
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

LifeGuard: An Improvement of Actor-Critic Model
with Collision Predictor in Autonomous UAV
Navigation

Manit Chansuparp & Kulsawasd Jitkajornwanich

To cite this article: Manit Chansuparp & Kulsawasd Jitkajornwanich (2022) LifeGuard: An
Improvement of Actor-Critic Model with Collision Predictor in Autonomous UAV Navigation,
Applied Artificial Intelligence, 36:1, 2137632, DOI: 10.1080/08839514.2022.2137632

To link to this article: https://doi.org/10.1080/08839514.2022.2137632

© 2022 The Author(s). Published with
license by Taylor & Francis Group, LLC.

Published online: 28 Oct 2022.

Submit your article to this journal

Article views: 453

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2022.2137632
https://doi.org/10.1080/08839514.2022.2137632
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2022.2137632
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2022.2137632
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2022.2137632&domain=pdf&date_stamp=2022-10-28
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2022.2137632&domain=pdf&date_stamp=2022-10-28

LifeGuard: An Improvement of Actor-Critic Model with
Collision Predictor in Autonomous UAV Navigation
Manit Chansuparp and Kulsawasd Jitkajornwanich

Data Science and Computational Intelligence (DSCI) Laboratory, Department of Computer Science,
School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand

ABSTRACT
The needs for autonomous unmanned aerial vehicle navigation
(AUN) have been emerging for recent years due to the growth
of the logistic industry and the need for social distancing during
the pandemic. There have been different methods trying to
overcome the AUN task, and most of them have focused on
deep reinforcement learning (DRL). But the results were still far
from satisfactory, and even if the result was good, the environ
ment was usually too trivial and simple. We report in this paper
one of the causes of low success rate for AUN in our previous
work, which is the apprehensive behavior of agents. After
numerous episodes of training, when the agent faces risky
scenes, it often moves back and forth repeatedly until running
out of the limited steps. Hence, in this paper, we propose a new
role, LifeGuard, into the popular DRL model, Actor-Critic, to
tackle the apprehensive behavior and expect a better success
rate. In addition, we developed a pilot method of unsupervised
classification for sequential data to further enhance our reward
function from previous work, augmentative backward reward
function. The experimental results demonstrated that the pro
posed method can eliminate the apprehensive behavior and
gain higher success rates than the state-of-the-art method,
FORK, with lesser effort.

ARTICLE HISTORY
Received 2 July 2022
Revised 5 October 2022
Accepted 13 October 2022

Introduction

Unmanned aerial vehicle (UAV), commonly referred to as drones, has gradu
ally played a prominent role in various applications due to its high mobility
compared to ground traffic congestion. Nowadays, its main target has been
where it is difficult (or risky) for humans to reach (Jain et al. 2018; Sudhakar
et al. 2020). It is a disappointment that using UAVs on regular tasks such as an
errand service still did not receive as much attention as it should have. The
hindrance may be due to the fact that the reliable UAV navigation methods are
still manual or semi-automated (Castaño et al. 2019; Hawary and Razak 2018).
However, it means that the manpower is still required throughout the entire
runtime, and it does not reduce the cost. The autonomous UAV navigation

CONTACT Kulsawasd Jitkajornwanich kulsawasd.ji@kmitl.ac.th Data Science and Computational
Intelligence (DSCI) Laboratory, Department of Computer Science, School of Science, King Mongkut’s Institute of
Technology Ladkrabang, Bangkok 10520, Thailand

APPLIED ARTIFICIAL INTELLIGENCE
2022, VOL. 36, NO. 1, e2137632 (3286 pages)
https://doi.org/10.1080/08839514.2022.2137632

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://
creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://orcid.org/0000-0002-6926-7577
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2022.2137632&domain=pdf&date_stamp=2022-10-26

(AUN) development has a long history but is just impelled lately by two main
factors. First, there is a need for remote surrogates, in which manpower can be
reduced for various industries, such as transportation, surveillance, and
resource exploration, and can help avoid physical contact during the pan
demic. The second factor is the incessant development of deep learning that
brings AUN closer to real-world adoption. In recent years, there are efforts put
into autonomous navigation and could be widely divided into two
approaches: 1) path planning approach and 2) reinforcement learning (RL)
approach. The instances of path planning approach are as follows: Youn et al.
(2020) proposed a UAV navigation technique, which combines the advantages
of variant rapidly random trees (RRT) algorithms with the help of error state
Kalman filter integration. Their technique reduces redundancy on random
node generation from the conventional path planning. This technique com
pares neighboring node costs (RRT-Smart) as well as dynamic directional path
lengths (RRT*-GD) to better prevent unnecessary node generations.
Elmokadem and Savkin (2021) proposed the AUN method also with the
RRT algorithm called RRT-connect. This method generates the trajectory
path of the UAV by converging the two trees toward each other from the
start and goal points. In order to avoid collision, they use reactive control law,
which is designed to make the UAV move around the obstacle until it met the
safe condition. After that, the UAV came back along the previous planned
path. Though this approach does not need any prior knowledge about the
environment, it needs some expertise knowledge on structuring the obstacle
avoidance procedure, which is hard to be sufficiently flexible for a realistic
environment. In addition, these two approaches are able to afford only discrete
spaces, so the movement is rigid and not of full potential. Regarding the
instances of RL approach, Guo et al. (2020) indicated that even though the
recent deep reinforcement learning (DRL) methods earned quite good results,
those cannot converge to satisfied points in high-dimensional state-action
spaces task like AUN. So, they decided to bring the divide-and-conquer
strategy to this complex task. The AUN task will be organized into three
parts including collision avoidance, goal approach, and decision. These parts
are represented as recurrent neural networks: avoid network, acquire network,
and packed network. Avoid and acquire networks are responsible for offering
a packed network a next action; then the packed network decides which is the
appropriate action for the current state, avoiding the obstacle or approaching
the goal. If the decision is wrong, the packed network will receive
a punishment as a negative reward. Their result indicated that this model
improves the success rate, collision rate, and velocity when compared with
variant deep Q networks. Furthermore, there was a cooperation between fully
autonomous aerial systems (FAAS) and mobile edge computing (MEC) to
navigate UAV for crowd surveillance purposes. Apostolopoulos, Torres, and
Eleni Tsiropoulou (2019) introduced the framework to serve the purpose and

APPLIED ARTIFICIAL INTELLIGENCE e2137632-3265

mainly addressed the data offloading problem. The devices need to satisfy their
individual quality of service (QOS) and also regarding the energy consump
tion, and they overcame these problems by using an on-policy RL algorithm
named state-action-reward-state-action (SARSA) (Rummery and Niranjan
1994) and satisfaction equilibrium concept. All results from both path plan
ning-based and RL-based methods show that they are still dissatisfied for the
real-world adoption but be able to support more realistic conditions and
higher state-action spaces.

Now, the most promising method seems to be the DRL method due to the
fact that there are several of them combining deterministic and stochastic
techniques to achieve high continuous spaces in the motion control and
decision-making tasks, and the results were quite good (Guo et al. 2020).
This field, DRL, has been dominated by an actor-critic model. The most widely
known method of this model was deep deterministic policy gradient (DDPG)
(Lillicrap et al. 2015); it combines Q-learning with policy gradient to let the
model allow continuous space. Subsequently, the two descendants of DDPG
called twin delayed DDPG (TD3) (Fujimoto, van Hoof, and Meger 2018) and
soft actor critic (SAC) (Haarnoja et al. 2018a, 2018b) had arisen recurrently. It
achieved promising performance in many tasks (Haarnoja et al. 2018; Zhang,
Li, and Li 2020) and became the state-of-the-art methods. These two methods
focus on the same thing, which is Q-value overestimation, the main flaw of
DDPG, and also leverage the same thing, the target policy smoothing, to
alleviate the overestimation. Despite many brilliant proofs of two state-of-
the-art methods, TD3 and SAC, which are almost maximum scores for many
tasks (Fujimoto, van Hoof, and Meger 2018; Haarnoja et al. 2018), there are
still tasks where both methods have not achieved yet or been very time
consuming (Wei and Ying 2020). Recently, the addition of both methods
has emerged to improve the policy. Zhang et al. (2020) addressed the slow
convergence rate in TD3 by adapting some prior knowledge in the form of
alternative action. This action is generated from error and three parameters,
which are tuned to suit the environment. This action and the action from the
actor are estimated by their Q values to decide which one is better. This
alternative action helps improve training speed and learning stability for
TD3. Wei and Ying (2020) proposed the additional method named forward-
looking actor (FORK); it tries to learn the system model (model-based RL) but
not quite deterministic or stochastic policy optimization, which is mainly
based on the model. It is just forecasting the next state and the reward after
executing the action at given states and letting the forecasts participate in the
policy adjustment. Hence, any actor-critic methods added FORK are still
model-free. This addition, FORK, with some heuristic changes could solve
a severely difficult task, BipedalWalkerHardcore, within 4 hours by only using
a single GPU. These are evidence that having the addition helps the actor learn
optimal policy easier, and the results often go through the roof.

e2137632-3266 M. CHANSUPARP AND K. JITKAJORNWANICH

Despite many efforts to improve AUN, the main problems still exist (Lu et al.
2018; Maciel-Pearson et al. 2019). In recent work on AUN, their success rate
that the agent can reach to the goal was moderate even in low action space,
simplified static environments, and unrealistic sensors (Elmokadem and Savkin
2021; Zijian et al. 2020). Furthermore, the collision rate was still worrisome that
it should not happen in real-world adoption (Zonneveld 2018). Simultaneous
localization and mapping (SLAM) for UAV in precise tasks like delivering has
also been a difficult challenge (Sadeghzadeh-Nokhodberiz et al. 2021). In sum,
the AUN’s problems in many aspects are just alleviated but not wiped out. From
our previous work (Chansuparp and Jitkajornwanich 2022), we found that
certain AUN‘s problems were caused by traditional reward (TR) function,
which has been in common use for many navigation tasks (Zhang et al. 2020;
Zijian et al. 2020). This function will return a large constant positive value as
a reward when the agent reaches the goal to encourage this behavior and return
a constant negative value as a punishment when the agent collides with envir
onment objects to dissuade. We set the hypothesis that this reward mechanism
causes the bias on the scene that looks like one at the goal; it will suit only the
simple environment, which seldom found the look like goal scenes. Our pre
vious experimental results empirically showed that changing the chunk of
reward given to a last transition to reward dispersion proportional to each
transition’s participation could greatly improve the performance. But, after
observation in the rear episodes of training, we found that certain problems in
AUN are tied together. It is rather simple to reduce collision rate by increasing
the punishment, but the consequence is that the success rate will be low since the
agent will be apprehensive when it faces risky scenes. This makes the agent move
back and forth before a risky scene and leads to running out of quota steps.
Apparently, it is a trade-off.

Hence, in this work, we propose two new things to solve the agent’s
apprehensive behavior and to improve the performance for navigation tasks.
First, the LifeGuard (LG) is a new role proposed into an actor-critic model.
The LifeGuard is responsible for evaluating whether the given state-action
pairs will lead to the collision or not. The forecast from LifeGuard is used to
adjust the action selection process in actor networks. For many tasks, more
risk means more reward, and a very thin difference in action can cause the
reward to be different as night and day. It is hard to recognize the existence of
this dividing line while simultaneously learning the way to earn more reward,
especially in high state-action spaces. In short, the LifeGuard helps the actor
and critic to recognize this line much faster. In addition, we also propose
a pilot study on unlabeled sequential data classification with all positive
Siamese auto encoder (PSAE) to improve our previous reward function,
augmentative backward reward function (ABR) (Chansuparp and
Jitkajornwanich 2022). The performance of our method is measured on
AUN task and BipedalWalkerHardcore-gym, the test bed for RL algorithms,

APPLIED ARTIFICIAL INTELLIGENCE e2137632-3267

to confirm that the method is robust. All our experiments are conducted on
the realistic simulation due to the fact that the collision rate of even the state-of
-the-art method is still concerned and the negligible collision may cause
inability to the UAV. If the experiments are conducted with real devices, the
implementation cost would have been around 5,100 USD in which 1,100 USD
is estimated for the quadrotor UAV and 4,000 USD is estimated for VLP-16
LiDAR sensor.

The video of our test can be seen here: https://youtu.be/OkNSfLbknIE.

Background

AUN task physically consists of two things: an agent and environment. The
aim is also rather simple, which is to navigate the UAV to the goal point
without collision. Even so, there are studies that point out that to accomplish
navigation tasks in a complex and dynamic environment, using the state-of-
the-art methods in deep RL like TD3 and SAC alone is insufficient (Qiu et al.
2020; Wei and Ying 2020). The recent results of AUN in a realistic environ
ment and a realistic agent are around 60% (Chansuparp and Jitkajornwanich
2022; Zijian et al. 2020). In this section, we describe the components related to
the current AUN problem.

UAV Kinematics

UAV is able to move freely in six degrees of freedom (6DoF) (as shown in
Figure 1) and so to control its motion requires six parameters including three
linear velocities and three angular velocities (lx; ly; lz; ax; ay; az). The

Figure 1. Position and Euler angles of UAV in a 3D environment.

e2137632-3268 M. CHANSUPARP AND K. JITKAJORNWANICH

https://youtu.be/OkNSfLbknIE

translation (x;
_y
; _z) and rotation (Roll _φ; Pitch _θ;Yaw _ψ) of UAV on three-

dimensional cartesian coordinate space can be done by this:

_x
_y
_z
_φ
_θ
_ψ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

lx
ly
lz
0
0
0

2

6
6
6
6
6
4

3

7
7
7
7
7
5

cosθ cos ψ
sinθcosψ

sinψ
0
0
0

2

6
6
6
6
6
4

3

7
7
7
7
7
5

þ

0
0
0
ax
ay
az

2

6
6
6
6
6
4

3

7
7
7
7
7
5

0
0
0
1
1
1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

(1)

In a realistic environment, the UAV motion is resisted by gravitational and
aerodynamic forces, which are given by Chansuparp and Jitkajornwanich
(2022). But with disappointment, almost all recent works on AUN do not
take these external forces into account and determine the action space with
merely two or three dimensions, which are only linear velocities. In previous
and this work, we let the UAV move in four dimensions (lx; ly; lz; az) and
underneath the external forces. The reason we put az in is that almost all
applications demand the UAV to always stay toward the goal since many
devices equipped on UAV such as cameras and sensors have limited field of
view (FOV).

Deep Reinforcement Learning

The basic aim of RL algorithms is to learn the policy, which can manage the
agent to gain maximum cumulative reward from interacting with the environ
ment. The interaction transition between the agent and the environment is
often structured in form of Markov decision process (Bellman 1957), which is
represented as tuple S;A;P;R; γð Þ. S is a set of possible world states. A is a set
of possible actions. P is a probability of executing action A at state S to reach
next state s (where a 2 A and s; s 2 S). R is a reward received by transmitting
the agent from s! s. γ 2 0; 1½ �a discount factor determining how important
the future reward is. At each time step t (a discrete value), the action at is
generated based on policy μ stð Þ. After executing at, the agent reaches to state
stþ1 and receive reward rt. As aforementioned, the state-of-the-art model to
learn optimal policy μ� in continuous spaces still has been the actor critic
model. We consider the actor and critic in DDPG. The actor selects an action
expected to give high reward for given state st and the critic tell the actor how
good the selected action is (value function Q s; að Þ). Both the actor and critic
have a time-delayed network of itself to alleviate the instability issue of
Q-learning in deep neural networks (DNNs). The main and time-delayed
networks are called eval-net and target-net, respectively. To update the para
meters in actor θμ, transitions are sampled in Monte Carlo fashion to

APPLIED ARTIFICIAL INTELLIGENCE e2137632-3269

approximate the Q values and its parameters. The actor (policy function) is
differentiable; the chain rule can be applied as follows:

ÑθμJ θμð Þ ¼
1
N

XN

i¼1
ÑaQðs; ajθQÞa¼μ sið Þ

ÑθμμðsjθμÞ (2)

N denotes batch size.
In terms of the critic, the parameters θQ are updated by minimizing this loss

function.

Lc θQ� �
¼

1
N

XN

i¼1
ððyi � Qðsi; aijθQÞÞ

2yi ¼ r si; aið ÞγQ0ðsiþ1; μ0ðsiþ1jθμ0 ÞjθQ0 Þ

(3)

μ0;Q0 denote the parameters of actors and critics in target-nets.
The parameters of the target-net are soft-updated by eval-net at some small

intervals. Nonetheless, many works (Fujimoto, van Hoof, and Meger 2018;
Meng, Gorbet, and Kulić 2021) indicated that DDPG overestimates the
Q-value and then the policy leads to significant failure. There are methods
built on DDPG addressing this problem. We focus on one among them, twin
delayed DDPG (TD3). Fujimoto, van Hoof, and Meger (2018) proposed three
tricks to address this problem: First, double the Q-function and use the smaller
one to always be modest. Second, update the policy and target-nets less
frequently than Q-function to let it exploit a lower error Q-value. Third, add
clipped noise to the target action to reduce variance of target values. The full
detail of TD3 was given by Chansuparp and Jitkajornwanich (2022).

Forward-Looking Actor

Generally, the actor improves the policy with the value of the critic provided.
The general loss function of this improvement is as follows:

Lo θð Þ ¼ � Qðst; μðstjθÞÞ (4)

Wei and Ying (2020) proposed the foresightful policy improvement algorithm.
It may be better if the action selection regards not only a current reward but
also future benefits. To do so, they add two neural networks, which are in
charge of learning the system model and the reward function, called system-
net and reward-net, respectively. The system-net is learned to forecast a next
state stþ1 of any given state-action pair (Fðst; atjθFÞ). The reward-net forecasts
a reward, which will receive after executing state-action pair (Rðst; atjθRÞ).
Their loss function of the actor network could be formulated as follows:

e2137632-3270 M. CHANSUPARP AND K. JITKAJORNWANICH

LaF θμð Þ ¼ � Q st; μ stjθμð ÞjθQ� �
� R st; μ stjθμð ÞjθR� �

� γR ~stþ1; μ ~stþ1jθμð ÞjθR� �

� γ2Qð~stþ2; μ ~stþ2jθμð ÞjθQÞ

(5)

where ~stþ1;~stþ2 denote future states of st forecasted from system-net.
Their experiments on the open AI gym showed that adding FORK to the

state-of-the-art model-free RL algorithms helps boost the performance in
terms of both cumulative reward and time complexity. FORK outperforms
other model-based RL algorithms.

Autoencoder

The autoencoder, as the name suggests, is a neural-network-based feature
extraction method that does not need any supervised knowledge. The network
consists of three components: First, an encoder, a module which compresses
input data into a small compressed representation (features of data). Second,
a bottleneck, the most compressed representation of input data is stored here
and is thereby the essence of the network. Third, a decoder, a module that
decompresses a compressed representation and reconstructs it back to the
almost original input data. The network expects output to be the same or
similar to input for ensuring that there is still vital information in bottleneck
(or latent space). The architecture of the whole network can be seen in
Figure 2.

There are various improvements on autoencoder such as denoising auto
encoder (Vincent et al. 2008), which add noise on the input to make the
network more robust against discrepancy, sparse autoencoder (Ng 2011),
which regularize autoencoder by sparsity constraint, and so on. In addition,
there is a combination between autoencoder and Siamese network model with
triplet loss (Schneider et al. 2019) to exploit the good representation in latent

Figure 2. Autoencoder network.

APPLIED ARTIFICIAL INTELLIGENCE e2137632-3271

space and distance-based classification ability. The triplet loss function helps
the features of data in the same class get closer than those from other classes.
The function can be defined as follows:

LT ¼ max d a; pð Þ � d a; nð Þ þm; 0ð Þ (6)

where d denotes a distance matrix function. a; p denote an anchor sample and
sample in the same class as anchor (positive sample). n denotes the different
class, negative sample. m denotes some margin value.

Augmentative Backward Reward Function

In our previous work, we proved the severe problem of TR function in
navigation tasks and proposed the new reward function, which is more
rational, called ABR. Adding an extra reward to stimulate the agent to reach
the goal can be a double-edged sword; it will negatively affect the agent instead
if the goal reward dispensation is irrational. ABR adds an extra reward to all
positive-rewards trajectories in success episodes. The trajectory means the
sequence of observations, which the agent receives from the environment at
each step o1; . . . ; olð Þ, where l denotes a constant value of sequence length. The
trajectories are features extracted in an unsupervised manner by convolution-
based one-shot learning, and we can classify them based on their cosine
similarity to each other. Each cluster of trajectories has its own unique stack
of floored sum of rewards in trajectory to measure the level of contribution for
each trajectory. The workflow of ABR was shown in Figure 3 and the extra
reward can be calculated as follows:

re ¼ i� pexR (7)

where i denotes the rank in unique stack of floored sum and pexR denotes
hyper-parameter.

And, the rewards for collided and other cases can be defined as follows:

Figure 3. Workflow of augmentative backward reward function.

e2137632-3272 M. CHANSUPARP AND K. JITKAJORNWANICH

R s; að Þ ¼

rcolluded ðif collidedÞ
w1 Dpre � Dcur
� �

þ w2 1 � z � PapproAltð Þð Þ=PapproAltð Þð Þþ

w3 1 � vh=180ð Þð Þ þ w4 1 � vg=180
� �� �

ðif not collided and not reached the goalÞ

8
<

:

Vh ¼
360 � hðifh> 180Þ
h

�

Vg ¼
360 � gðifg > 180Þ
g

�

(8)

where Dpre;Dcur denote the previous and current Euclidean distances between
the agent and goal, respectively, z denotes altitude of UAV, h; g denote angles
of the UAV’s head and position to goal, respectively, papproAlt denotes appro
priate altitude or flight level, and w1� 4 denote weight parameters.

Methodology

Unsupervised Trajectories Classification with All Positive Siamese Autoencoder

As mentioned in the section ‘Autoencoder’, Siamese model with triplet loss
helps the features of data in the same class get close to each other and the
features in different classes get apart such that it is much favorable for
classification. But, it is the case that the positive and negative samples are
known. If you consider denoising techniques to at least make the features
robust against discrepancy, then the input data need to be distorted, and
unlike the image data, this will quite change the meaning of trajectory data.
With all these limitations, unsupervised trajectories classification has been
arduous and also hard to concretely measure the accuracy. Hence, we propose
a pilot study on unsupervised sequential data classification, which adapts the
idea of Siamese autoencoder with triplet loss. In the absence of positive
samples for a given trajectory, we assume that the past and future states
st� 1; stþ1ð Þ are approximately similar to the state st. In other words, we use

adjacent states as surrogates of positive samples in triplet loss. To allow our
autoencoder to be resilient for both aspects, the past and future, the Siamese-
triplet model was adopted for encoding. The architecture of our PSAE is
illustrated in Figure 4.

Our Siamese network consists of three identical sub-networks, which have
the same architecture and shared parameters. The network receives st� 1; stþ1ð Þ

as two positive inputs and st as an anchor input. The network returns recon
structed outputs ~s, which is expected to be similar to its own input s according
to autoencoder theory, and the features ŝ in latent space (narrowest layer),
which is expected to be close to the anchor’s features in terms of distance
according to the triplet loss. So, our loss function is designed to minimize the
mean squared error (MSE) between the input and output and to maximize the
cosine similarities of the features pairs of the anchor with positives.

APPLIED ARTIFICIAL INTELLIGENCE e2137632-3273

LPSAE ¼ pwae
X1

i¼� 1
si � ~sij jj j

2
2� 1 � pwaeð Þ

X

j¼� 1;1
coss ŝ0; ŝj
� �

(9)

where pwae denotes the level of tradeoff between two terms and coss denotes
cosine similarity function.

In terms of classification, all the features ŝ in buffer are clustered by the
K-mean algorithm. The k number is determined by the elbow method, the
classical method, which has been popular for unsupervised clustering (Liu and
Deng 2021; Shi et al. 2021). The elbow method finds the optimal k number by
iteratively calculating sum square error (SSE), the sum of average Euclidean
distances between each data point and its centroid, and then picking the point
where SSE is starting to stable, the graph’s part, which looks like an elbow.

SSE ¼
XK

k¼1

X

x2Ck
x � Ckj jj j

2
2 (10)

where K denotes maximum cluster number and C denotes the centroid of the
cluster.

In the context of high-dimensional state space, there are abundance of
trajectory patterns and so we increase k with some constant steps. After
finding the optimal k, each state in buffer can be determined from its cluster
label. These pairs of features and labels are used as training sets for the
classifier. At the end, we replaced the one-shot classification in ABR with the
PSAE classification and named it ABR+.

Figure 4. Network architecture of all positive Siamese autoencoder.

e2137632-3274 M. CHANSUPARP AND K. JITKAJORNWANICH

Actor-Critic-LifeGuard

This new role, LG, was inspired by the proof of FORK that the supplementary
forecast can significantly improve the policy training. After testing FORK on
AUN, we found that the loss values of system-net during the training fluctuate
dramatically. This can imply that it is unaffordable to precisely forecast the
future states in high-dimensional state-action spaces. Consequently, we aimed
to develop the actor assistant, which is low sophistication. The LG is simply
a binary classifier, which forecasts whether the agent will collide or not if it
takes an action ak at state sk. We adopt stochastic gradient descent (SGD)
algorithm for learning the classifier since its linear complexity and scaling
capability make the computation still fast even with huge and high-
dimensional data (Mittal, Gaurav, and Sekhar Roy 2015). Let xn; ynð Þbe a set
of training samples, x 2 Rm be features (the last observation in state) and y 2

1; 0f g be label (collided, not). Please note that the SGD is sensitive to feature
scaling, and all attributes in features should be scaled to (0,1). The output of
the SGD classification can be got by:

c xð Þ ¼ wTxþ j (11)

where w 2 Rm denotes model parameters and j 2 R denotes intercept.
w is found by minimizing the regularized training error with this cost

function:

E w; jð Þ ¼
1
n

Xn

i¼1
L yi; c xið Þð Þ þ αR wð Þ (12)

where R denotes regularization term, the L2 norm, and α denotes
a regularisation hyper-parameter.

For L, it denotes the loss function, and in this work, we adopted the logistic
regression loss.

L yi; c xið Þð Þ ¼ log 1þ exp � yic xið Þð Þð Þ (13)

At each update time step, one training sample is taken, and the model para
meters are updated according to this rule:

w w � lr α
dR wð Þ

dw
þ

dL wTxi þ j; yi
� �

dw

� �

lr tð Þ ¼
1

α t0 þ tð Þ
(14)

where lr; t0 denote learning rate and initial time, respectively.
After training the LG for a while, the collision forecast is used to improve

the policy (Actor) as follows:

LaL θμð Þ ¼ � Q st; μ θμð ÞjθQ� �
� c ot þ μ θμð Þð Þpcp

� �
(15)

where o denotes the last observation in state s, and pcp denotes the hyperpara
meter controlling the diminishing of Q value.

APPLIED ARTIFICIAL INTELLIGENCE e2137632-3275

AUN with TD3-LG and ABR+

In this section, we describe the workflow of the proposed method as illustrated
in Figure 6. There are some pre-processes that have to be declared before going
to the policy learning process. In a realistic navigation setting, the agent’s
perception is usually represented with a point cloud, which contains abundant
points in space; around a few hundred thousand points, it cannot be directly
used as an input for the learning process. Hence, all experiments involved with
UAV in this work proceeded under point cloud simplification with truncated
icosahedron structure, which was proposed in our previous work. This soccer-
ball-shaped structure programmatically covers the agent to screen only the
cloud points it needs to be careful of; then it turns the point cloud into 32
points according to the number of the structure’s sides as illustrated in
Figure 5. The radius of this ball refers to the safe flying distance pradius. For
this work, the observation consists of 32 cloud points f1� 32ð Þ, the altitude of
UAV zð Þ, two angles of the head’s UAV (or camera direction in headless
UAV), and UAV’s position with goal position h; gð Þ, respectively, and
so ot ¼ f1; . . . ; f32; z; h; gð Þ.

At every time step t, after executing at, which generated from policy μ
(actor), the agent will receive the new observation otþ1, reward rt, and episode
end status dt from the environment and append otþ1 to the current state st in
FIFO manner. So, stþ1 ¼ ot� 1; ot; otþ1ð Þ. The sequential state was proved
superior compared to a snap state (Kapturowski et al. 2018; Zhang et al.
2020). These attributes constitute the transition st; stþ1; at; rt; dtð Þ and then
be stored in the replay buffer B in FIFO manner too. If dt is 1 and the agent
reach the goal point, then all transitions of the episode in B are brought to
calculate extra rewards, which will be added into the former reward ri with
ABR+ function. For the policy learning, the model parameters update pro
ceeds in an online fashion over time. N transitions in B are sampled randomly
to form a batch and then be sent to the actor, critic, and LifeGuard networks as
an input. The model parameter update is almost the same as that of the TD3
except the eval-net actor update that was replaced with Formula 6.

Figure 5. Left: truncated icosahedron structure. Middle: agent (UAV) on environment. Right:
agent’s perception via truncated icosahedron structure.

e2137632-3276 M. CHANSUPARP AND K. JITKAJORNWANICH

Algorithm 3.1 : TD3-LifeGuard with ABR+

Initialize eval-networks of critic Q1;Q2 and actor μ with random parameters θQ1 ; θQ2 and
θμ . Initialize target-networks with same parameters as in eval-networks θ0 ¼ θ
Initialize buffer B with size pbuffer and trajectories history H
For episode e = 1 to N do

Receive initial observation o1 from env and form state s 0; 0; . . . ; opframes

� �

For t = 1 to t do
Select an action with exploration noise

at ¼ clip μ stjθ
μð Þþ; alow; ahigh

� �
.

Execute at and receive reward rt , new observation otþ1,
episode status dt , and cause it .
Generate stþ1 by insert otþ1 to st in FIFO manner.
Store transition st; at; rt; stþ1; dt; itð Þ in B
If dt == 1 (done) & it == ‘goal’ then

Select All transitions si; ai; ri; siþ1; dið Þ of e from B
For j to number of transitions in e do

Extract feature of the trajectory
ŝ ¼ PSAE sj� 1; sj; sjþ1

� �
.

Find the cluster the trajectory belongs to
k ¼ classifier ŝð Þ.
Insert rj to unique reward stack number k of H and sort
stack then m is return index.

rjþ ¼ m� pexR

end for
end if
Sample mini-batch of N transitions si; ai; ri; siþ1; dið Þ from B randomly.

a0 i ¼ clip μ0 siþ1jθ
μ0

� �
þ ε; alow; ahigh

� �
, yi ¼ ri þ y 1 � dið Þminj¼1;2Q0 jðsiþ1; a0 ijθ

Q0 j Þ.

Update critic ÑθQ
j

θQ
j

� �
¼ 1

N

PN

i¼1
ÑθQ

j
yi � Qj si; aijθ

Qj
� �� �2

.

If tmod pupdateDelay == 0 then
Update actor θμ using deterministic policy gradient and
LifeGuard.

Ñθμ J θμð Þ ¼ 1
N

PN

i¼1
Ñθμ Q1ðsi; μðsijθ

μÞjθQ1 Þ � c oi þ μ sijθ
μð Þð ÞpcpÞ.

Update target networks
θQ0 ¼ ptauθQ þ 1 � ptauð ÞθQ0 , θμ0 ¼ ptauθμ þ 1 � ptauð Þθμ0 .

End if
if t > plimitStepor dt == 1 (done) then

break loop.
End if

end for
end for

Experiments

In order to make the experiment realistic, we designed the agent and environ
ment with the well-known robot testing simulator, GAZEBO (Koenig and
Howard 2004). The shape, size, and weight of objects are almost the same as in
reality. The environments also regard two external forces, which are gravita
tional and aerodynamic forces. The UAV control was conducted via the robot
operating system (ROS) (Stanford Artificial Intelligence Laboratory 2018). All
experiments involved with UAV in this work were operated under the point
cloud simplification with truncated icosahedron structure and sequential state.

APPLIED ARTIFICIAL INTELLIGENCE e2137632-3277

We measure the performances of the proposed method and the state-of-the-
art method by using the success rate, which is the probability of the UAV
reaching the goal for the last 500 episodes. All the parameters for this work are
displayed in Table 1.

For this work, the environments have two types: static and dynamic. In
static environment, as shown in Figure 7, there are no moving objects except

Figure 6. Workflow of the proposed method for autonomous UAV navigation task.

Figure 7. Left: static environment (no moving objects except the agent). Right: dynamic environ
ment (there are three moving planes).

e2137632-3278 M. CHANSUPARP AND K. JITKAJORNWANICH

for the agent, unlike the dynamic environment, in which there are three planes
flying at the same altitude of the UAV, papproAlt, and having a constant speed.
The initial positions of the goal point and the agent are randomly defined at
the beginning of every episode. The episode will be done if one of the three
criteria is met: First, the agent reaches the goal; second, the agent collides;
third, the agent runs out of steps. For our AUN framework, 5,000 episodes of
training approximately took 36 hours for moderate computers.

Trajectories Classification

After iteratively calculating the SSE, 4,000 was optimal k picked up by the
elbow method for range 100–6,000 with 100 interval size. The 200,000 states
randomly sampled from the 5,000 episodes training replay buffer were used to
train the PSAE and to measure the performance between the PSAE and the
convolution based one-shot learning. The standard deviation (SD) was used to
indicate the spread of the data distributions from both methods.

Figure 8. Data distributions in clusters. Left: of one-shot learning. Right: of PSAE.

Figure 9. Success rates of using TD3 with ABR (one-shot learning) and ABR+ (PSAE). Left: in static
environment. Right: in dynamic environment. (The figure is designed for coloured version.)

APPLIED ARTIFICIAL INTELLIGENCE e2137632-3279

As shown in Figure 8, it was obvious that the data distribution of PSAE was
of a much lower concentration than that of the one-shot learning and had an
SD at 24.89. For one-shot learning, the data were largely concentrated on just
four clusters and had an SD at 5,017.52. Despite this huge difference, it may
not be sufficient to judge which one is better for AUN. So, the results in the
AUN task were compared once more to confirm the performance of each
method.

As shown in Figure 9, the success rates in AUN task of PSAE (ABR+) and
one-shot learning (ABR) were so close. For static environments, the success
rates were 82.4%, 84.8%, respectively, and 61.6%, 63.2% for dynamic environ
ments. But what can be seen clearly is that the PSAE helps to make the learning
process significantly more stable.

Autonomous UAV Navigation

If we consider the fact that FORK relies on learning the reward function to
improve the policy, then the rewarding in ABR, in which reward fluctuates
according to the rank of trajectory, may suffer the reward forecasting process.
Therefore, we tested FORK on AUN with both TR and ABR+. The results on

Table 1. Attributes and hyper-parameters in this work.
Name Variable Value

Action lx ; ly ; lz; az 4 dimensions
Action limit −2, 2
Observation f1; . . . ; f32; z; h; g 35 dimensions
Observation sequence length pframes 3
Feature size (latent space size) pfreatures 20
Appropriate altitude or flight level papproAlt 3.5 m
Radius of truncated icosahedron structure, Safe flying

distance
pradius 4 m

Learning rate lr 0.001, 0.0001 for critic and actor
Level of trade-off in PSAE pwae 0.7
Q-value diminishing value in LG pcp 10
Traditional reward function: goal reward, collision

punishment
50, −50

Weight-parameters in reward function w1� 4 8,1,0.5,0.5
Extra reward multiplier in ABR and ABR+ pexR 0.2
Collision punishment rcollided −10 (when using LG), −50
Buffer size pbuffer 106

Batch size N 250
Delay to slow the update of actor and target networks pupdateDelay 2
Maximum number of steps per episode plimitStep 300

Table 2. Sample complexity (million steps) of TD3-FORK+ABR+ and
TD3-LG+ABR+.

Environment TD3-FORK+ABR+ TD3-LG+ABR+

Static environment 0.95 0.41
Dynamic environment 0.39 0.32

e2137632-3280 M. CHANSUPARP AND K. JITKAJORNWANICH

the static environment of the proposed method and TD3-FORK are shown in
Figure 10.

The TD3-LG+ABR+ (proposed) achieved the highest success rate, which is
88.6%, and for TD3-FORK, it is 55.8% and 78.6% for TR and ABR+, respec
tively. This result is again the evidence that the drawbacks of TR outweigh the
benefits. In terms of collision rates, TD3-LG+ABR+ received 8.8% and 38.6%
and 18.2% for TR and ABR+ of TD3-FORK, respectively.

As shown in Figure 11, in dynamic environment, the success rate of TD3-LG
+ABR+ dropped to 73.4%, which is 15% lower from the static. Conversely, TD3-
FORK+ABR+ was somewhat able to maintain the same performance, which is
71% (7% lower). The collision rates were 25.6% and 25.2% for TD3-LG and
TD3-FORK, respectively.

Complexity

We also measured the improvement in terms of complexity. Our two methods
(LG, ABR+) mainly utilized the DNN; so, their computational complexity can
be formulated as follows:

cLG ¼ O NhM2� �
(16)

where cLGdenotes the computational complexity of LG and Nh;M denote
number of hidden layers in DNN and maximum number of neurons in
layer, respectively.

As can be seen in Equation 3.1, the computational complexity of ABR+
depends on the number of transitions in an episode. Hence, it can be done as
follows:

cABRþ ¼ O T NPSAEMPSAE
2� �
þ NCMC

2� �� �� �
(17)

Figure 10. Results of using TD3-FORK with TR, ABR+, and TD3-LG with ABR+ in static environment.
Left: success rate. Right: collision rate (the out-of-step rate is a residual from success and collision
rates). (The figure is designed for coloured version.)

APPLIED ARTIFICIAL INTELLIGENCE e2137632-3281

where cABRþ denotes the computational complexity of ABR+ and
N;Mdenote the number of hidden layers and maximum number of neurons
for DNNs of features extraction (PSAE) and trajectories classification. T
denotes the number of transitions in an episode.

But, in RL, only computational complexity is insufficient to tell how fast the
method is. So, we decided to use the straighter way, the sample complexity. It
is the number of training steps (million) required to reach the same point. In
this work, the best success rates of TD3-FORK+ABR+ were used as the point,
which are 78% and 74% for static and dynamic environments, respectively.

As shown in Table 2, in the static environment, TD3-FORK+ABR+
required 0.95 million training steps to achieve its best success rate (78%) and
TD3-LG+ABR+ only needed 0.41 million steps to reach the same success rate,
reducing the training steps by more than 50%. But, in the dynamic environ
ment, the numbers were not much different; the required training steps for
TD3-LG+ABR+ were 18% lower than those of TD3-FORK+ABR+.

Figure 11. Results of using TD3-FORK with ABR+ and TD3-LG with ABR+ in dynamic environment.
Left: success rate. Right: collision rate. (The figure is designed for coloured version.)

Figure 12. Left: BipedalWalkerhardcore task. Right: episodic rewards of using TD-FORK and TD-LG
in BipedalWalkerhardcore task. (The figure is designed for coloured version).

e2137632-3282 M. CHANSUPARP AND K. JITKAJORNWANICH

Other Navigation Task

To confirm the performance of the proposed method, we performed a test on
the BipedalWalkerHardcore, which is the navigation task most similar to AUN
for the well-known series of RL tasks, the OpenAI gym (Brockman et al. 2016).
Wei and Ying (2020) suggested the three heuristic changes to overcome this
tough task. Two of the three in the changes are modifying the reward so, to get
along, the ABR+ was not put to this experiment. The result of TD3-FORK for
this task was earned from running their source code, which was provided on
online websites, on our computer. In terms of TD3-LG, we simply used the
same as for AUN but under the three heuristic changes. The results are shown
in Figure 12:

Conclusion

This work proposed the LG and PSAE algorithms to achieve more successes
from AUN task and to address the apprehensive behavior of the agent. The
experimental results proved that the proposed method is more efficient than
both the state-of-the-art method (TD3-FORK) and our previous method,
TD3-ABR. In the AUN task, the proposed method achieved 88.6% and
73.4% success rates for the static and dynamic environments, respectively,
which are 10% and 2.4%, respectively, greater than the state-of-the-art method
in the static and dynamic environments. The higher success rates were caused
by the absence of apprehensive behavior. If you notice the collision rates in the
dynamic environment of all methods, it all were nearly equal to 25%, but for
the proposed method, the amount of out-of-step episodes was significantly low
(the out-of-step episodes are residual from the collision and success episodes).
In general, if the collision punishment is low like in the proposed method, the
agent will become reckless and never converge to a good result. But using the
punishment through the policy update process of LG instead helps the agent
stay in equilibrium between venturous and careful. In addition, even though
the results of LG and FORK in BipedalWalkerHardcore are very close, the
computational burden of LG is lower at least two times since it uses only one
smaller network.

However, the proposed method has two drawbacks. First, the PSAE needs
to be trained on training set having comprehensive patterns of trajectory
before being used in ABR+. Second, like FORK, the hyper-parameter control
ling the level of policy adjustment somewhat influences the performance.

Disclosure statement

No potential conflict of interest was reported by the authors.

APPLIED ARTIFICIAL INTELLIGENCE e2137632-3283

ORCID

Kulsawasd Jitkajornwanich http://orcid.org/0000-0002-6926-7577

References

Apostolopoulos, P. A., M. Torres, and E. Eleni Tsiropoulou. 2019. Satisfaction-aware data
offloading in surveillance systems. Proceedings of the 14th Workshop on Challenged
Networks - CHANTS’19. doi:10.1145/3349625.3355437.

Bellman, R. 1957. A Markovian decision process. Indiana University Mathematics Journal
6 (4):679–84. doi:10.1512/iumj.1957.6.56038.

Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
2016. OpenAI gym. arXiv. doi:10.48550/ARXIV.1606.01540.

Castaño, A. R., H. Romero, J. Capitán, J. Luis Andrade, and A. Ollero. 2019. Development of a
semi-autonomous aerial vehicle for sewerage inspection. Advances in Intelligent Systems and
Computing November (November):75–86. doi:10.1007/978-3-030-35990-4_7.

Chansuparp, M., and K. Jitkajornwanich. 2022. A novel augmentative backward reward
function with deep reinforcement learning for autonomous UAV navigation. Applied
Artificial Intelligence 36 1 .

Elmokadem, T., and A. V. Savkin. 2021. A hybrid approach for autonomous collision-free
UAV navigation in 3D partially unknown dynamic environments. Drones 5 (3):57. doi:10.
3390/drones5030057.

Fujimoto, S., van Hoof, and D. Meger. 2018. Addressing function approximation error in
actor-critic methods. ArXiv Org. https://arxiv.org/abs/1802.09477 .

Guo, T., N. Jiang, B. Li, X. Zhu, Y. Wang, and W. Du. 2020. UAV navigation in high dynamic
environments: A deep reinforcement learning approach. Chinese Journal of Aeronautics
34 (2):479–89, June. doi:https://doi.org/10.1016/j.cja.2020.05.011 .

Haarnoja, T., Z. Aurick, H. Kristian, T. George, H. Sehoon, T. Jie, K. Vikash, Z. Henry,
G. Abhishek, A. Pieter, et al. 2018. Soft actor-critic algorithms and applications. arXiv.
doi:10.48550/ARXIV.1812.05905.

Haarnoja, T., A. Zhou, P. Abbeel, and S. Levine. 2018. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. arXiv. doi:10.48550/ARXIV.
1801.01290.

Hawary, A. F., and N. A. Razak. 2018. Real-time collision avoidance and path optimizer for
semi-autonomous UAVs. IOP Conference Series: Materials Science and Engineering
370 (May):012043. doi:10.1088/1757-899x/370/1/012043.

Jain, T., A. Sibley, H. Stryhn, and I. Hubloue. 2018. Comparison of unmanned aerial vehicle
technology-assisted triage versus standard practice in triaging casualties by paramedic
students in a mass-casualty incident scenario. Prehospital and Disaster Medicine
33 (4):375–80. doi:10.1017/s1049023x18000559.

Kapturowski, S., G. Ostrovski, J. Quan, R. Munos, and W. Dabney. 2018. Recurrent experience
replay in distributed reinforcement learning. Openreview.net. Accessed September 27, 2018.
https://openreview.net/forum?id=r1lyTjAqYX

Koenig, N., and A. Howard. n.d.. 2004. Design and use paradigms for gazebo, an open-source
multi-robot simulator. 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (IEEE Cat. No.04CH37566). Accessed October 20, 2019. doi:10.1109/iros.
2004.1389727.

e2137632-3284 M. CHANSUPARP AND K. JITKAJORNWANICH

https://doi.org/10.1145/3349625.3355437
https://doi.org/10.1512/iumj.1957.6.56038
https://doi.org/10.48550/ARXIV.1606.01540
https://doi.org/10.1007/978-3-030-35990-4_7
https://doi.org/10.3390/drones5030057
https://doi.org/10.3390/drones5030057
https://arxiv.org/abs/1802.09477
https://doi.org/10.1016/j.cja.2020.05.011
https://doi.org/10.48550/ARXIV.1812.05905
https://doi.org/10.48550/ARXIV.1801.01290
https://doi.org/10.48550/ARXIV.1801.01290
https://doi.org/10.1088/1757-899x/370/1/012043
https://doi.org/10.1017/s1049023x18000559
https://openreview.net/forum?id=r1lyTjAqYX
https://doi.org/10.1109/iros.2004.1389727
https://doi.org/10.1109/iros.2004.1389727

Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
2015. Continuous control with deep reinforcement learning. ArXiv Org. https://arxiv.org/
abs/1509.02971 .

Liu, F., and Y. Deng. 2021. Determine the number of unknown targets in open world based on
elbow method. IEEE Transactions on Fuzzy Systems 29 (5):986–95. doi:10.1109/tfuzz.2020.
2966182.

Lu, Y., Z. Xue, G.-S. Xia, and L. Zhang. 2018. A survey on vision-based UAV navigation. Geo-
Spatial Information Science 21 (1):21–32. doi:10.1080/10095020.2017.1420509.

Maciel-Pearson, B. G., L. Marchegiani, S. Akcay, A. Atapour-Abarghouei, J. Garforth, and
T. P. Breckon. 2019. Online deep reinforcement learning for autonomous UAV navigation
and exploration of outdoor environments. ArXiv:1912 05684 [Cs] December (December).
https://arxiv.org/abs/1912.05684 .

Meng, L., R. Gorbet, and D. Kulić. 2021. The effect of multi-step methods on overestimation in
deep reinforcement learning. Στο 2020 25th International Conference on Pattern
Recognition (ICPR), 347–53. doi:10.1109/ICPR48806.2021.9413027.

Mittal, D., D. Gaurav, and S. Sekhar Roy. 2015. An effective hybridized classifier for breast
cancer diagnosis. 2015 IEEE International Conference on Advanced Intelligent
Mechatronics (AIM), July. doi:10.1109/aim.2015.7222674.

Ng, A. 2011. Sparse autoencoder. CS294A Lecture Notes https://web.stanford.edu/class/cs294a/
sparseAutoencoder_2011new.pdf .

Qiu, X., Z. Yao, F. Tan, Z. Zhu, and L. Jun-Guo. 2020. One-to-one air-combat maneuver
strategy based on improved TD3 algorithm. Στο 2020 Chinese Automation Congress (CAC)
5719–25. doi:10.1109/CAC51589.2020.9327310.

Rummery, G. A., and M. Niranjan. 1994. On-line Q-learning using connectionist systems.
Undefined. https://www.semanticscholar.org/paper/On-line-Q-learning-using-
connectionist-systems-Rummery-Niranjan/7a09464f26e18a25a948baaa736270bfb84b5e12

Sadeghzadeh-Nokhodberiz, N., A. Can, R. Stolkin, and A. Montazeri. 2021. Dynamics-based
modified fast simultaneous localization and mapping for unmanned aerial vehicles with
joint inertial sensor bias and drift estimation. IEEE Access 9:120247–60. doi:10.1109/access.
2021.3106864.

Schneider, S., G. W. Taylor, S. Linquist, and S. C. Kremer. 2019. Similarity learning networks
for animal individual re-identification – Beyond the capabilities of a human observer. arXiv.
doi:10.48550/ARXIV.1902.09324.

Shi, C., B. Wei, S. Wei, W. Wang, H. Liu, and J. Liu. 2021. A quantitative discriminant method
of elbow point for the optimal number of clusters in clustering algorithm. EURASIP Journal
on Wireless Communications and Networking 2021 (1). doi:10.1186/s13638-021-01910-w.

Stanford Artificial Intelligence Laboratory et al. 2018. Robotic operating system (version ROS
melodic morenia). https://www.ros.org

Sudhakar, S., V. Vijayakumar, C. Sathiya Kumar, V. Priya, L. Ravi, and V. Subramaniyaswamy.
2020. Unmanned Aerial Vehicle (UAV) based forest fire detection and monitoring for
reducing false alarms in forest-fires. Computer Communications 149:1–16. doi:10.1016/j.
comcom.2019.10.007.

Vincent, P., H. Larochelle, Y. Bengio, and P.-A. Manzagol. 2008. Extracting and composing
robust features with denoising autoencoders. Proceedings of the 25th International
Conference on Machine Learning - ICML ’08. doi:10.1145/1390156.1390294.

Wei, H., and L. Ying. 2020. FORK: A forward-looking actor for model-free reinforcement
learning. arXiv. doi:10.48550/ARXIV.2010.01652.

Youn, W., H. Ko, H. Choi, I. Choi, J.-H. Baek, and H. Myung. 2020. Collision-free autonomous
navigation of a small UAV using low-cost sensors in GPS-denied environments.

APPLIED ARTIFICIAL INTELLIGENCE e2137632-3285

https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://doi.org/10.1109/tfuzz.2020.2966182
https://doi.org/10.1109/tfuzz.2020.2966182
https://doi.org/10.1080/10095020.2017.1420509
https://arxiv.org/abs/1912.05684
https://doi.org/10.1109/ICPR48806.2021.9413027
https://doi.org/10.1109/aim.2015.7222674
https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf
https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf
https://doi.org/10.1109/CAC51589.2020.9327310
https://www.semanticscholar.org/paper/On-line-Q-learning-using-connectionist-systems-Rummery-Niranjan/7a09464f26e18a25a948baaa736270bfb84b5e12
https://www.semanticscholar.org/paper/On-line-Q-learning-using-connectionist-systems-Rummery-Niranjan/7a09464f26e18a25a948baaa736270bfb84b5e12
https://doi.org/10.1109/access.2021.3106864
https://doi.org/10.1109/access.2021.3106864
https://doi.org/10.48550/ARXIV.1902.09324
https://doi.org/10.1186/s13638-021-01910-w
https://www.ros.org
https://doi.org/10.1016/j.comcom.2019.10.007
https://doi.org/10.1016/j.comcom.2019.10.007
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.48550/ARXIV.2010.01652

International Journal of Control, Automation, and Systems 19 (2):953–68. doi:10.1007/
s12555-019-0797-7.

Zhang, L., S. Han, Z. Zhang, L. Li, and S. Lü. 2020. Deep recurrent deterministic policy gradient
for physical control. Artificial Neural Networks and Machine Learning – ICANN
2020:257–68. doi:10.1007/978-3-030-61616-8_21.

Zhang, F., J. Li, and Z. Li. 2020. A TD3-based multi-agent deep reinforcement learning method
in mixed cooperation-competition environment. Neurocomputing 411 (October):206–15.
doi:10.1016/j.neucom.2020.05.097.

Zhang, Z., L. XinHong, A. JiPing, W. Man, G. Zhang, and M. Pizzarelli. 2020. Model-free
attitude control of spacecraft based on PID-guide TD3 algorithm. Edited by Marco
Pizzarelli. International Journal of Aerospace Engineering. 2020 (December):1–13. doi:10.
1155/2020/8874619.

Zhang, Q., M. Zhu, L. Zou, M. Li, and Y. Zhang. 2020. Learning reward function with matching
network for mapless navigation. Sensors 20 (13):3664. doi:10.3390/s20133664.

Zijian, H., K. Wan, X. Gao, Y. Zhai, and Q. Wang. 2020. Deep reinforcement learning approach
with multiple experience pools for UAV’s autonomous motion planning in complex
unknown environments. Sensors 20 (7):1890. doi:10.3390/s20071890.

Zonneveld, T. V. 2018. Realisation of a safety-cage with integrated force sensing for interactive
aerial robots. Essay.utwente.nl. Accessed July 6, 2018. https://essay.utwente.nl/75255/

e2137632-3286 M. CHANSUPARP AND K. JITKAJORNWANICH

https://doi.org/10.1007/s12555-019-0797-7
https://doi.org/10.1007/s12555-019-0797-7
https://doi.org/10.1007/978-3-030-61616-8_21
https://doi.org/10.1016/j.neucom.2020.05.097
https://doi.org/10.1155/2020/8874619
https://doi.org/10.1155/2020/8874619
https://doi.org/10.3390/s20133664
https://doi.org/10.3390/s20071890
https://essay.utwente.nl/75255/

	Abstract
	Introduction
	Background
	UAV Kinematics
	Deep Reinforcement Learning
	Forward-Looking Actor
	Autoencoder
	Augmentative Backward Reward Function

	Methodology
	Unsupervised Trajectories Classification with All Positive Siamese Autoencoder
	Actor-Critic-LifeGuard
	AUN with TD3-LG and ABR+

	Experiments
	Trajectories Classification
	Autonomous UAV Navigation
	Complexity
	Other Navigation Task

	Conclusion
	Disclosure statement
	ORCID
	References

