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ABSTRACT

Aims: To elucidate the effect of induced conformational changes on the native
fluorescence of aqueous humic materials.
Study Design: The conformation of dissolved humates was changed by adjustment of a
variety of environmental factors and the resulting fluorescence emission, excited at 240nm
was monitored in the 300-465nm range.
Place and Duration of Study: Department of Chemistry, University of Idaho, Moscow, ID,
USA; April to August, 2012
Methodology: The fluorescence spectra of a number of humic and fulvic acids in different
solution environments were measured with a photon counting fluorimeter. Attention was
focused on the emission range centered on 400 nm and the intensity of the peak observed
in this region was interpreted in terms of conformational changes.
Results: The addition of a multivalent cations produced distinct changes in the native
fluorescence of dissolved humic materials that had otherwise broad and featureless
emission spectra. A series of divalent cations were found to produce these emission
changes. Microaggregation brought about by alternative causes, such as changes in pH,
concentration, and solvent, produced similar outcomes. Chain length and rigidity of the
humic polyanions also had significant effects.
Conclusion: The appearance and variation of a 400-nm emission peak was rationalized
by invoking the formation of pseudomicellar structures that incorporated the emitting entity
and provided limited access to water.
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1. INTRODUCTION

Humic substances, the decay products of the total biota in the environment, tend to have
highly aromatic cores containing numerous fluorophores [1]. The abundance and similarity of
these entities lead to broad, relatively featureless spectra that are of limited analytical utility.
For this reason, fluorimetric investigations of humates involving strongly emitting probes are
often more fruitful than those relying on native emissions [2]. One technique that does use
the native fluorescence to good effect is total fluorescence spectroscopy in which excitation-
emission matrices are generated that provide fingerprint-like identification for mixtures of
fluorophores [3].

Close inspection of single-scan native fluorescence of humates, however, reveals that
certain spectral features of aqueous humates are related in interesting ways to the solution
conditions of the humic biopolymers. These responses are based on conformational
changes in the materials and aggregates that form as a consequence of environmental
influences [4]. The present communication deals with emission changes that occur because
of such conformational variations.

The conformations of humic polyanions in aqueous solution have been studied extensively
[4]. It is generally agreed that the highly diverse humic solutes progressively aggregate in
response to solution parameters such as pH, ionic strength and presence of multiply
charged cations, temperature, and concentration [5]. One of the more interesting features of
this process is the formation of humic pseudomicelles, [6,7] which can be visualized as
microscopic units that, while lacking the ordered structure of a “regular” surfactant micelle,
do provide an internal microenvironment that can accommodate hydrophobic co-solutes.
The presence of di- and trivalent cations in solution is especially favorable for the formation
of humic pseudomicelles, since these ions can bind to functional groups (especially
carboxylates) on different parts of the humic structure, thereby connecting them into a
coherent entity. It has been shown that this process is accompanied by a reduction in
particle size [8].

2. EXPERIMENTAL DETAILS

2.1 Chemicals

All chemicals were of analytical grade. MgCl2 and NaCl was purchased from Fisher
Scientific. [(CH3)3 NCH2CH2N (CH3)3]2+ (“N2”), europium chloride, and holmium chloride were
purchased from Sigma Aldrich. Sr(NO3)2, CaCl2, Tb(NO3)3, and La(Cl3) 2O were obtained
from J.T. Baker Chemical Co. EM Industries, Pfautz and Bauer, Ind and Strem Chem
respectively. All reagents were used as received. Standard humic and fulvic acids were
purchased from the International Humic Substances Society (IHSS, St. Paul MN 55108) and
used as received.

2.2 Isolation and Dissolution of Humates

Latah Co Silt Loam Humic Acid (LSLHA) was isolated from Latah Co Silt Loam (Argiaquic
Xeric Argialbolls) according to the procedure provided by IHSS [9] which involves two cycles
of HCl treatment for the removal of acid-soluble material; extraction of the residue with 0.1M
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NaOH; deashing with 0.1M HCl/0.3M HF; purification by dialysis and isolation by freeze
drying.

Humic acid solutions were prepared in doubly distilled water, treated with a Millipore Milli-Q
Reagent water system to a resistivity of at least 16 MΩ cm. The material was brought into
solutionby adding a minimal amount ofbase (sodium or ammonium hydroxide) and
subsequently adjusting the pH to the desired value with 0.01M HCl. For humate solutions
containing magnesium or other metals, the appropriate increments of a 5μg/mL of the metal
chloride was added to a 10μg/mL solution of the humate.

2.3 Fluorescence

Fluorescent spectra was taken with a Fluorolog-3 fluorimeter (Horiba Jobin Yvon, Edison,
NJ) with photon counting detection. The samples were excited at 240 nm and the emission
spectra were collected in the 300-465nm range. Confirmation measurements were obtained
with an SLM-Aminco 8100 Fluorescence Spectrophotometer (Urbana, IL).

3. RESULTS AND DISCUSSION

The fluorescence emission spectrum of a 10μg/mL aqueous solution of LSLHA, excited at
245 nm, is shown in Fig. 1. The typical broad emission can be seen to increase gradually in
intensity over the 300-465 nm range. The addition of Mg2+ to the solution gave rise to
general intensity enhancement, as well as a distinct peak centered at 400 nm. Ca2+ and a
series of divalent lanthanide ions produced similar effects, while monovalent cations such as
Na+ did not – even at high concentrations. The lanthanides gave an additional spectral
feature around 370 nm (not shown here), which can be ascribed to sensitized emission and
will not be considered further.

It has been shown [10] that Mg2+ and other did and trivalent cations cause aqueous humates
to undergo progressive intra- and intermolecular aggregation, in which the humic polyanions
are drawn into structures that resemble surfactant micelles (“pseudomicelles”). It may be
hypothesized that these configuration changes cause humic fluorophores – e.g. the one
giving rise to the 400-nm peak – to be placed in a different, less polar, environment and
therefore display different emission characteristics. The measurements described here were
carried out clarify this matter.

3.1 Effect of pH

The addition of multivalent cations is the most efficient, but not the only way to induce
pseudomicelle formation in dissolved humates. A similar effect can be achieved by reducing
the pH of a humic solution; thereby protonating the carboxylate groups of the polyanions
[11]. Once these are neutralized sufficiently to minimize coulombic repulsion, the humic
chains can fold to form microscopic aggregates with an internal environment that may allow
the 400-nm emission peak to appear. The experimental evidence Fig. 2 supported this
scenario. It can be seen that the telltale peak at around 400 nm became clearly visible at pH
2, lending further credence to the notion that the sequestration of humic fluorophores in the
relatively nonpolar interior of the pseudomicelles gave rise to this emission.
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Fig. 1. Effect of different concentrations of Mg2+ on the intrinsic fluorescence of
LSLHA in the 300-465 nm range; ex 245nm; 10 μg/mL LSLHA

3.2 Solvent Polarity

In previous work involving humic solutions with an added fluorescent probe [12] it was noted
that the sequestration of this probe within the pseudomicelles showed that it resided in a

Fig. 2. The effect of pH on the fluorescence of LSLHA (55 μg/mL; ex 245nm)
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relatively nonaqueous microenvironment. In the present case, this apparent exclusion of
water from the interior of the humic aggregate is also invoked to explain the 400-nm native
emission of the humate. It therefore should be expected that the a priori use of a less polar
solvent would have a similar effect. To this end, a series of 2-propanol – water mixtures were
used as solvents for LSLHA, and the fluorescence characteristics of the humate were
monitored in each case. The results Fig. 3. Showed that the 400-nm fluorescence intensities
increased with decreasing water content. For reason of scale, the trace for 100% propanol is
not shown: it did, in fact, give a peak intensity that was approximately 2.5-fold greater than
that of the 80% 2-propanol solvent. These data bear out the contention that water quenches
the 400-nm emission and that the exclusion of water from the fluorophore leads to the
observed enhancement.

3.3 Effects of Molecular Size

Previous work has shown that the formation of humic pseudomicelles is influenced by the
molecular sizes of the species involved [13,14]. It is understood that any assembly of humic
material is by nature polydisperse, but can displaya wide variation in average size. In cases
where there is a preponderance of relatively large polymeric material, it should be expected
that internal folding and pseudomicelle formation is more likely to occur.With small pieces,
on the other hand, folding (“internal aggregation”) cannot happen to the same extent. It has
been shown previously that humic materials of which the molecular size has been reduced
by photolysis, do not sequester hydrophobic species in aqueous solution in the manner that
larger hamates do [15]. This was ascribed to the lack of pseudomicelle formation in the
photolyzed material.

With this observation in mind, the fluorescence response of a photolyzed LSLHA solution to
the addition of Mg2+ was monitored. Fig. 4 shows that the cation produced a general
increase of intensity of the broad fluorescence band centered around 420 nm, but that the
telltale peak at 400 nm was not present. This fluorescence behavior was virtually identical to

Fig. 3. The effect of solvent composition on the 400-nm fluorescence of LSLHA
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that of Minnesota Peat fulvic acid (not shown), which, being a fulvate, is a material of smaller
molecular size that also lacks the ability to fold up into pseudomicellar structures. This
observation adds yet more weight to the view that this conformational arrangement is the
direct cause of the 400-nm peak.

3.4 Effect of Concentration

It has been shown that increasing the concentration of aqueous humates also leads to
progressive particle growth, including a pseudomicellar stage [7]. In view of this
phenomenon, the 400-nm emission peak was monitored as a function of humic
concentration, and the results are shown in Fig. 5.

While the development of the 400-nm peak was rather weak in this instance, it can be seen
that the emission peak at this wavelength became more distinct at higher concentrations. I
should be noted that the overall fluorescence intensity decreased with concentration from
about 40 μg/mL onward because of an increasing inner filter effect.

3.5 Large Cations

To evaluate the influence of cation size on humic fluorescence enhancement, a large
organic cation, [(CH3)3NCH2CH2N(CH3)3]2+ was used in place of Mg2+. It was found that this
large ion, at a concentration of 50 μg/mL, also enhanced the humic emission at 400 nm. This
suggests that nonmetal divalent cations could undergo coulombic interactions with multiple
anionic charges on the humic polymer. This, in turn, resulted in a similar pseudomicellar
contraction as was observed with multivalent metal ions. In addition, the alkyl moiety of
these large cations appeared to be accommodated within the humic structure, enhancing its
micellar character.

Fig. 4. Fluorescence of photolyzed LSLHA at different Mg2+ concentrations
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3.6 Temperature

The emission intensity of fluorescent solutions generally decreases with temperature as the
thermal motion of fluorophores increases nonradiative deactivation of the excited state [16].
Fig. 6 shows that this was the case with the 400-nm emission peak of an LSLHA solution
treated with Mg2+.

Fig. 6. The effect of temperature on the 400-nm emission of LSLHA in the
presence of Mg2+

Fig. 5. Family of emission spectra showing the effect of humate concentration on
fluorescence
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It is interesting to note, however, that while the intensity decreases upon heating, the peak
does not appear to lose its shape. This suggests that thermal agitation in the 30-60ºC
temperature range, did not lead to significant disaggregation.

3.7 Different Humates

While the mechanism of humic pseudomicelle formation is not entirely understood, it is
reasonable to assume that it, as suggested above, involves the folding of polymeric chains
and the incorporation of smaller entities in micro aggregates of roughly micellar size [15]. In
view of this, the flexibility of the humic chains should be a factor, since it influences their
ability to fold and twist into the proper configuration. It is therefore instructive to compare the
fluorescence behavior of LSLHA, which comprises relatively flexible polymer chains, with
that of other humates with both similar and different structure. In this context, the
fluorescence response of the IHSS standards Summit Hill HA and Peat HA to Mg2+ was
tested. These materials have aggregation properties similar to LSLHA [17] and it was found
that the 400-nm emission peak also appeared when Mg2+ was added (spectra not shown).
Leonardite humic acid (LHA), on the other hand, is a good example of a stiffer, less flexible,
humate. Its quantitative13C NMR spectrum shown in ref [18]. Contains a large aromatic peak
at 127 ppm, indicating that it is more aromatic and coal-like in nature than other humates.
This structure, containing multiple fused rings, cannot be deformed easily. The spectra
shown in Fig. 7 are consistent with these structural constraints. The 400-nm emission peak
could be generated, but to get a comparable effect with LHA it took about ten times as much
Mg2+ as it did with LSLHA. These points to less easy intramolecular rearrangements of the
stiffer LHA polyanions, requiring more cationic anchors to create pseudomicellar aggregates.

Fig. 7. Fluorescence spectra of LHA at different Mg2+ concentrations
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3.8 Micellar Solutions

Anon polar, relatively water free, microenvironment in which the 400-nm humic emission
peak potentially could be observed can also be created by using a micellar solution of a
surfactant [19] and introducing small amounts of LSLHA to it. Incorporation of the humate in
the micelles should expose it to a relatively dry environment favorable to the appearance of
the 400-nm peak.

The experiment was carried out with a 1.0 mM solution of cetyl trimethyl ammonium bromide
(CTAB), a cationic surfactant with a critical micelle concentration of 0.92mM [20]. Small
amounts of LSLHA were added drop wise in increments of approximately 0.3 μg. The results
are shown in Fig. 8. From which it is clear that the 400-nm emission peak of LSLHA did
indeed appear. This provides further confirmation for the necessity of the exclusion of water
for this spectral feature to materialize.

4. CONCLUSIONS

The evidence presented here suggests that the fluorophore in LSLHA that is responsible for
the emission peak at 400 nm is quenched by water, and that microaggregation of the
aqueous humate can lead to significant exclusion of this quencher. This, in turn, is consistent
with a pseudomicellar model of the humic material, in which the aggregates have a relatively
polar exterior and a nonpolar interior. In aqueous solution, the 400-nm peak may be
considered a marker for the formation of pseudomicelles. It was observedin different
humates, and it may be cautiously proposed that it generally present in these materials. The
nature of the fluorophore cannot be pinpointed at this time. Previous work [21] has shown
that the ESR signal of quinonic entities that are common in humates change significantly
when they aggregate under the influence of Mg2+ ions. The fluorescence characteristics of
quinones, however, are quite different from the 245/400 nm ex/em wavelengths found here.
The abundance of fluorophores in the humates make the unequivocal identification of the
emitter responsible for the emission peak discussed here difficult, if not impossible.

Fig. 8. Fluorescence emission spectra of 50 mL of a 1.0 mM solution of CTAB with
110 μg/mL LSLHA added as indicated. Excitation wavelength 245 nm 245 nm
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Anon polar, relatively water free, microenvironment in which the 400-nm humic emission
peak potentially could be observed can also be created by using a micellar solution of a
surfactant [19] and introducing small amounts of LSLHA to it. Incorporation of the humate in
the micelles should expose it to a relatively dry environment favorable to the appearance of
the 400-nm peak.

The experiment was carried out with a 1.0 mM solution of cetyl trimethyl ammonium bromide
(CTAB), a cationic surfactant with a critical micelle concentration of 0.92mM [20]. Small
amounts of LSLHA were added drop wise in increments of approximately 0.3 μg. The results
are shown in Fig. 8. From which it is clear that the 400-nm emission peak of LSLHA did
indeed appear. This provides further confirmation for the necessity of the exclusion of water
for this spectral feature to materialize.

4. CONCLUSIONS

The evidence presented here suggests that the fluorophore in LSLHA that is responsible for
the emission peak at 400 nm is quenched by water, and that microaggregation of the
aqueous humate can lead to significant exclusion of this quencher. This, in turn, is consistent
with a pseudomicellar model of the humic material, in which the aggregates have a relatively
polar exterior and a nonpolar interior. In aqueous solution, the 400-nm peak may be
considered a marker for the formation of pseudomicelles. It was observedin different
humates, and it may be cautiously proposed that it generally present in these materials. The
nature of the fluorophore cannot be pinpointed at this time. Previous work [21] has shown
that the ESR signal of quinonic entities that are common in humates change significantly
when they aggregate under the influence of Mg2+ ions. The fluorescence characteristics of
quinones, however, are quite different from the 245/400 nm ex/em wavelengths found here.
The abundance of fluorophores in the humates make the unequivocal identification of the
emitter responsible for the emission peak discussed here difficult, if not impossible.

Fig. 8. Fluorescence emission spectra of 50 mL of a 1.0 mM solution of CTAB with
110 μg/mL LSLHA added as indicated. Excitation wavelength 245 nm 245 nm
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