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ABSTRACT
High-throughput plant phenotyping integrated with computer 
vision is an emerging topic in the domain of nondestructive and 
noninvasive plant breeding. Analysis of the emerging grain 
spikes and the grain weight or yield estimation in the wheat 
plant for a huge number of genotypes in a nondestructive way 
has achieved significant research attention. In this study, we 
developed a deep learning approach, “Yield-SpikeSegNet,” for 
the yield estimation in the wheat plant using visual images. Our 
approach consists of two consecutive modules: “Spike detection 
module” and “Yield estimation module.” The spike detection 
module is implemented using a deep encoder-decoder network 
for spike segmentation and output of this module is spike area 
and spike count. In yield estimation module, we develop 
machine learning models using artificial neural network and 
support vector regression for the yield estimation in the wheat 
plant. The model’s precision, accuracy, and robustness are 
found satisfactory in spike segmentation as 0.9982, 0.9987, 
and 0.9992, respectively. The spike segmentation and yield 
estimation performance reflect that the Yield-SpikeSegNet 
approach is a significant step forward in the domain of high- 
throughput and nondestructive wheat phenotyping.
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Introduction

Wheat is considered one of the most crucial crops from the universal perspec
tive. It contributes a significant percentile of the protein and calories needed in 
the human diet (Tilman et al. 2011). Rapid population growth and speedy 
urbanization in developing countries are the major factors behind the extreme 
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hike in food demand. Additionally, the effect of seasonal fluctuation and 
climate changes that lead to inconsistent wheat supply need to be addressed. 
Therefore, identifying the high-yielding and stress (biotic and abiotic) toler
ance wheat genotypes is the key challenge to wheat breeders. Genotyping and 
phenotyping are the two main pillars in the genetic improvement of the crop. 
Though genotyping is done with greater accuracy, traditional phenotyping 
involves too many challenges. The genotype-phenotype gap is one of the most 
problematic zones in the domain of modern plant breeding (Großkinsky et al. 
2015; Houle, Govindaraju, and Omholt 2010). Plant phenomics research has 
been gaining momentum recently to address this bottleneck. As traditional 
phenotyping is destructive, tedious and time-consuming, nondestructive and 
high-throughput plant phenotyping is needed in this context (Campbell et al. 
2017). High-dimensional imaging sensors based plant phenotyping platforms 
were developed by several researchers (Fahlgren et al. 2015; Großkinsky et al. 
2015; Hartmann et al. 2011; Houle, Govindaraju, and Omholt 2010; Rahaman 
et al. 2015) to cope up with the challenges. Analysis of the emerging grain 
spikes is one of the important phonological events in wheat development 
phases to study the application of agricultural inputs (water, fertilizer, etc.). 
Besides, yield or grain weight estimation has gained significant research 
attention. But, the manual process of yield estimation is destructive, tedious, 
and time-consuming as it involves separating spikelets from the spikes and 
taking weight using a weighing machine. Therefore, nondestructive and auto
mated spike detection and correspondingly yield estimation models are essen
tial as a fast alternative.

Recently, image analyses, specifically computer-vision based approaches, are 
gaining momentum (Alharbi, Zhou, and Wang 2018; Bi et al. 2010; Grillo, 
Blangiforti, and Venora 2017; Hasan et al. 2010; Misra et al. 2020, 2021a, 
2021b; Pound et al. 2017; Qiongyan et al. 2017; Tan et al. 2020; Tanuj et al. 
2019). Further, it is strongly proposed by Tsaftaris, Minervini, and Scharr (2016) 
that the future trends of plant phenotyping will depend on the combined effort 
of image analysis and machine learning. Grillo, Blangiforti, and Venora (2017) 
developed a new method based on computer-aided glume image analysis for 
identifying wheat local landraces. They applied linear discriminate techniques by 
utilizing quantitative morpho-colorimetric variables. The overall percentage of 
correct identification was 89.7%. Alharbi, Zhou, and Wang (2018) built 
a screening system to estimate the number of wheat spikes from wheat plant 
images. The system involved a transformation of the raw image using the color 
index of vegetation extraction followed by segmentation to reduce the back
ground noises. Gabor filter banks and K-means clustering algorithm were used 
in the wheat ears detection, and the number of wheat spikes was estimated 
through the regression method. Tan et al. (2020) applied a simple linear iterative 
clustering technique on the digital image of wheat plants for super-pixel seg
mentation. After that, they applied support vector machine and k-nearest 

e2137642-3288 T. MISRA ET AL.



neighborhood methods on the super-pixels for the spike recognition. Bi et al. 
(2010) proposed spike traits (awn number, average awn length, and spike length) 
extraction methods based on morphology. They designed three-layer back- 
propagation neural networks for wheat species classification. Hasan et al. 
(2010) proposed spike detection and counting technique from wheat field 
images using a region-based convolutional neural network (R-CNN) with 
a high robustness score. Pound et al. (2017) contributed an annotated crop 
image dataset of wheat and implemented a multi-task deep neural network for 
localizing wheat spikes and spikelets. Qiongyan et al. (2017) developed a novel 
technique involving color indexing method for the plant segmentation and 
neural networks with Laws texture energy for spike identification. Our previous 
work (Misra et al. 2020, 2021a) developed a segmentation network, 
“SpikeSegNet,” for spike detection and counting from visual images of the 
wheat plant. The network consisted of two cascaded feature networks for local 
patch extraction and global mask refinement. We achieved high accuracy and 
robustness in spike detection and counting, irrespective of different illumination 
factors. In this article, we proposed the Yield-SpikeSegNet approach for yield 
estimation in visual images of wheat plants. Yield-SpikeSegNet is an extension of 
the SpikeSegNet approach. The proposed approach deals with the output of 
SpikeSegNet, which is fed as input to the machine learning model to estimate the 
plant’s yield or grain weight. In this study, we implemented the algorithm of 
SpikeSegNet, conducted a validation study to examine the segmentation perfor
mance of the network in spike detection, and developed a machine learning 
model to estimate the yield of the wheat plant from the visual images.

The article is divided into four sections. Section 1 (Introduction) enlighten 
the importance of wheat crop, global challenges faces in crop production, the 
role of high-throughput and nondestructive plant phenotyping, and the 
importance of computer vision approaches in wheat spike phenotyping. 
Section 2 (Materials and Methods) explains the image acquisition and imaging 
facility used, ground-truth preparation for the model development, deep 
learning architecture of the spike detection and yield estimation network, 
training mechanism, and performance metrics to evaluate the performance 
of the Yield-SpikeSegNet model. Section 3 (Result and Discussion) presents 
and discusses the model’s performance in spike detection and yield estimation. 
Finally, section 4 (Conclusion) highlights the summarization of the work, its 
extended applicable areas, and future scope.

Materials and Methods

Image Acquisition

We planted the wheat experiment in pots in Nanaji Deshmukh Plant 
Phenomics Centre, ICAR-Indian Agricultural Research Institute, New Delhi, 
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India (28.6377° N, 77.1571° E). LemnaTec facilities (LemnaTecGmbH, 
Aachen, Germany) are installed in the phenomics center. The greenhouse 
climate was maintained with the temperature 250C, relative humidity 55% 
by keeping in mind the objective of providing optimum conditions for the 
growth. The recombinant inbred lines (RIL) population developed from 
parents, namely C306 x HD2967(185 RILs) including parents, were grown in 
plastic pots filled with 12.5 kg soil with a recommended dose of fertilizer (120- 
80-60 kg/ha N-P-K respectively) for this experiment for screening the best 
RILs under drought conditions. Plants were grown under controlled environ
mental conditions, and soil moisture-based irrigation was done. For the 
control plant, we kept the soil moisture 18% level. Then, drought was imposed 
by holding the water and allowing the soil moisture to drop down at 10%, and 
after that, irrigation was done up to 18% level. Such practices were followed 
after reproductive phase till the end of the experiment. Visual images (400 to 
700 nm) of the wheat plants grown in the pots were captured using 
PROSILICA GT6600 (LemnaTecGmbH, Aachen, Germany) camera with 
a sensor resolution of 6576 × 4384 pixels. We took images in the reproductive 
stages of the plant as the spikes emerged in the same stage and maintained 
a constant white background in the imaging chamber to increase background 
separation accuracy from the plant parts in the image pre-processing tasks. 
Three direction images (0°, 120°, 240°) with respect to the plant initial position 
(0°) were recorded with the help of lifting and rotating unit residing in the 
imaging chamber. The different directions were considered to capture the 
overlapping parts of the plant.

Ground-Truth Preparation

After imaging, we recorded the number of spikes and yield or grain weight 
corresponding to each plant manually to build the machine learning model for 
the yield estimation. As the sensor size is 6576 × 4384 pixels, it covers not only 
the plant parts but also the other parts of the chamber (Figure 1a). Therefore, 
we cropped (1656 × 1356 pixels) the images to get the region of interest (plant 
parts), as shown in Figure 1b. For developing the segmentation network, we 
prepared the ground truth segmented mask images corresponding to the 
cropped images manually, using the “wand tool” of Photoshop software. In 
the ground truth segmented mask image, black pixels represent the spikes 
shown in Figure 1c. For the ground-truth preparation, we followed the pro
cedure mentioned in the “Dataset preparation” section of Misra et al. (2020).

Architecture of Yield-SpikeSegNet

Architecture of the Yield-SpikeSegNet is an extension of the SpikeSegNet 
approach (Misra et al. 2020, 2021) inspired by UNet (Ronneberger, Fischer, 
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and Brox 2015) which is popularly used in pixel-wise segmentation of the 
object. Architecture of the Yield-SpikeSegNet consists of two modules namely, 
Spike detection module and Yield estimation module as shown in Figure 2. 
The Spike detection module is responsible for the detection or segmentation of 
spikes while Yield estimation module deals with the development of machine 
learning model by using the output of the previous module for the yield 
estimation corresponding to each plant.

Figure 1. (a) Plant image taken using LemnaTec facility covers not only the plant parts but also the 
other parts of the chamber, (b) cropped image to get the region of interest (plant parts), (c) ground 
truth segmented mask images corresponding to the cropped image.

Figure 2. Architecture of Yield-SpikeSegNet consisting of spike detection and yield estimation 
module.
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Spike Detection Module
The input of this module is the visual image (size: 1656 × 1356) of the wheat 
plant. The input image is divided into patches of size 256 × 256 to learn the 
local or critical features more efficiently than the bigger size image (Jha et al. 
2020). The module consists of two essential feature networks in successive 
order: Local Patch Extraction Network (LoPatchExNet) and Global Purifying 
Network (GlobalPurifyNet). LoPatchExNet is used for extracting and learning 
the contextual and critical or local features more effectively in the patch level, 
and the GlobalPurifyNet helps in purifying or refining the output of 
LoPatchExNet, i.e., the segmented mask image, that possibly consists of 
some imprecise segmentation of object. The details of the feature network 
are highlighted in Misra et al. (2020, 2021). Convolutional encoder-decoder 
and stacked hourglass worked as the backbone of the LoPatchExNet and 
GlobalPurifyNet. The encoder is used to generate the feature map holding 
the contextual and spatial information from the input visual image, and the 
decoder uses the information as input to produce the corresponding segmen
ted mask as output. Stacked hourglass is used to compress the incoming 
feature representation to facilitate more effective segmentation by focusing 
on the most important features irrespective of different viewpoints, scales, and 
illusions (Ronneberger, Fischer, and Brox 2015). The design and architecture 
of encoder-decoder and stacked hourglass are inspired by Misra et al. (2020, 
2021) and Ronneberger, Fischer, and Brox (2015) and their numbers for 
constructing the LoPatchExNet and GlobalPurifyNet are estimated empiri
cally for obtaining the optimum segmentation performances.

LoPatchExNet. The architecture of the LoPatchExNet comprises of encoding 
network [19], decoding network (Mao, Shen, and Yang 2016), and bottleneck 
network (with stacked hourglasses (Ronneberger, Fischer, and Brox 2015) in 
between the encoding and decoding network. The encoding network com
prises hree encoder blocks consecutively, where output feature maps of one 
encoder block will work as input of another encoder block. Every encoder 
block comprises consecutive sets of dual 3 × 3 convolution operations with 
stride 1 and padding 1. Stride 1 refers that the filter of size 3 × 3 will move 1 
pixel at a time. Padding 1 implies that one-pixel border will add to the input 
image with pixel value 0 for capturing the maximum information from the 
corner side of the image. Convolution operations succeeded by rectified linear 
activation unit (ReLU) (Agostinelli et al. 2014) and batch normalization (Ioffe 
and Szegedy 2015). Batch normalization is done by re-centering and re-scaling 
the input to make the network faster and stable. The whole set is succeeded by 
a max-pool operation with window size 2 × 2 and stride 2 by which the 
features are down-sampled and the aggregate features are extracted more 
efficiently. Pictorial representation of single encoder block is given in 
Figure 2. The structures of three encoder blocks in the encoding network are 
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similar but only varying with different filter depths, i.e., 16, 64, 128 for the 
first, second, and third encoder blocks. The decoding network comprises three 
decoder blocks consecutively, where output feature maps of one decoder block 
will work as input of another decoder block. Each decoder block contains dual 
3 × 3 convolution operations followed by ReLU and batch normalization, 
which is quite similar to the structure of the encoder block. But, the max- 
pool operation is replaced by transpose convolution (Ronneberger, Fischer, 
and Brox 2015) to up-sample the features. The features are then merged to the 
corresponding encoded feature maps for better localization. The three decoder 
blocks of the decoder network have 128, 64, and 16 number of filter depths as 
opposite to the encoder network. Bottleneck network lies in between encoder 
and decoder network. It consists of hourglasses for more confident segmenta
tion irrespective of various effects like occlusion, scale, and view-points. The 
hourglasses again consist of hourglass-encoder and hourglass-decoder that are 
realized as residual blocks (Jha et al. 2020). The residual block facilitates the 
flow of spatial and gradient information throughout the deep network, which 
helps to solve the vanishing gradient descent problem. The number of hour
glasses was decided empirically, and details of the inner structure of the 
hourglasses are discussed in our previous research work (Misra et al. 2020, 
2021).

GlobalPurifyNet. The output of LoPatchExNet is a segmented mask image as 
given in Figure 2. However, it contains some inaccurate segmentation of spikes 
which misleads the determination of spike area and spike count. 
GlobalPurifyNet is responsible for refining the output of LoPatchExNet. The 
architecture of GlobalPurifyNet is similar to LoPatchExNet without the bottle
neck network. The hyper-parameter, input-output and the inner structure of 
each encoder and decoder are discussed in the previous section.

Yield Estimation Module
This module deals with the output of Spike detection module i.e., segmented 
mask image with detected spikes. Segmented mask image is a binary image 
consisting of 0 (=black) and 1 (=white) pixel values. Here, black pixels denote 
the spike pixels and white pixels as non-spike pixels. Object count and area 
measurement is a common practice in binary image analysis domain. In this 
study, object is nothing but the spike. Flood-fill technique (Asundi and 
Wensen 1998) is applied on the segmented mask image for spike count and 
area measurement. The technique achieved object count and area measure
ment by rising through similar pixel regions from the start pixel until it 
discovers the edge of the object. Then outline it and continue the process for 
the whole image. Spike area and spike count are used as input for developing 
the machine learning model viz. artificial neural network (ANN) and support 
vector regression (SVR) for the yield estimation.
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ANN. It is a statistical modeling approach based on biological neural systems’ 
structural and functional characteristics. ANN is made up of some interlinked 
processing elements called neurons or nodes. The input signal received by 
each neuron is the aggregate “information” coming from other neurons, which 
is processed through activation function and transferred to the other neurons 
or external neurons. The ANN is one of the suitable approaches for mapping 
the nonlinear relationship between input and output variables Equation (1). 

yi ¼ f xi1; xi2; xi3; . . . ; xip; w
� �

þ �i (1) 

where xi1; xi2; xi3; . . . ; xip are the input variable; yi is the output variable; w is 
the weight; �i is the error term. An ANN, in general, comprises of three layers 
namely, input layers, hidden layers, and output layers. Input layers are in charge 
of receiving information (data), signals, features, or measurements from the 
external environments. In most cases, these inputs (samples or patterns) are 
normalized within the limit values produced by activation functions. Hidden 
layers are made up of neurons, which are in responsible of extracting patterns 
related to the processor system under investigation. Sigmoid activation function 
is frequently used in the hidden layer. Output layers, like input layers, are made 
up of neurons and are in responsible of producing and displaying the network’s 
final outputs. Gradient back propagation learning algorithm is used to deter
mine ANN connection weights (Ray et al. 2020). The sum of a weighted 
combination of each neuron in the hidden layer is calculated using 
a nonlinear activation function f(s) and the formula below Equation (10). 

s ¼
Xn

i¼1
wixi þ w0 (2) 

where, xi is the input signal and w0 is the bias term. Hyperbolic tangent 
function is the most commonly used activation function, and the bias term 
(w0) is a constant added to the weight.

SVR. It is based on the idea of locating the best hyper-plane for dividing 
a dataset into two classes. It is based on Boser, Guyon, and Vapnik’s statistical 
learning theory (1992) (Isabelle, Guyon, and Vapnik 1992). Consider the 
vector of data set Z ¼ x ið Þyi i¼1ð ÞN, where xiεRn contains both the vector of 
input and the scalar output, and N is the number of data points. The nonlinear 
SVR equation is as follows Equation 10: 

f xð Þ ¼WTϕ xð Þ þ b (3) 

Where Φ xð Þ : Rn ! Rnh

is a nonlinear mapping function from the input space to a higher dimensional 
feature space with infinite dimension; WεRnh is weight vector; b is bias and T is 
transpose.
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Performance of the SVR modeling is heavily reliant on the choice of Kernel 
function and optimal sets of hyper-parameters. The commonly used kernel 
functions are radial basis, polynomial, sigmoidal, and linear (Vapnik 1998).

Training of the Network

Training of the Spike Detection Module
Spike detection model consisting of LoPatchExNet and GlobalPurifyNet was 
trained by considering 900 images of 300 plants of 3-directions. The image dataset 
was randomly divided into training and testing at 80% and 20% ratios. First, 
LoPatchExNet and then GlobalPurifyNet were trained sequentially and later 
combined to form the single spike detection model. We used Linux operating 
system with 64 GB RAM and NVIDI GeForce GTX 1080 Ti Graphics (10 GB) to 
build the network model. We trained the network for 250 epochs and recorded 
the training losses at each epoch. Batch size was 32 images of size 256 × 256 as per 
the system constraints. The popular optimizer “Adam” (Kingma and Ba 2014) 
with a learning rate of 0.0005 was used to update the weight of the hidden nodes. 
Loss function was “Binary cross-entropy” (Dunne and Campbell 1997) as there 
are two classes (i.e., spikes and non-spikes) in this study.

Training of the Yield Estimation Module
The input of the yield estimation module is the output of the spike detection 
module (i.e., spike area and spike count). For developing the machine learning 
model (i.e., ANN SVM), the image dataset was divided into two parts ran
domly: 80% for training and 20% for testing. We fitted the Feed-Forward 
Multilayer Perceptron Neural Network by using the spike area and spike count 
as the input and the corresponding ground truth yield or grain weight as the 
output for the model’s training. The ANN architecture comprises one input 
layer with two input nodes (spike area and spike count) and one output layer 
with one node (ground truth yield). Although there is no firm hypothesis for 
determining the number of hidden layers and hidden nodes, distinctive 
combinations are attempted, and the best fitted ANN model is selected. We 
used the “Neuralnet” package of R software (Fritsch, Guenther, and Guenther 
2019) for the model development. The same data points were used in training 
and testing the SVR model, and we built the model using the “e1071” (Meyer 
et al. 2019) package of R software.

Performance Metric

Performance Parameter for the Spike Detection Network
We measured the segmentation performance of the network model in spike 
detection using the statistical parameters viz. Mean segmentation error (Err I), 
Type {II error (Err II), Intersection over Union (IoU), Precision, Recall, and 
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F-measure (Equations (4)–(8)). The pixel-wise segmentation performance was 
calculated on the resulting predicted segmented image (Opred) of the spike 
detection module and the ground truth segmented image (Ogt). The details of 
the performance parameters are discussed below:

Mean Segmentation Error (Err I). For calculating Err I, pixel-wise classification 
error (PixClassErrt) of any test image t has been calculated as exclusive-OR 
operation between Opred and Ogt of size a*b. 

PixClassErrt O pred;O gt� �
¼

1
a � b

Xb

j¼1

Xa

i¼1
O pred i; jð Þ � O gt i; jð Þ (4) 

For every test image, (PixClassErrt) has been calculated and finally the Err I is 
calculated by taking averages of (PixClassErrt) of all the test images. 

ErrI ¼
1
N

XN

t¼1
PixClassErrt (5) 

Where, N = total number of test images. Err I is the probability value [0,1] 
where, large value (i.e., close to 1) represents the large error and small value 
(i.e., close to 0) implies the minimum error.

Type-II Error (Err II). The main aim of Err II is to compute the dispropor
tion among the apriori probabilities of spike and non-spike pixels for the 
overall test images. Err II of any tth test image (Err2

t ) is computed by doing 
average of the false positive rate (FPR) and false negative rate (FNR) at pixel 
level. 

Errt
2 ¼ 0:5 � FPRþ 0:5 � FNR (6) 

FPR ¼
1

a � b

Xb

j¼1

Xa

i¼1
O gt i; jð Þ: � O pred i; jð Þ
� �

� O pred i; jð Þ

FNR ¼
1

a � b

Xb

j¼1

Xa

i¼1
O gt i; jð Þ: � O pred i; jð Þ
� �

� O gt i; jð Þ

As similar to Err I, Err II is calculated by averaging the Errt
2 for all the test 

images as follows: 

Err II ¼
1
N

XN

t¼1
Errt

2 (7) 

Where, N = total number of test images. Intersection over Union (IoU): IoU 
has been calculated using the following formula: 

IoU ¼
1
C

XC

i¼1

Cii

Gi þ Pi � Cii
(8) 
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Where, C ( = 2) denotes the number of classes (i.e., spike and non-spike 
pixels); Cjj = number of pixels in any given image having the ground truth 
label j and the corresponding prediction is also j; Gj = number of pixels having 
ground truth class j; Pj = number of pixels having predicted class j.

The final IoU is calculated by taking average of all the test images. We have 
also calculated the precision, Recall, F-measures using True Positive (TP), 
True Negative (TN), False Positive (FP), and False Negative (FN). TP defines 
the number of pixels are rightly classified as spike pixels whereas TN denotes 
the number of pixels are rightly classified as non-spike pixels. FP implies the 
number of non-spike pixels classified as spike pixels and FN denotes the 
numbers of spike pixels are classified as non-spike pixels.

Performance Parameter for the Yield Estimation Network
Root Mean Square Error (RMSE): It is a good tool for the measurement of the 
performance of the prediction model. This tool is widely used for comparisons 
of several models’ performance and testing the efficiency. It is defined as the 
square root of the arithmetic mean of the squares of difference values between 
ground truth and predicted values. In this study, RMSE is computed as 
a measurement of the dispersion of the differences between the ground- 
truth grain weight or yield value (ygt) and the predicted yield (ypred) value . 

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
y gt

i � y pred
i

� �2
r

(9) 

Where, n is the number of observation. Mean Absolute Error (MAE): It is 
another model performance parameter that gives a linear score that means all 
the differences are equally weighted in the arithmetic mean. MAE is the 
arithmetic mean of the absolute values of the differences between ygt and ypred 

MAE ¼
1
n

Xn

i¼1
ygt

i � ypred
i

�
�
�

�
�
� (10) 

For the model’s comparison, the RMSE and MAE can be used together. The 
greater difference between RMSE and MAE indicates the greater the variance 
in the individual errors in the sample.

Results and Discussion

The Spike detection model was trained using randomly selected 720 images (i.e., 
80% of the total image dataset) and validated with 180 images (i.e., 20% of the total 
image dataset). We trained LoPatchExNet and GlobalPurifyNet separately and 
later they were combined to form the spike detection model. As LoPatchExNet 
was trained at patch level and the size of the input image of LoPatchExNet is 256 ×  
256 pixels, the original images (of size 1656 × 1356 pixels) were divided into 

APPLIED ARTIFICIAL INTELLIGENCE e2137642-3297



patches of size 256 × 256 pixels. The network was trained for 250 epochs and the 
training losses were initially high. It plateaued around 150 epochs (Figure 3a). The 
output of LoPatchExNet is segmented mask image of size 256 × 256 pixels at patch 
level. The patches were merged to construct the original image of size 1656 × 1356 
pixels (Figure 2) which contains some inaccurate segmentation of spikes. These 
noises were refined at GlobalPurifyNet. The GlobalPurifyNet was developed using 
the same training and testing dataset as of LoPatchExNet. Although the model was 
trained for 250 epochs, a remarkable decrease of the losses was noticed and it 
plateaued around 48 epochs as shown in Figure 3b.

Segmentation Performance of the Spike Detection Model
Segmentation performance of the spike detection model is evaluated on the 
test dataset (120 image data) using the above mentioned performance para
meters (Err I, Err II, IoU, Precision, Recall, and F-measure). The average value 
of these parameters for the test dataset is given in Table 1.

As the segmentation performance is calculated at pixel level, the value of 
mean segmentation error (i.e., 0.0017) depicts that on an average only 111 
pixels are classified wrongly. Precision value from Table 1 represents that on 
an average 99.82% of the detected pixels using the spike detection model are 
actually spike pixels. It is reflected from the recall value that, 99.79% of the 
actual spike pixels are identified among the ground-truth spike pixels. 
Accuracy and robustness of the model in spike segmentation are on an average 
99.87% and 99.92%, respectively.

Figure 3. Training losses of (a) LoPatchExNet, and (b) GlobalPurifyNet.

Table 1. Segmentation performance.
Mean Segmentation error  
(Err I)

Type II error 
(Err II) Intersection over Union (IoU) Accuracy Precision Recall F1Score

0:0017 0.0562 0.0562 0.9987 0.9982 0.9979 0.9992

Precision=TP/(TP+FP); Recall=TP/(TP+FN); Accuracy=(TP+TN)/(TP+TN+FP+FN); TP: True Positive; TN: True Negative; 
FP: False Positive; FN: False Negative.
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Performance Evaluation of the Yield Estimation Model
The independent variables for developing the ANN model are spike area and 
spike count whereas the dependent variable is the grain weight or yield. The 
model was trained using randomly selected 720 data points (i.e., 80% of the 
total image dataset) and tested using 180 data points (i.e., 20% of the total 
image dataset). Different combinations of hidden layers and hidden nodes 
were attempted on trial-and-error basis. Among them, one hidden layer with 
two hidden nodes out performed. The best fitted ANN model architecture is 
given in Figure 4. The performance parameters RMSE and MAE of the 
training and testing dataset are presented in Table 2.

Same data points were used in training and testing the SVR model. The optimal 
values of the hyper-parameters (i.e., cost, kernel width and insensitivity) on the 
basis of performance are given in Table 3. RMSE and MAE of the training and 
testing dataset are given in Table 2. Support vector was found as 609.

It can be depicted from Table 2 that in training dataset MAE of SVR is lower 
than of ANN. But, the difference is very low. In testing dataset, the performance of 
MAE in ANN and SVR are at per. In ANN, the difference of RMSE values 

Figure 4. Fitted ANN model architecture.

Table 2. Performance of ANN and SVR in training and testing dataset.
ANN SVR

Performance parameter Training Testing Training Testing

MAE 4.048552 3.851167 3.87128 3.87211
REMS 5.382943 5.223983 5.227 5.202683

Table 3. Summary statistics of the hyper-parameters used in SVR model development.
Cost Kernel width Insensitivity SVR-Kernel SVR-type Number of Support ector

1 0.5 0.1 Radial Eps-regression 609
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between training and testing dataset is higher than of SVR. Hence, the general
ization capability of SVR in this dataset is more than ANN. As a result, it can be 
concluded that SVR model is more appropriate than ANN in the dataset.

Conclusion

In the era of modern phenotyping, grain weight or yield estimation in the wheat 
plant for a huge number of genotypes in a nondestructive way is a challenging 
task. In this study, we proposed a deep learning approach, “Yield-SpikeSegNet,” 
for the yield estimation in the wheat plant using visual images. The model’s 
precision, accuracy, and robustness are satisfactory in spike segmentation as 
99.82%, 99.87%, and 99.92%, respectively. It is depicted from the RMSE value 
that the generalization capability of SVR is more than ANN in the case of the 
yield estimation model. The architecture of “Yield-SpikeSegNet” has been devel
oped with advanced technology integrated with deep encoder, decoder, and 
hourglasses. Because of this, it is a significant step forward in the domain of 
nondestructive and high-throughput wheat yield phenotyping.
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