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Abstract
Traditional rotational inertial navigation systems are based on rotation around one or two
sensitive axes of inertial sensors. However, as the rotation and sensitive axes of inertial sensors
lie along the same direction, it is difficult to modulate the relative error of the inertial sensor in
the axial direction. This paper proposes a dual-axis rotation scheme based on the diagonal
rotation of the inertial measurement unit (IMU) body. The scheme selects the body diagonal of
the three orthogonal inertial sensors of the IMU as the horizontal rotation axis, and sets the
vertical rotation axis orthogonal to this axis. As the rotation axis and the inertial sensor are
oriented in different directions, at any moment of rotation, the errors of the inertial sensor in the
three axial directions can all be modulated, especially the installation error. First, a
mathematical model based on the diagonal rotation of the IMU body is established. On this
basis, the coordinate transformation relationship and the error equations are derived, and the
error propagation characteristics are obtained. Finally, the comprehensive error of the system is
tested. Under the same error conditions, the system latitude error is reduced from 0.1089
nautical miles/72 h in the traditional scheme to 0.0368 nautical miles/72 h, and the longitude
error is reduced from 0.3587 nautical miles/72 h to 0.1332 nautical miles/72 h. These results
verify the effectiveness of the proposed scheme. This method of rotating around the body
diagonal of the IMU also exhibits certain advantages when applied to other rotational inertial
navigation schemes.
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1. Introduction

Inertial navigation systems (INSs) measure external inform-
ation through inertial sensors, and then generate navigation
information through integration processing. Thus, they have
the characteristics of being autonomous and small, and achieve
full space-time and all-weather navigation [1–6]. However, the
errors of the inertial sensors will be integrated over time. At
present, high-precision INSs mostly use rotation modulation
technology to suppress the influence of inertial measurement
unit (IMU) errors [7–15]. The constant drift and slow-varying
errors of inertial sensors are the main factors affecting the
accuracy of INSs. The rotational INS (RINS) uses the regular
rotation of the IMU to compensate for these errors through dif-
ferent rotation sequences, so the design of the rotation scheme
is the key to determining the improvement in system accuracy
[16–23]. Common single- and dual-axial RINSs take one sens-
itive axis or two directional inertial sensors of the IMU as the
rotation axis to produce different rotation schemes by chan-
ging the rotation speed, direction, and sequence of the rota-
tion axis. Such schemes are simple and intuitive, have simple
spatial relationships, and are easy to implement.

Since Levinson proposed the concept of rotational mod-
ulation in the 1980s [19], a number of rotational modula-
tion schemes (RMSs) have been developed. They can mainly
be divided into single-axis, two-axis, and three-axis RMSs.
Among them, single- and dual-axis RMSs are more com-
mon, with three-axis RMSs less used because of the com-
plex structure of the realization equipment and the influence
of factors such as turntable errors. Single-axis rotational mod-
ulation can effectively suppress axial errors, except for those
associated with the rotation axis, but the error in the direction
of the rotation axis cannot be modulated. Sun et al [21] pro-
posed an improved single-axis rotation scheme in which the
angle between the rotation axis and the IMU sky axis is used
to effectively modulate the error of the antenna component,
thus improving the accuracy of the single-axis rotation system.
Dual-axis rotationmodulation is themost widely used scheme.
This can be regarded as two single-axis alternate rotations, so
the error in any axis can be compensated to a certain extent.
Zhou et al [22] designed an eight-position rotation scheme
based on the error compensation principle of the IMU, which
optimizes the relationship between the installation error and
rotation strategy. Xu et al [23] combined the motion constraint
of the carrier with the rotationmodulation to give a 32-position
rotation scheme that enhances navigation accuracy. Zha et al
[14] focused on the coupling effect between the scale factor
error, installation error, and IMU rotation movement, and pro-
posed a rotation schemewith comprehensive error suppression
that reduces the accumulation of velocity errors in one cycle.
Research on suitable rotation schemes is based on the premise
that the rotation axis and the sensitive axis of the inertial sensor
are in the same direction. As a result, when rotating around a
certain axis, the relative error of the inertial sensor in the axial
direction is difficult to modulate.

Using the principles of a single-axis rotation scheme, this
paper proposes a dual-axis rotation scheme based on the

diagonal rotation of the IMU body, following [14]. The solu-
tion no longer takes the sensitive axis of the inertial sensor as
the rotation axis, but selects the body diagonals of the three
orthogonal inertial sensors of the IMU as the horizontal rota-
tion axis, and uses the vertical axis orthogonal to this axis as
another rotation axis. By changing the rotation speed, direc-
tion, and sequence of horizontal and vertical rotating axes, it is
possible to realize dual-axis rotation. Because the rotation axis
and the inertial sensor are oriented in different directions, the
device errors in the three directions perpendicular to the rota-
tion axis can be modulated at any moment of rotation, which
maximizes the accuracy of the system. A rigorous mathemat-
ical derivation and experimental simulation results prove that
this scheme clearly suppresses the system installation errors.

2. Error model of dual-axis rotational INS

2.1. Definition of reference frames

Inertial frame (denoted as i): the origin of the inertial frame is
at the center of the Earth. Its z-axis points in the direction of the
north pole, the x-axis points toward the mean vernal equinox,
and the y-axis completes the right-handed orthogonal frame.
The inertial frame is non-rotating with respect to distant galax-
ies. The gyroscope and accelerometer outputs are relative to
this frame.

Navigation frame (denoted as n): this frame is a local geo-
detic coordinate frame. Its origin is at the position of the
vehicle and its x–y–z axes point east-north-up, respectively.
The RINS calculation is performed in the navigation frame
and, therefore, all vectors should be transformed into this
frame before navigation calculations.

Body frame (denoted as b): this frame is defined as the
orthogonal body-mounted IMU. Its x–y–z axes point right-
forward-upward with respect to the vehicle, respectively. The
relationship between the body frame and navigation frame
encodes the attitude information of the ship.

Installation frame (denoted asm): the three gyroscopes and
accelerometers are positioned vertical to each other, and the
three groups of inertial elements give the x-axis, y-axis, and
z-axis of the installation frame.

Rotation frame (denoted as p): at the initial moment of rota-
tion modulation, the rotation frame coincides with the body
frame. As the IMU rotates around the x-axis of the rotation
frame, the x-axis of the rotation frame coincides with that of
the body frame, and the y- and z-axes of the rotation frame
rotate around the x-axis of the rotation angle speed. As the
IMU rotates around the y-axis of the rotation frame, the y-axis
of the rotation frame coincides with that of the body frame,
and the x- and z-axes of the rotation frame rotate around the
y-axis of the rotation angle speed. As the IMU rotates around
the z-axis of the rotation frame, the z-axis of the rotation frame
coincides with that of the body frame, and the x- and y-axes of
the rotation frame rotate around the z-axis of the rotation angle
speed. Dual-axis rotation modulation is generally achieved by
rotating around the x- and z-axes.
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2.2. Definition of system errors

Constant and random errors (denoted as ε and σ): the inertial
sensor produces an output signal without an input signal. The
input signal changes in a constant, random form.

Scale factor errors (denoted as δK): these errors are gener-
ated when the inertial sensor output voltage is converted to an
angular velocity or acceleration. The scale factor error matrix
is as follows:

δK=

 k11 0 0
0 k22 0
0 0 k33


where k11, k22, k33 denote the scale factor errors of the three
gyroscopes or accelerometers.

Installation errors (denoted as δA): the angle between the
sensitive axis of the inertial sensor and the ideal orthogonal
installation. Let k12,k13,k21,k23,k31,k32 be the six installation
error angles. The installation error matrix is as follows:

δA=

 0 k12 k13
k21 0 k23
k31 k32 0

 .

2.3. Error propagation equations of RINS

In an INS, the attitude and velocity error equations based on
the phi-angle-error definition are given by

ϕ̇=−ωnin×ϕ+ δωnin−Cnbδω
b
ib (1)

δv̇= f n×ϕ+Cnbδf
b− (2ωnie+ωnen)× δv

− (2δωnie+ δωnen)× v− δg (2)

where ϕ represents the misalignment angle of the ‘mathemat-
ical platform’. v and δv denote the velocity and the velocity
error, respectively, while ω and f denote the angular rate and
the specific force, respectively. Cnb denotes the attitude matrix.
δωbib and δf

b denote the angular rate error and the specific force
error.

The error propagation equation of the traditional RINS can
be obtained from the error equation of the INS, as shown
below:

ϕ̇=−ωnin×ϕ+ δωnin−CnbC
b
pδω

p
ip (3)

δv̇= f n×ϕ+CnbC
p
pδf

p− (2ωnie+ωnen)× δv

− (2δωnie+ δωnen)× v− δg (4)

where Cbp denotes the coordinate transformation matrix from
the rotational frame p to the body frame b. δω p

ip and δf
p denote

the angular rate error and the specific force error measured in
the frame p.

The third term in equation (3) is defined as the angular velo-
city error (denoted as En) in the navigation frame. The second

term in equation (4) is the specific force error (denoted as Γn)
in the navigation frame:

En = CnbC
b
pδω

p
ip = CnbC

b
p[(δK+ δA)ω p

ip+ εp+σp] (5)

Γn = CnbC
b
pδf

p = CnbC
b
p[(δK+ δA)f p+ εp+σp] (6)

where ω p
ip and f

p denote the angular rate and the specific force
of the IMU relative to the inertial frame i.

3. Mathematical model of rotation scheme

3.1. Traditional rotation scheme modeling

The rotation scheme of [14] is based on the premise that the
rotation axis and the sensitive axis of the inertial sensor are
in the same direction. The specific rotation scheme can be
expressed as follows:

(1) Rotate 180◦ about the positive Z-axis and rest for tss.
(2) Rotate 180◦ about the negative X-axis and rest for tss.
(3) Rotate 180◦ about the positive X-axis and rest for tss.
(4) Rotate 180◦ about the negative Z-axis and rest for tss.
(5) Rotate 180◦ about the negative X-axis and rest for tss.
(6) Rotate 180◦ about the positive Z-axis and rest for tss.
(7) Rotate 180◦ about the negative Z-axis and rest for tss.
(8) Rotate 180◦ about the positive X-axis and rest for tss.

Steps (9)–(16) of the rotation sequence are the same as
(1)–(8), but with opposite rotation directions.

For the above-mentioned rotation scheme, the mutual rela-
tionship between the coordinate systems determines the rota-
tion transformation matrix Cbp and the rotation angular velo-
cities ωb and ωp of the IMU under each rotation sequence in a
rotation period. Expressions of the rotational angular velocit-
ies ωb and ωp with Cbp and an IMU under the first four steps of
the rotational sequence are listed in table 1.

3.2. Proposed rotation scheme

The scheme proposed in this paper is based on the traditional
rotation scheme. The setting of the rotation axis is modified,
the body diagonal of the three orthogonal inertial sensors of the
IMU is selected as the horizontal rotation axis, and the vertical
rotation axis is set to be orthogonal to this axis, as shown in
figure 1.

The proposed scheme is based on the rotation scheme of
[14], and changes the placement of the IMU on the dual-axis
turntable. The body diagonal of the three orthogonal inertial
sensors of the IMU gives the horizontal rotation axis, parallel
to the inner ring axis of the turntable, and the direction ortho-
gonal to this axis is the vertical rotation axis, parallel to the
outer ring axis of the turntable. The angles between the hori-
zontal rotation axis and the three sensitive axes of the IMU
are equal, as shown in figure 2. The sequence of rotation is
consistent with that in [14].
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Table 1. Expressions of Cbp and ωp
bp in rotation sequence steps

(1)–(4).

Rotation
sequence Cbpi ωp

bpi ωp
bpi

1
 cosωt −sinωt 0

sinωt cosωt 0
0 0 1

  0
0
ω

  0
0
ω


2

 −1 0 0
0 −cosωt sinωt
0 sinωt cosωt

  ω
0
0

  −ω
0
0


3

 −1 0 0
0 cosωt sinωt
0 sinωt −cosωt

  −ω
0
0

  ω
0
0


4

 −cosωt −sinωt 0
sinωt −cosωt 0
0 0 1

  0
0
−ω

  0
0
−ω



Figure 1. Tilt rotation modulation scheme.

Figure 2. Relationship between installation frame and rotation
frame.

The relationship between the installation frame and the
rotation frame is now defined. As shown in figure 2, the rota-
tion frame can be rotated around the Z-axis of the installation
frame by 45◦ in the positive direction to give a rotation around
the Y-axis of the installation frame in the negative direction(
90◦ − arctan

√
2
)
. Thus, the coordinate transformation mat-

rix Cpm is obtained as follows:

Cpm =



√
3
3

√
3
3

−
√
3
3

−
√
2
2

√
2
2

0
√
6
6

√
6
6

√
6
3

 .

Unlike the traditional rotation modulation axis, the body diag-
onal of the three orthogonal inertial sensors of the IMU is
selected as the horizontal rotation axis, and the rotation axis
orthogonal to this axis is the vertical rotation axis. The change
in rotation axis modifies the error propagation equation, which
requires the generation of a coordinate transformation matrix
from the installation frame to the rotation frame. Thus, the new
error propagation equation is expressed as

·
ϕ=−ωnin×ϕ+ δωnin−CnbC

b
pC

p
mδω

m
im (7)

δ
·
v= f n×ϕ+CnbC

b
pC

p
mδf

m− (2ωnie+ωnen)× δv

− (2δωnie+ δωnen)× v− δg (8)

where Cbp denotes the coordinate transformation matrix from
the rotation frame p to the body frame b. Cpm denotes the
coordinate transformation matrix from the installation frame
m to the rotation frame p. δωmim and δfm denote the angular rate
error and the specific force error measured in the installation
frame.

The expansion formulas for the angular velocity error and
the specific force error are as follows:

En = CnbC
b
pC

p
mδω

m
ip

= CnbC
b
pC

p
m[(δK+ δA)ωmip+ εm+σm] (9)

Γn = CnbC
b
pC

p
mδf

m

= CnbC
b
pC

p
m[(δK+ δA)fm+ εm+σm]. (10)

It can be seen from these formulas that the RINS error is
comparable to that of the strapdown inertial navigation sys-
tem. There is a rotation matrix transfer; that is, the coordin-
ate transformation matrix (Cbp) from the rotation frame to
the body frame, and an additional coordinate transforma-
tion matrix (Cpm) from the installation frame to the rotation
frame.

4. Analysis of system error characteristics

4.1. Attitude error analysis

According to equations (9) and (10), the error analysis for
the accelerometer is similar to that for the gyroscope. The
error analysis for the gyroscope is as follows. First, we dis-
cuss the attitude error caused by constant and random errors,
scale factor errors, and installation errors.
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Table 2. Attitude error caused by scale factor error and installation error in proposed rotation scheme.

Rotation sequence ϕδk ϕδA

1 [ 0 0 π k1]
T [ 0 4

√
2k2/3 5πk2/3 ]T

2 [ −πk1 0 π k1]
T [ 2πk2/3 8

√
2k2/3 5πk2/3 ]T

3 [ 0 0 π k1]
T [ 0 4

√
2k2/3 5πk2/3 ]T

4 [ 0 0 0 ]T [ 0 0 0 ]T

5 [ −πk1 0 0 ]T [ 2πk2/3 −4
√
2k2/3 0 ]T

6 [ −πk1 0 πk1 ]T [ 2πk2/3 −8
√
2k2/3 5πk2/3 ]T

7 [ −πk1 0 0 ]T [ 2πk2/3 −4
√
2k2/3 0 ]T

8 [ 0 0 0 ]T [ 0 0 0 ]T

9 [ 0 0 −πk1 ]T [ 0 4
√
2k2/3 −5πk2/3 ]T

10 [ πk1 0 −πk1 ]T [ −2πk2/3 8
√
2k2/3 −5πk2/3 ]T

11 [ 0 0 −πk1 ]T [ 0 4
√
2k2/3 −5πk2/3 ]T

12 [ 0 0 0 ]T [ 0 0 0 ]T

13 [ πk1 0 0 ]T [ −2πk2/3 −4
√
2k2/3 0 ]T

14 [ πk1 0 −πk1 ]T [ −2πk2/3 −8
√
2k2/3 −5πk2/3 ]T

15 [ πk1 0 0 ]T [ −2πk2/3 −4
√
2k2/3 0 ]T

16 [ 0 0 0 ]T [ 0 0 0 ]T

4.1.1. Analysis of attitude error caused by constant error and
random error. Rotating the IMU once around the rotation
Z-axis and once around the rotation X-axis as an example, the
constant error in equation (9) is integrated as follows:

ϕ=

2π/ωˆ

0

Enεdt=

2π/ωˆ

0

CnbC
b
pC

p
mε

mdt

=

2π/ωˆ

0

Cpm

 εmx cosωt− εmy sinωt

εmx sinωt+ εmy cosωt

εmz

dt=

 −εmz
2
√
3π

3ω

0

εmz
2
√
6π

3ω


(11)

ϕ=

2π/ωˆ

0

Enεdt=

2π/ωˆ

0

CnbC
b
pC

p
mε

mdt

=

2π/ωˆ

0

Cpm

 εmx

εmy cosωt− εmz sinωt

εmy sinωt+ εmz cosωt

dt=


εmx

2
√
3π

3ω

−εmx
√
2π
ω

εmx
√
6π
3ω

 .

(12)

Equations (11) and (12) indicate that, although different
from the traditional rotation scheme, errors other than those of
the rotation axis can be modulated to zero. However, the pos-
ture error after modulation is constant, so after rotating around
the X- and Z-axes alternately, the attitude errors caused by the
constant errors of the three orthogonal gyroscopes can bemod-
ulated into a zero-average periodic form.

Attitude errors caused by random errors remain in ran-
dom form after multiplying, integrating, and summing the sine
and cosine functions. Therefore, rotation modulation cannot
change the randomness of attitude errors caused by random
errors.

4.1.2. Analysis of attitude error caused by scale factor error.
Integrating and accumulating the part containing the scale
factor error in equation (9) gives the attitude error variation
range caused by the scale factor error after each rotation.
Equation (13) gives the attitude error caused by the scale factor
error in one rotation period (that is, after 16 rotations):

ϕδK =

π/ωˆ

0

16∑
i=0

EnδKdt=

π/ωˆ

0

16∑
x=0

(CnbC
b
pxC

px
mxδKω

m
x )dt. (13)

4.1.3. Analysis of attitude error caused by installation error.
Integrating and accumulating the part containing the installa-
tion error in equation (9) gives the attitude error variation range
caused by the installation error after each rotation. Equation
(14) shows the attitude error caused by the installation error in
a rotation period:

ϕδ A=

π/ωˆ

0

16∑
i=0

EδA
ndt=

π/ωˆ

0

16∑
x=0

(CnbC
b
pxC

px
mxδ Aω

m
x )dt.

(14)

Incorporating the above-mentioned mathematical expres-
sions related to the proposed rotation scheme into equations
(13) and (14), the attitude error caused by the scale factor error
and the installation error can be obtained.

As in [14], we assume that the scale factor errors of
the three groups of inertial sensors are the same, and the
installation errors of each axis are equal. Suppose that k11 =
k22 = k33 = k1, k12 = k13 = k21 = k23 = k31 = k32 = k2. The
attitude errors after each rotation sequence are as listed in
table 2.

The attitude error caused by the scale factor error and the
installation error in [14] can be written in a similar form as
in table 2, allowing the amplitude changes to be compared.

5
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Figure 3. Comparison of attitude error caused by scale factor error
between two rotation schemes.

Figure 4. Comparison of attitude error caused by installation error
between two rotation schemes.

Figures 3 and 4 compare the changes in the attitude error amp-
litude caused by the scale factor error and installation error of
the two schemes.

As shown in figure 3, the attitude error amplitude changes
caused by the scale factor errors of the two schemes are the
same, i.e. always zero on the north axis, and the attitude errors
on the east axis and the up axis are modulated into a peri-
odic form with a mean value of zero. Thus, the scale factor
error is not integrated and will not cause the velocity error to
accumulate.

As can be seen from figure 4, the attitude error caused by
the installation error under the two schemes is modulated into
different forms. In the scheme of [14], the north component
of the attitude error is modulated into a periodic form with
a zero mean, while the mean value of the east and up error
components of the attitude is not zero. In the proposed scheme,
the attitude error components along the north, east, and up
axes are all modulated into a zero-average periodic form. In
the INS, the attitude error further affects the system velocity
error, so the difference in modulation characteristics between
the two schemes will cause different error modulation effects.
These will be analyzed in detail in the next section. In addi-
tion, the maximum amplitude of the north component of the
attitude error in the proposed scheme is smaller than in the

scheme of [14], decreasing from 4k2 to 8
√
2k2

/
3. Therefore,

the main feature of the proposed scheme is that it has obvious
advantages in restraining the installation errors.

4.2. Velocity error analysis

It can be seen from equation (8) that when the system has an
attitude error of ϕ, this will be coupled with the carrier force
to produce a velocity error increment of δv̇. The velocity error
increment can be integrated to obtain the velocity error caused
by the attitude error:

δv= ∫( f n×ϕ)dt (15)

f n =
[
0 0 g

]T
. (16)

Based on the static carrier present mentioned above, f n can be
expressed as in equation (16), where g is the local gravitational
acceleration. Therefore, the velocity errors along the north and
east axes can be written as follows:

δvE = ∫(−ϕNg)dt (17)

δvN = ∫(ϕEg)dt. (18)

Equation (13) can be added to equation (14) to find the atti-
tude error caused by the scale factor error and the install-
ation error. Substituting these quantities into equations (17)
and (18), the velocity errors in the north and east axes can be
obtained. To determine the magnitude of the error range of
the velocity errors of the two schemes along the north axis,
it is assumed that the scale factor errors of the three groups of
inertial sensors are the same, and the installation errors of each
axis are equal. Suppose that tr = π/ω, k11 = k22 = k33 = k1,
k12 = k13 = k21 = k23 = k31 = k32 = k2. The simplified north-
axis velocity error after each step is listed in table 3.

It can be concluded from table 3 that the scheme of [14]
(average amplitude: −3.25k2gtr) and the proposed scheme

(average amplitude: (−8
√
2k2

/
3)gtr) have very similar aver-

age amplitudes of the east-axis velocity error. The two
schemes have the same change in amplitude of the north-axis
velocity error accumulation caused by the scale factor error,
which reflects the modulation effect of the proposed scheme in
suppressing the accumulation of system velocity errors caused
by the installation error. For example, in [14], the cumulative
average amplitude of the north-axis velocity error caused by
the installation error is −10k2gtr, and the average amplitude
of the proposed scheme is 4k2/3gtr. In terms of amplitude, the
north-axis velocity error of the proposed scheme is relatively
small.

To illustrate that the magnitude of the north-axis velocity
error in the proposed scheme is small, the cumulative mag-
nitude of this error caused by the installation error listed in
table 3 is shown in figure 5. This figure illustrates that, under
the proposed tilt scheme, the rotation modulation scheme of
[14] can reduce the accumulation of the north-axis velocity
error caused by installation error, so that the position error can
be fully modulated.

6
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Table 3. Velocity error caused by scale factor error and installation
error in proposed rotation scheme.

Rotation sequence δvE δvN

1 (−4
√
2k2/3)gtr 0

2 (−4
√
2k2)gtr (2k2/3−πk1)gtr

3 (−16
√
2k2/3)gtr (2k2/3−πk1)gtr

4 (−16
√
2k2/3)gtr (2k2/3−πk1)gtr

5 (−4
√
2k2)gtr (4k2/3− 2πk1)gtr

6 (−4
√
2k2/3)gtr (6k2/3− 3πk1)gtr

7 0 (8k2/3− 4πk1)gtr

8 0 (8k2/3− 4πk1)gtr

9 (−4
√
2k2/3)gtr (8k2/3− 4πk1)gtr

10 (−4
√
2k2)gtr (6k2/3− 3πk1)gtr

11 (−16
√
2k2/3)gtr (6k2/3− 3πk1)gtr

12 (−16
√
2k2/3)gtr (6k2/3− 3πk1)gtr

13 (−4
√
2k2)gtr (4k2/3− 2πk1)gtr

14 (−4
√
2k2/3)gtr (2k2/3−πk1)gtr

15 0 0
16 0 0

Mean (−8
√
2k2/3)gtr (4k2/3− 2πk1)gtr

Figure 5. Comparison of error amplitude of north-axis velocity.

Ignoring the influence of the height factor, the position error
equation is

δL̇=
δvN
RM

(19)

δλ̇=
δvE

RN cosL
+ δL

vE
RN

tanLsecL (20)

where RM is the radius of curvature of the meridian circle and
RN is the radius of curvature of the unitary circle.

Equations (19) and (20) indicate that a decrease in the velo-
city errors along the north axis leads to a decrease in the latit-
ude error and the longitude error.

Table 4. Experimental conditions.

Parameter Value

Latitude 30.58◦

Longitude 114.23◦

Roll angle 3◦sin(2πt/7)
Pitch angle 5◦sin(πt/6)
Heading 0.5◦sin(πt/4)
Turntable speed 6◦/s
Rotation and rest time 30 s
Gyro zero bias 0.001◦/h
Gyro random error 0.0003◦/

√
h

Gyro scale factor error 5 ppm
Gyro installation error 5′′

Accelerometer zero bias 10 µg
Accelerometer random error 1 µg
Accelerometer scale factor error 10 ppm
Accelerometer installation error 10′′

Figure 6. Comparison of attitude errors caused by constant errors.

5. Simulations and analysis

To verify the correctness of the mathematical derivation and
analysis of the proposed tilt scheme and the effect of its actual
application, simulation experiments were carried out. The spe-
cific simulation parameter settings are listed in table 4.

5.1. Simulation of constant error, scale factor error, and
installation error

To verify the analysis of the attitude error caused by the con-
stant error, scale factor error, and installation error, three sim-
ulations were conducted. Each simulation considered either a
constant error, scale factor error, or installation error.

The results of the simulation, including the constant value
error listed in table 4, are shown in figure 6. This figure com-
pares the attitude error caused by the constant error in one
cycle (960 s) between the rotation scheme in [14] and the pro-
posed rotation scheme. The trends in the attitude error amp-
litude caused by the constant value error are similar, and the
attitude errors are close to zero. This verifies our mathematical
derivation of the effects of a constant error.

7
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Figure 7. Comparison of attitude errors caused by scale factor
errors.

Figure 8. Comparison of attitude errors caused by installation
errors.

The simulation results considering the scale factor error lis-
ted in table 4 are shown in figure 7. The attitude error caused
by the scale factor error in the rotation scheme of [14] is com-
pared with that resulting from the proposed rotation scheme in
one cycle (960 s). Combining these results with figure 3, we
find that the changes in the attitude error amplitude caused by
the scale factor error are the same for the two schemes. Thus,
as shown in figure 7, the data curve of the proposed rotation
scheme covers the scheme of [14].

The simulation results for the installation error listed in
table 4 are shown in figure 8, which compares the attitude
errors of the two rotation schemes. The proposed rotation
scheme not only modulates the attitude error of the north axis
into a periodic form with a mean of zero, but also modulates
the east-axis and the up-axis attitude errors into the form of a
zero-average period. This result verifies the correctness of the
mathematical derivation in table 3 and figure 3.

To verify the correctness of the mathematical derivation of
the velocity error, an experimental simulation was conducted
using only the installation error. The experimental results are
shown in figure 9. Compared with the scheme of [14], the

Figure 9. Comparison of north velocity errors caused by
installation errors.

Figure 10. Comparison of x- and y-axis attitude errors in one cycle.

velocity error of the proposed scheme is significantly reduced,
and the change trend is consistent with that in figure 5.

5.2. Comprehensive error simulations

To test the effectiveness of the proposed scheme in practical
applications, the main error sources were identified, and com-
prehensive error simulations were performed. The parameter
settings are listed in table 4. The attitude error and velocity
error caused by the combined error in one cycle (960 s) are
shown in figures 10 and 11.

The attitude error, velocity error, and position error caused
by the combined error during a long sailing time (72 h) are
shown in figures 12 and 13.

As shown in figure 10, compared with the scheme of
[14], the proposed method modulates the x-axis attitude error
into a zero-average periodic form. The scheme described in

8
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Figure 11. Comparison of east- and north-axis velocity errors in one
cycle.

Figure 12. Comparison of x- and y-axis attitude errors over three
days.

this paper mainly reflects the modulation effect of the sys-
tem x-axis attitude error on the modulation of the installation
error. As a result, the accumulation of velocity errors along
the north-axis is correspondingly reduced. The y-axis attitude
error range suppression ability of the proposed scheme is sim-
ilar to that of [14], so the velocity errors that accumulate along
the east axis are similar. Therefore, figure 11 fully proves the
correctness of the theoretical derivation.

According to equations (19) and (20) and the above ana-
lysis, compared with the scheme of [14], the rotation mod-
ulation of the proposed scheme reduces the velocity errors
along the north axis of the system, and the position error is
reduced accordingly, as shown in figures 14 and 15. The latit-
ude error of the proposed scheme decreases from 0.1089 naut-
ical miles/72 h [14] to 0.0368 nautical miles/72 h, and the lon-
gitude error decreases from 0.3587 nautical miles/72 h [14] to

Figure 13. Comparison of east- and north-axis velocity errors over
three days.

Figure 14. Comparison of latitude errors over three days.

0.1332 nautical miles/72 h. This shows that the longitude error
increases slowly with the increasing sailing time.

To verify the applicability of the body diagonal rotation
scheme proposed in this paper, in addition to comparing it
with the scheme of [14], the eight-position rotation scheme in
[9] and the 16-position rotation scheme in [24] are also com-
pared. The experimental conditions are as listed in table 4. The
position errors under the proposed scheme are compared with
those under the schemes described in [9] and [24] in figures 16
and 17, respectively.

As shown in figures 16 and 17, when the rotation schemes
in [9] and [24] are applied to the diagonal rotation of the
IMU around the body, a certain accuracy improvement can
be achieved. Therefore, the rotational modulation technique
based on the diagonal of the IMU body has clear research
value.

9
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Figure 15. Comparison of longitude errors over three days.

Figure 16. Comparison of position error of the scheme in [9] and the improved scheme.

Figure 17. Comparison of position error of the scheme in [24] and the improved scheme.

10
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6. Conclusion

The error compensation of RINSs depends on the design of
the rotation scheme. Unlike the traditional rotation scheme,
this article describes a method in which the IMU is rotated
based on the diagonal of the body. This approach does not
introduce new errors and reduces the various existing errors,
especially through the modulation effect on the installation
error. Simulations show that the proposed method based on
the body diagonal rotation reduces the latitude error of the
scheme in [14] from 0.1089 nautical miles/72 h to 0.0368
nautical miles/72 h and the longitude error from 0.3587
nautical miles/72 h to 0.1332 nautical miles/72 h. The pro-
posed scheme also slows the increase in longitude error with
the increasing voyage time. Applying the method of rotat-
ing around the IMU to other schemes also produces certain
advantages.

Future workwill investigate the application of the improved
scheme to real-world scenarios. This will involve installing
the IMU on a certain datum plane, and ensuring that the three
sets of inertial devices are orthogonal through the orthogonal
datum plane of the cube. The diagonal vertex of the cube will
then be set as the axis, allowing the rotation axis to be construc-
ted. As this method of construction will inevitably introduce
errors, the constructed IMU will be calibrated on a laboratory
turntable, with error items such as the non-orthogonal error
and shaft installation error calibrated by standard angular velo-
city excitation. The current turntable calibration accuracy can
reach the arc-second level.
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