total travel time, as well as the
total walking distance traveled. Action get on increases total travel cost and
the number of transfers, while get off increases travel time. Notice that move
bus without passenger allows buses to move along their bus lines without any
cost.

Figure 1 shows the action transition diagram (ATD) for the AI-PRP model
actions from Table 1. It describes the actions in the model, as well as their
intended effects. Each executed action must account for the user preferences

Table 1. Actions for the AI-PRP model.
Action Parameters Conditions Effects Functions

Walk passenger
location u
location v

passenger at u
updated walking
distance < Cwalk

passenger
at v

increase total travel time
increase walking distance

Get on passenger
bus
location u

passenger at u
bus at u
updated total cost <
Ccost

passenger
on bus

increase total travel time
increase total cost
increase number of transfers

Move bus with
passenger

passenger
bus
location u
location v

passenger in bus
bus at u

bus at v increase total travel time
increase total cost
increase number of transfers

Move bus without
passenger

bus
location u
location v

bus at u bus at v

Get off passenger
bus
location u

passenger in bus
bus at u

passenger
at u

increase total travel time
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that restrict the set of plans generated by the algorithms. The dotted lines
represent the transitions that correspond to transportation actions from O ,
while the other transitions correspond to user actions from A .

Algorithm 1 shows the PDDL template for the walking action, which is
a direct implementation of the action description from Table 1 and the ATD
from Figure 1. The PDDL action takes as input three parameters, the
passenger, the location of origin u , and the destination v . The duration of
the walking action t1uv is specified at line two using PDDL numeric fluents,
which correspond to metric weights in our problem definition. The action
applicability conditions, from line three, are: the user must be at u , there
should be a connection in the network from u to v , and the total walking
distance, considering the distance from u to v , should be less than the
preferred amount of walking defined by the user. The intended effects of
the action establish that as soon as the user starts walking he is no longer at
the origin, arriving to the destination as an ending effect of the action.
Finally, the total travel time and the distance walked by the user get updated.

Algorithm 1 durative-action walking

1: Parameters: passenger, locations u and v

2: Duration: t1uv , walking time from u to v

3: Conditions at node u :

● passenger at u and

● arc ðu; vÞ exists and
● walking distance + duv <Cwalk

4: Effects:

Figure 1. ADT for AI-PRP model with applicability conditions and intended effects.
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● passenger not in u and

● passenger in v and

● increase walking distance by duv and

● increase total time by t1uv

Another example is the Get � on action schemed by Algorithm 2. This
time, we require that both, the user and the transportation unit (bus), are at
the same location u . Notice that we keep track of the total cost of the trip
and use it to determine if the cost of taking the transportation unit (i.e., C1iu)
will exceed the maximum cost set by the user. The intended effects of the
action are that the user is no longer at u and the passenger is inside the
transportation unit. At the end, the cost of using the public transport
increases the total cost of the travel plan. Notice that we are assuming that
the total cost of the trip increases by the number of transfers, a valid
assumption in public transportation networks in Latin America. We realize
that more complex concession fares could exist in other parts of the world,
which might require changes in our methodology.

Algorithm 2 durative-action get-on

1: Parameters: passenger, bus i , location u

2: Duration: ta1iu , bus boarding time

3: Conditions at node u :

● passenger at u and

● bus i at u and

● total cost + c1iu � Ccost
4: Effect:

● passenger not at u and

● passenger in bus i and

● increase total cost by c1iu

Notice that the PDDL model description is compact since it concentrates
on describing how and when a lifted operator is valid to instantiate. For
example, the get-on operator is lifted because it requires input parameters
corresponding to the transportation unit and the location where the action
takes place. During model design, we do not need to care about all valid
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combinations of these parameters. Decoupling model design from algorithm
construction and execution is an advantage of AI planners.

Mathematical Programming Model

To evaluate the performance of AI planning algorithms, an integer linear
programming formulation (MILP) is proposed. Nevertheless, to be able to
build the MILP, we have relaxed the identification of transportation units
and their locations. We consider only route numbers to relate network
segments to public transportation. This mathematical model, under this
relaxation, generates optimal solutions to the travel plan generation in
a public transportation network which allows us to compare the efficiency
of the AI-PRP models.

Recall from Section 3 that G ¼ ðV;EÞ is a multigraph, O conforms the
means of transport, and A represents user transfers. Under these considera-
tions, the following notation is used in the mathematical model:

Variables

The first set of binary variables of the MILP correspond to the means of
transport for traversing the network, where u; v 2 V :

xiuv ¼ 1 if the user moves from u to v using conveyance i;
0 otherwise:

�

Recall that we use index i ¼ 1 to represent walking actions, and i> 1
represents the route number. Furthermore, the following binary variables
account for the transfers which will incur in an increase of the cost:

riuv ¼ 1 if user changes to transportation i to travel from u to v;
0 otherwise:

�

The MILP is as follows.

min
X
i2O

X
ðu;vÞ2G

xiuvtiuv þ riuvðta1iu þ ta0ivÞ (2)

X
i2O

X
v2Vjðs;vÞ2E

xisv ¼ 1 (3)

X
i2O

X
u2Vjðu;gÞ2E

xiug ¼ 1 (4)

X
i2O

X
j2Vjðj;vÞ2E

xijv �
X
i2O

X
k2Vjðv;kÞ2E

xivk ¼ 0 v 2 Vn s; gf g (5)
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X
ðu;vÞ2E

x1uvduv � Cwalk (6)

xiuv �
X

k2Vjðk;uÞ2E
xiku � riuv i 2 O; u; v 2 V (7)

X
i2On1

X
ðu;vÞ2E

riuvc1iu � Ccost (8)

X
i2O

xiuv þ xivu � 1 ðu; vÞ 2 E (9)

xiuv; riuv 2 0; 1f g ðu; vÞ 2 E; i 2 O

The mathematical model’s objective function (2) corresponds to the mini-
mization of the total travel time which includes the total walking time, the
total travel time in transportation units, and the time required for boarding
and alighting the transportation units (i.e., parameters ta1 and ta0 from the
problem description). Constraints (3) and (4) indicate the origin and the
destination of the user. Constraints (5) guarantee flow balance along the
network. Constraint (6) restricts the amount of walking time during the trip.
Constraints (7) activate variable riuv ¼ 1 when there is a transfer between two
lines, while constraint (8) bounds the total cost of the trip. We compute the
number of transfers by identifying changes in the means of transportation.
As it is shown in Figure 2, transfer and boarding occur on arcs xiuv when
index i updates its value between two adjacent locations (e.g., from x234 to
x345 ). If i changes its value from one to a value greater than one then
a boarding has been detected (e.g., from x123 to x234 ). Getting back the
value of i to one represents a user getting off a transport to initiate walking
(e.g., from x356 to x167 ). To avoid cycles we introduce restrictions (9). Finally,
last equations reflect the nature of the variables.

Figure 2. Changes in the means of transport during a travel plan.
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Meganodes: Preprocessing Public Transit Networks

As mentioned in the introduction, there has been work in developing
preprocessing techniques to reduce the size of transportation networks
with the objective of scaling up to larger networks without compromising
solution quality. Our motivation for using such techniques in our models is
twofold: first, to evaluate the performance of the AI planning algorithms
and MILP formulation in more constrained networks, and secondly to
feedback some intuition from the planning algorithms to the preprocessing
phase to improve the reduction techniques on the network.

We base our preprocessing techniques on Pun-Cheng 2012’s work, which
introduced the concept of meganodes. Meganodes preprocess an original
transportation network to include only stops, from different routes, that are
within a distance radius that can be covered by walking. At the end of the
process, we obtain a subgraph consisting of meganodes and their connec-
tions (see Figure 3).

The original implementation of meganodes (Pun-Cheng 2012) uses fixed
Euclidean distances to determine if a node is inside the radius of considera-
tion. Such distances cannot include nodes that exceed the maximum walking
distance allowed given the structure of the network. Instead, we execute
a simplified search from the origin and destination that considers only the
walking segments of the network to the bus stops, to determine which nodes
to include in the meganodes. For example, in Figure 3, four network nodes in
addition to the origin have been considered in the initial meganode since all
of them satisfy the Cwalk walking constraint (i.e., the user preference). Only
two of such nodes are bus stops. Once we have the initial and final mega-
nodes, we identify the set of transportation routes that cross them. In our
example, we have only two routes (i.e., the red and black lines). From this set
of routes, we include those from the origin and the destination that intersect.
If no connections are found, the walking factor is increased to consider
a greater radius. Notice that we might be discarding journeys that involve
routes that cross the meganodes but do not intersect, requiring the user to

Figure 3. Example of a public transportation network before and after meganode’s preprocessing.
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walk to perform the transfers. In the next section, we evaluate the proposed
models and the impact of the meganodes technique in balancing network size
over solution quality.

Results and Discussion

Our case study consisted on public transit networks where the fare scheme is
based on ticket purchase per boarding. Such networks are ordinary in Latin
America, where a lack of integration between transport systems is common
(Varela 2015). We generated randomly two different data-sets to evaluate the
proposed AI-PRP and the MILP models with the following properties:

(a) Data-set with 120 instances without user preferences, and
(b) Data-set with 120 instances where user preferences are incorporated as

constraints on the travel plan.

For data-set b) we considered two types of constraints, one to restrict the
total fare of trips, and a second one to limit the amount of walking distance
in the network. For the purposes of this evaluation, we minimized total travel
time (i.e., the makespan of the travel plan).

After applying our meganodes procedure on these instances, we generated
a set of smaller instances as summarized in Table 2. The first column is the
number of nodes in the network, the second is the average number of bus
stops per bus line, and the third one is the average reduction of nodes after
the meganode procedure is applied. We considered six transportation routes
for all model instances. The distances between the origin and destination
points are at most 75% of the largest Euclidean distance in the network. The
amount of route intersections in the network can be up to 50% of the possible
combinations.

Although theAI-PRPmodel captures space (i.e., location) information for the
transportation units in the network, the current version of the MILP model
cannot handle it. The MILP model provides solutions using only routing
information. Therefore, to make both models comparable, we assumed trans-
portation units for the planning models at each stop in the network to represent
readily available routes.

Table 2. Size of the instances data-sets.
Number of network
nodes

Average number of bus stops
per route

Meganodes
reduction

100 10 40%
144 14 53%
225 22 63%
289 29 65%
400 40 70%
625 78 71%
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We selected four planning algorithms for our evaluation that support the
properties of our models, and they have been recognized for showing out-
standing performance in the International AI Planning Competitions (IPC)1:
SGPLAN (Chen, Wah, and Hsu 2006), LPG-td (Gerevini, Saetti, and Serina
2003), CPT (Vidal and Geffner 2006), and POPF (Coles et al. 2010). More
recent algorithms do not allow numeric fluents in action preconditions and
goal conditions when planning with action costs,2 a PDDL feature needed to
represent user preferences as constraints.

SGPLAN is a domain-independent planner that considers subgoal partition-
ing and conflict resolution for solving problems. SGPLAN was the winner of the
suboptimal temporal metric track 2004 IPC and the winner of the satisficing
deterministic track in the 2006 IPC. LPG-td is also a domain-independent
planner based on stochastic local search and planning graphs that is recom-
mended for domains with numerical quantities and temporal actions. LPG-td
won the best-automated planner award in the 2003 IPC and the best perfor-
mance award in domains involving timed initial literals in 2004. CPT is an
optimal constraint-based temporal planner, which combines Partial Order
Planning with constraints aimed at problems with high branching factor. CTP
won the second prize in the optimal track at the 2004 IPC and distinguished
performance in Optimal Planning at IPC 2006. Finally, POPF is a forward-
chaining state-based planner that combines linear programming and partial
orderings to address temporal-numerical planning problems. POPF won the
runner-up award at the 2011 IPC.

To optimally solve ourMILPmodel, we used the General Algebraic Modeling
System (GAMS) version 24.2.3 with CPLEX 12.2. GAMS is a high-level model-
ing system for mathematical programming and optimization. All experiments
were conducted on a Lenovo Thinkpad W540 with an Intel Core I7 4740 MQ
processor, and 32 GB of RAM running Linux. In the next subsection, we present
first our analysis for the full networkmodels, and then our results on the reduced
networks generated with the meganodes procedure.

Analysis of Full Network Instances

Tables 3 and 4 show the results of our experiments for complete public
transit network models without and with user preferences, respectively. Both
tables present the number of nodes, the MILP solution and then the four
different algorithms applied to the AI-PRP problem. For each resolution
method, we present the average processing time for computing the solution,
and the average makespan (i.e., total travel time). The last row indicates the
percentage of instances for which a solution could be found by the different
methodologies. LPG-TD is a stochastic local search planner, therefore, we
executed it ten times for each instance and keep its best value in terms of
cost.
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Table 3 shows that, for instances without preferences, CPLEX returned
optimal solutions only for the smaller MILP models. On the contrary, three
out of four planning algorithms could solve all the evaluation instances.
Although CPT, which searches also for optimal temporal plans, can solve
only 73% of the instances, performs much better than the MILP methodol-
ogy in finding optimal solutions. Notice that CPT shows some higher solu-
tions costs than POPF, but this is because of the percentage of problems the
algorithm solved.

As expected, average running time is better for the greedy planning algo-
rithms (i.e., LPG-td, SGPLAN and POPF). SGPLAN running times are often
the best ones but the quality of its solutions are the worst. The strength of the
SGPLAN algorithm comes from partitioning the goal space. However, in our
problems, there is only one destination (i.e., one objective) which might affect
SGPLAN strategy. Only POPF is competitive with respect to quality (i.e., cost)
of the solutions returned, and running time, offering the best trade-off between
all the algorithms evaluated. We can conclude, based on the results, that out-of
-the-box AI planning problem-solving techniques provide mixed support for
finding travel plans in public transit networks. Although some of the algo-
rithms produced running times that might not be practical for real-life appli-
cations, POPF’s performance constitutes a promising step towards the types of
planning algorithms suitable for public transportation networks.

Table 3. Average running time (in seconds) for finding a solution, and average solution cost
(makespan) for full networks without user preferences.

MILP CPT LPG-TD SGPLAN POPF

Nodes Time Cost Time Cost Time Cost Time Cost Time Cost

100 14.27 406.90 1.16 412.85 11.43 559.55 0.05 1112.40 0.13 406.92
144 47.61 424.15 4.82 434.15 14.01 573.10 0.12 1350.00 0.25 424.63
225 – – 30.32 522.40 28.92 611.20 0.42 1677.60 0.68 516.33
289 – – 104.80 506.16 23.35 660.55 0.97 1879.20 1.31 503.49
400 – – 490.92 587.38 165.07 667.25 2.90 2221.20 2.91 578.35
625 – – – – 296.75 901.85 29.86 2790.00 14.26 707.01
% solved instances 33% 73% 100% 100% 100%

Table 4. Average running time (in seconds) for finding a solution, and average solution cost
(total travel time) for complete instances with user preferences on fare and maximum walking
distance.

MILP LPG-TD SGPLAN POPF

Nodes Time Cost Time Cost Time Cost Time Cost

100 16.63 418.80 71.81 554.00 5.18 841.94 0.28 452.62
144 50.99 433.10 330.77 574.40 17.07 838.38 0.68 453.33
225 – – 1039.43 636.93 37.97 930.75 2.46 556.38
289 – – 2274.38 725.56 64.87 942.50 6.01 536.04
400 – – 1614.07 691.67 34.21 942.00 18.14 620.40
625 – – 1834.44 1169.00 47.70 1419.00 117.77 637.40
% solved instances 33% 57% 40% 100%
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Table 4 presents the results of the data-set that incorporates user prefer-
ences as constraints in the models. Specifically, we restricted the fare users
are willing to pay for a full journey, and their maximum walking distance
during the trip. Notice that despite we are using the same full network
models, adding preferences as constraints yields to a different and more
complex planning problem. In the taxonomy of planning problems, planning
with no preferences corresponds to the general planning problem of PLAN-
EXISTENCE (Ghallab, Nau, and Traverso 2004), that is, given a problem P
one must determine if it has a solution (i.e., a plan). On the other hand, once
we add user preferences, we are restricting the set of generated plans, looking
for solutions that respect boundary conditions. This scenario corresponds to
the problem of PLAN-LENGTH, that is, given a problem P determine if it has
a solution of length � k , where length and k correspond to user-defined
metrics or preferences. It has been shown that PLAN-LENGTH is in general
harder than PLAN-EXISTENCE (Ghallab, Nau, and Traverso 2004) which
can be seen in the increase in average running time in our experimentation.
The CPT algorithm is not fitted to solve problems with preference restric-
tions. Only POPF can solve all the instances, increasing up to 725:87% its
average running time in the worst case with respect to the non-restricted
version. Given that optimal approaches do not scale up, we are not able to
assess the quality of the solutions returned by planning algorithms in models
with preferences. The next section presents models reduced by the mega-
nodes technique to evaluate the quality factor.

Analysis of Reduced Network Instances with the Meganodes Techniques

Tables 5 and 6 are like the precedent ones but now the instances have been
preprocessed with the meganode procedure presented in Section 5. Table 5
shows the results of our experiments for reduced public transit network
instances without user preferences while Table 6 corresponds to the reduced
instances with user preferences. We want to be able to generate solutions in
reduced network models more efficiently without compromising the solution

Table 5. Average running time (in seconds), and average solution cost (makespan) for mega-
nodes models without user preferences.

MILP CPT LPG-TD SGPLAN POPF

Nodes Time Cost Time Cost Time Cost Time Cost Time Cost

100 1.62 518.25 167.91 563.67 0.95 535.30 0.02 596.95 0.05 518.27
144 2.05 539.05 0.38 563.29 0.79 540.70 0.02 636.00 0.08 539.07
225 4.16 589.75 3.44 557.31 2.13 613.05 0.07 765.30 0.19 589.78
289 7.14 634.05 10.22 640.00 2.03 650.00 0.16 863.57 0.36 634.09
400 11.77 686.30 76.06 669.60 8.60 701.15 0.15 748.00 0.71 686.35
625 39.77 776.35 408.68 859.00 24.10 837.85 – – 3.49 776.42
% solved instances 100% 54% 100% 50% 100%
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quality obtained in full networks. Therefore, our evaluation in this section is
aimed at 1) reviewing the models’ performance on reduced networks, and 2)
assessing the impact of meganodes on solution cost.

Table 5 shows that CPLEX solved all the MILP models to optimality,
which in consequence allowed us to evaluate the performance of planning
algorithms comprehensively. Notice that MILP models are competitive with
respect to the planning models, since they return optimal solutions in high-
quality average running times compared to CPT. SGPLAN has the best
average times but low-quality solutions. Although POPF is a greedy algo-
rithm, it returned the optimal solutions to most of the evaluation instances at
a fraction of the time taken by the other approaches.

Interestingly, reducing the network size is not beneficial to every planning
approach. SGPLAN and CPT solved 50% and 26% fewer instances respec-
tively than using the full network counterparts. Our intuition is that reduced
networks could be over constraining the original instance, thus some of the
greedy planning approaches have problems finding a solution.

We performed the same analysis for reduced network models with user
preferences (see Table 6). The MILP solver and POPF again provided the
best trade-off between performance and solution cost. Although SGPLAN is
the fastest algorithm, it cannot scale up. Again, we can see that the restricted
instances are more time consuming than the instances without the user
preferences.

To assess the impact of the meganodes technique on the solution cost we
observe the percentages changes of the average running time, cost and
number of instances solved between full network instances, and the reduced
ones obtained after applying the meganodes technique. Table 7 shows such
results for the instances without user preferences while Table 8 shows the
results for the instances with user preferences.

Notice that the MILP model has an increment of 203% of solved instances,
CPT and SGPLAN have decrements of 26% and 50% respectively, while
LPG-TD and POPF solved again all the instances thus no changes in per-
centages. Given that we are showing average running time and average

Table 6. Average running time (in seconds), and average solution cost (makespan) for mega-
nodes instances with user preferences.

MILP LPG-TD SGPLAN POPF

Nodes Time Cost Time Cost Time Cost Time Cost

100 1.79 518.25 1.75 550.40 0.02 596.95 0.09 518.27
144 2.24 539.05 9.22 551.60 0.03 636.00 0.16 539.07
225 4.33 590.45 107.94 624.75 0.10 765.30 0.53 590.48
289 7.65 634.05 52.11 670.15 0.21 855.29 1.07 634.09
400 12.64 687.25 273.69 714.70 0.19 748.00 3.02 687.30
625 45.32 783.85 553.82 810.10 – – 27.60 792.07
% solved instances 100% 100% 50% 100%
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solution cost, an increase in the percentage change signifies worse perfor-
mance. For instance, SGPLAN and LPG-TD show improved performance,
both in running time and solution cost with respect to the full network
instances. The percentage change is more significant in the SGPLAN perfor-
mance. This is an indication that the meganodes technique does help in
improving the performance of greedy planning algorithms. However, this is
not always the case. Notice, that POPF decreases the quality of its solution
costs (up to 27% on the worst average case).

Recall, from the previous subsection, that POPF returns close to optimal
solutions; in consequence, the margin of improvement is minimal. Since
our reduction technique is greedy, it considers only routes that intersect
with the meganodes given the walking radius. Solutions that involve trans-
fers intertwined with walking might get discarded in the reduced networks,
leading to sub-optimal performance. This is an open area of improvement
for our meganodes technique, that is, find the right balance between net-
work size and solution quality, such that the technique can help algorithms
with different levels of performance.

Table 8 shows the percentage of change between values from complete
instances with respect to the meganodes ones in the presence of user pre-
ferences. Notice that the MILP model, LPG-TD, and SGPLAN increased the
percentage of problems solved. Again, there are significant savings in run-
ning time for all the algorithms, but mixed results for solution costs in high-
performance algorithms. Only the lowest performance algorithms improved
their solution costs. Therefore, we can conclude that reducing the size of the
transit network is an important performance factor for all the algorithms,
which needs to be carefully crafted to avoid losing solution quality in high-
performance algorithms.

Conclusions

In this work, we presented two different models to generate travel plans in public
transit networks. One is based onAI planning and it uses the PDDL representation

Table 8. Percentage of change between the results of complete network instances with user
preferences with respect to the reduced meganodes instances with user preferences.

MILP LPG-TD SGPLAN POPF

Nodes Time Cost Time Cost Time Cost Time Cost

Percentage Change
100 −89.23% 24.04% −97.56% −0.64% −99.61% −29.09% −67.85% 14.50%
144 −95.60% 24.46% −97.21% −4.17% −99.82% −24.13% −76.47% 18.91%
225 −100% −100% −89.61% −1.91% −99.73% −17.77% −78.45% 6.12%
289 −100% −100% −91.30% −7.63% −99.67% −9.25% −82.19% 18.29%
400 −100% −100% −94.79% 3.32% −99.44% −20.59% −83.35% 10.78%
625 −100% −100% −69.95% −30.70% 1 1 −76.56% 24.26%
% solved instances 203% 75% 25% 0%
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to model different properties from public transportation domains. The second
model is based on integer mathematical programming. We consider temporal
actions, bus locations, costs, walking distances, and user preferences to generate
travel plans. Our main motivation is to provide a generic formalism that can be
used to represent public transit network information andusers’needs. By encoding
our models using standard AI knowledge representation techniques, we can
leverage available planning algorithms, and knowledge engineering tools to com-
pute travel plans.

Our empirical evaluation shows that only greedy AI planning algorithms can
scale up when complete transit network instances are considered. However,
when user preferences are considered, their performances decrease significantly.
Only POPF, one of the tested algorithms, canmaintain a consistent performance
without affecting solution quality. We can conclude, based on the empirical
evaluation, that out-of-the-boxAI planning problem-solving techniques provide
mixed support for finding travel plans in public transit networks.

In addition, we also apply the meganodes reduction technique to our
models to produce smaller sized transit networks. The application of mega-
nodes allowed us to solve the mathematical programming models to compute
optimal travel plans across all evaluation instances. Furthermore, we verify that
POPF, the best planning algorithm in our evaluation, matched optimal solu-
tion quality at a fraction of the time taken by the mathematical programming
approach. POPF’s performance constitutes a promising direction towards the
types of planning algorithms suitable for public transportation networks.

We also found out that reduction techniques, although critical for improv-
ing algorithms’ efficiency, had a negative impact up to 27% on the solution
quality of best performers. This is an open area of research that needs to be
addressed to provide a better trade-off between performance and the quality of
solution synthesis. We are currently deriving knowledge, from planning solu-
tions, to improve the meganodes technique to close the gap between perfor-
mance and solution cost. We also plan to extend the set of queries our models
can answer. Specifically, we are considering extensions to our models to
incorporate timetabling information. We are planning to model bus schedules
in public transit networks as timed initial literals and external planning events.

The proposed models constitute a step towards alternative, more flexible,
and richer paradigms that decouple model design from algorithm construc-
tion, which consider user preferences and that leverage on available algo-
rithms, to compute travel plans efficiently for public transit networks.

Notes

1. See http://www.icaps-conference.org/index.php/Main/Competitions.
2. See http://ipc.informatik.uni-freiburg.de/PddlActionCosts for the official IPC docu-

mentation.
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