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LifeGuard: An Improvement of Actor-Critic Model with 
Collision Predictor in Autonomous UAV Navigation
Manit Chansuparp and Kulsawasd Jitkajornwanich

Data Science and Computational Intelligence (DSCI) Laboratory, Department of Computer Science, 
School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand

ABSTRACT
The needs for autonomous unmanned aerial vehicle navigation 
(AUN) have been emerging for recent years due to the growth 
of the logistic industry and the need for social distancing during 
the pandemic. There have been different methods trying to 
overcome the AUN task, and most of them have focused on 
deep reinforcement learning (DRL). But the results were still far 
from satisfactory, and even if the result was good, the environ
ment was usually too trivial and simple. We report in this paper 
one of the causes of low success rate for AUN in our previous 
work, which is the apprehensive behavior of agents. After 
numerous episodes of training, when the agent faces risky 
scenes, it often moves back and forth repeatedly until running 
out of the limited steps. Hence, in this paper, we propose a new 
role, LifeGuard, into the popular DRL model, Actor-Critic, to 
tackle the apprehensive behavior and expect a better success 
rate. In addition, we developed a pilot method of unsupervised 
classification for sequential data to further enhance our reward 
function from previous work, augmentative backward reward 
function. The experimental results demonstrated that the pro
posed method can eliminate the apprehensive behavior and 
gain higher success rates than the state-of-the-art method, 
FORK, with lesser effort.
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Introduction

Unmanned aerial vehicle (UAV), commonly referred to as drones, has gradu
ally played a prominent role in various applications due to its high mobility 
compared to ground traffic congestion. Nowadays, its main target has been 
where it is difficult (or risky) for humans to reach (Jain et al. 2018; Sudhakar 
et al. 2020). It is a disappointment that using UAVs on regular tasks such as an 
errand service still did not receive as much attention as it should have. The 
hindrance may be due to the fact that the reliable UAV navigation methods are 
still manual or semi-automated (Castaño et al. 2019; Hawary and Razak 2018). 
However, it means that the manpower is still required throughout the entire 
runtime, and it does not reduce the cost. The autonomous UAV navigation 
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(AUN) development has a long history but is just impelled lately by two main 
factors. First, there is a need for remote surrogates, in which manpower can be 
reduced for various industries, such as transportation, surveillance, and 
resource exploration, and can help avoid physical contact during the pan
demic. The second factor is the incessant development of deep learning that 
brings AUN closer to real-world adoption. In recent years, there are efforts put 
into autonomous navigation and could be widely divided into two 
approaches: 1) path planning approach and 2) reinforcement learning (RL) 
approach. The instances of path planning approach are as follows: Youn et al. 
(2020) proposed a UAV navigation technique, which combines the advantages 
of variant rapidly random trees (RRT) algorithms with the help of error state 
Kalman filter integration. Their technique reduces redundancy on random 
node generation from the conventional path planning. This technique com
pares neighboring node costs (RRT-Smart) as well as dynamic directional path 
lengths (RRT*-GD) to better prevent unnecessary node generations. 
Elmokadem and Savkin (2021) proposed the AUN method also with the 
RRT algorithm called RRT-connect. This method generates the trajectory 
path of the UAV by converging the two trees toward each other from the 
start and goal points. In order to avoid collision, they use reactive control law, 
which is designed to make the UAV move around the obstacle until it met the 
safe condition. After that, the UAV came back along the previous planned 
path. Though this approach does not need any prior knowledge about the 
environment, it needs some expertise knowledge on structuring the obstacle 
avoidance procedure, which is hard to be sufficiently flexible for a realistic 
environment. In addition, these two approaches are able to afford only discrete 
spaces, so the movement is rigid and not of full potential. Regarding the 
instances of RL approach, Guo et al. (2020) indicated that even though the 
recent deep reinforcement learning (DRL) methods earned quite good results, 
those cannot converge to satisfied points in high-dimensional state-action 
spaces task like AUN. So, they decided to bring the divide-and-conquer 
strategy to this complex task. The AUN task will be organized into three 
parts including collision avoidance, goal approach, and decision. These parts 
are represented as recurrent neural networks: avoid network, acquire network, 
and packed network. Avoid and acquire networks are responsible for offering 
a packed network a next action; then the packed network decides which is the 
appropriate action for the current state, avoiding the obstacle or approaching 
the goal. If the decision is wrong, the packed network will receive 
a punishment as a negative reward. Their result indicated that this model 
improves the success rate, collision rate, and velocity when compared with 
variant deep Q networks. Furthermore, there was a cooperation between fully 
autonomous aerial systems (FAAS) and mobile edge computing (MEC) to 
navigate UAV for crowd surveillance purposes. Apostolopoulos, Torres, and 
Eleni Tsiropoulou (2019) introduced the framework to serve the purpose and 
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mainly addressed the data offloading problem. The devices need to satisfy their 
individual quality of service (QOS) and also regarding the energy consump
tion, and they overcame these problems by using an on-policy RL algorithm 
named state-action-reward-state-action (SARSA) (Rummery and Niranjan 
1994) and satisfaction equilibrium concept. All results from both path plan
ning-based and RL-based methods show that they are still dissatisfied for the 
real-world adoption but be able to support more realistic conditions and 
higher state-action spaces.

Now, the most promising method seems to be the DRL method due to the 
fact that there are several of them combining deterministic and stochastic 
techniques to achieve high continuous spaces in the motion control and 
decision-making tasks, and the results were quite good (Guo et al. 2020). 
This field, DRL, has been dominated by an actor-critic model. The most widely 
known method of this model was deep deterministic policy gradient (DDPG) 
(Lillicrap et al. 2015); it combines Q-learning with policy gradient to let the 
model allow continuous space. Subsequently, the two descendants of DDPG 
called twin delayed DDPG (TD3) (Fujimoto, van Hoof, and Meger 2018) and 
soft actor critic (SAC) (Haarnoja et al. 2018a, 2018b) had arisen recurrently. It 
achieved promising performance in many tasks (Haarnoja et al. 2018; Zhang, 
Li, and Li 2020) and became the state-of-the-art methods. These two methods 
focus on the same thing, which is Q-value overestimation, the main flaw of 
DDPG, and also leverage the same thing, the target policy smoothing, to 
alleviate the overestimation. Despite many brilliant proofs of two state-of- 
the-art methods, TD3 and SAC, which are almost maximum scores for many 
tasks (Fujimoto, van Hoof, and Meger 2018; Haarnoja et al. 2018), there are 
still tasks where both methods have not achieved yet or been very time 
consuming (Wei and Ying 2020). Recently, the addition of both methods 
has emerged to improve the policy. Zhang et al. (2020) addressed the slow 
convergence rate in TD3 by adapting some prior knowledge in the form of 
alternative action. This action is generated from error and three parameters, 
which are tuned to suit the environment. This action and the action from the 
actor are estimated by their Q values to decide which one is better. This 
alternative action helps improve training speed and learning stability for 
TD3. Wei and Ying (2020) proposed the additional method named forward- 
looking actor (FORK); it tries to learn the system model (model-based RL) but 
not quite deterministic or stochastic policy optimization, which is mainly 
based on the model. It is just forecasting the next state and the reward after 
executing the action at given states and letting the forecasts participate in the 
policy adjustment. Hence, any actor-critic methods added FORK are still 
model-free. This addition, FORK, with some heuristic changes could solve 
a severely difficult task, BipedalWalkerHardcore, within 4 hours by only using 
a single GPU. These are evidence that having the addition helps the actor learn 
optimal policy easier, and the results often go through the roof.
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Despite many efforts to improve AUN, the main problems still exist (Lu et al. 
2018; Maciel-Pearson et al. 2019). In recent work on AUN, their success rate 
that the agent can reach to the goal was moderate even in low action space, 
simplified static environments, and unrealistic sensors (Elmokadem and Savkin 
2021; Zijian et al. 2020). Furthermore, the collision rate was still worrisome that 
it should not happen in real-world adoption (Zonneveld 2018). Simultaneous 
localization and mapping (SLAM) for UAV in precise tasks like delivering has 
also been a difficult challenge (Sadeghzadeh-Nokhodberiz et al. 2021). In sum, 
the AUN’s problems in many aspects are just alleviated but not wiped out. From 
our previous work (Chansuparp and Jitkajornwanich 2022), we found that 
certain AUN‘s problems were caused by traditional reward (TR) function, 
which has been in common use for many navigation tasks (Zhang et al. 2020; 
Zijian et al. 2020). This function will return a large constant positive value as 
a reward when the agent reaches the goal to encourage this behavior and return 
a constant negative value as a punishment when the agent collides with envir
onment objects to dissuade. We set the hypothesis that this reward mechanism 
causes the bias on the scene that looks like one at the goal; it will suit only the 
simple environment, which seldom found the look like goal scenes. Our pre
vious experimental results empirically showed that changing the chunk of 
reward given to a last transition to reward dispersion proportional to each 
transition’s participation could greatly improve the performance. But, after 
observation in the rear episodes of training, we found that certain problems in 
AUN are tied together. It is rather simple to reduce collision rate by increasing 
the punishment, but the consequence is that the success rate will be low since the 
agent will be apprehensive when it faces risky scenes. This makes the agent move 
back and forth before a risky scene and leads to running out of quota steps. 
Apparently, it is a trade-off.

Hence, in this work, we propose two new things to solve the agent’s 
apprehensive behavior and to improve the performance for navigation tasks. 
First, the LifeGuard (LG) is a new role proposed into an actor-critic model. 
The LifeGuard is responsible for evaluating whether the given state-action 
pairs will lead to the collision or not. The forecast from LifeGuard is used to 
adjust the action selection process in actor networks. For many tasks, more 
risk means more reward, and a very thin difference in action can cause the 
reward to be different as night and day. It is hard to recognize the existence of 
this dividing line while simultaneously learning the way to earn more reward, 
especially in high state-action spaces. In short, the LifeGuard helps the actor 
and critic to recognize this line much faster. In addition, we also propose 
a pilot study on unlabeled sequential data classification with all positive 
Siamese auto encoder (PSAE) to improve our previous reward function, 
augmentative backward reward function (ABR) (Chansuparp and 
Jitkajornwanich 2022). The performance of our method is measured on 
AUN task and BipedalWalkerHardcore-gym, the test bed for RL algorithms, 

APPLIED ARTIFICIAL INTELLIGENCE e2137632-3267



to confirm that the method is robust. All our experiments are conducted on 
the realistic simulation due to the fact that the collision rate of even the state-of 
-the-art method is still concerned and the negligible collision may cause 
inability to the UAV. If the experiments are conducted with real devices, the 
implementation cost would have been around 5,100 USD in which 1,100 USD 
is estimated for the quadrotor UAV and 4,000 USD is estimated for VLP-16 
LiDAR sensor.

The video of our test can be seen here: https://youtu.be/OkNSfLbknIE.

Background

AUN task physically consists of two things: an agent and environment. The 
aim is also rather simple, which is to navigate the UAV to the goal point 
without collision. Even so, there are studies that point out that to accomplish 
navigation tasks in a complex and dynamic environment, using the state-of- 
the-art methods in deep RL like TD3 and SAC alone is insufficient (Qiu et al. 
2020; Wei and Ying 2020). The recent results of AUN in a realistic environ
ment and a realistic agent are around 60% (Chansuparp and Jitkajornwanich 
2022; Zijian et al. 2020). In this section, we describe the components related to 
the current AUN problem.

UAV Kinematics

UAV is able to move freely in six degrees of freedom (6DoF) (as shown in 
Figure 1) and so to control its motion requires six parameters including three 
linear velocities and three angular velocities (lx; ly; lz; ax; ay; az). The 

Figure 1. Position and Euler angles of UAV in a 3D environment.
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translation ( x;
_y
; _z) and rotation (Roll _φ; Pitch _θ;Yaw _ψ) of UAV on three- 

dimensional cartesian coordinate space can be done by this: 
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In a realistic environment, the UAV motion is resisted by gravitational and 
aerodynamic forces, which are given by Chansuparp and Jitkajornwanich 
(2022). But with disappointment, almost all recent works on AUN do not 
take these external forces into account and determine the action space with 
merely two or three dimensions, which are only linear velocities. In previous 
and this work, we let the UAV move in four dimensions (lx; ly; lz; az) and 
underneath the external forces. The reason we put az in is that almost all 
applications demand the UAV to always stay toward the goal since many 
devices equipped on UAV such as cameras and sensors have limited field of 
view (FOV).

Deep Reinforcement Learning

The basic aim of RL algorithms is to learn the policy, which can manage the 
agent to gain maximum cumulative reward from interacting with the environ
ment. The interaction transition between the agent and the environment is 
often structured in form of Markov decision process (Bellman 1957), which is 
represented as tuple S;A;P;R; γð Þ. S is a set of possible world states. A is a set 
of possible actions. P is a probability of executing action A at state S to reach 
next state s (where a 2 A and s; s 2 S). R is a reward received by transmitting 
the agent from s! s. γ 2 0; 1½ �a discount factor determining how important 
the future reward is. At each time step t (a discrete value), the action at is 
generated based on policy μ stð Þ. After executing at, the agent reaches to state 
stþ1 and receive reward rt. As aforementioned, the state-of-the-art model to 
learn optimal policy μ� in continuous spaces still has been the actor critic 
model. We consider the actor and critic in DDPG. The actor selects an action 
expected to give high reward for given state st and the critic tell the actor how 
good the selected action is (value function Q s; að Þ). Both the actor and critic 
have a time-delayed network of itself to alleviate the instability issue of 
Q-learning in deep neural networks (DNNs). The main and time-delayed 
networks are called eval-net and target-net, respectively. To update the para
meters in actor θμ, transitions are sampled in Monte Carlo fashion to 
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approximate the Q values and its parameters. The actor (policy function) is 
differentiable; the chain rule can be applied as follows: 

ÑθμJ θμð Þ ¼
1
N

XN

i¼1
ÑaQðs; ajθQÞa¼μ sið Þ

ÑθμμðsjθμÞ (2) 

N denotes batch size.
In terms of the critic, the parameters θQ are updated by minimizing this loss 

function. 

Lc θQ� �
¼

1
N

XN

i¼1
ððyi � Qðsi; aijθQÞÞ

2yi ¼ r si; aið ÞγQ0ðsiþ1; μ0ðsiþ1jθμ0 ÞjθQ0 Þ

(3) 

μ0;Q0 denote the parameters of actors and critics in target-nets.
The parameters of the target-net are soft-updated by eval-net at some small 

intervals. Nonetheless, many works (Fujimoto, van Hoof, and Meger 2018; 
Meng, Gorbet, and Kulić 2021) indicated that DDPG overestimates the 
Q-value and then the policy leads to significant failure. There are methods 
built on DDPG addressing this problem. We focus on one among them, twin 
delayed DDPG (TD3). Fujimoto, van Hoof, and Meger (2018) proposed three 
tricks to address this problem: First, double the Q-function and use the smaller 
one to always be modest. Second, update the policy and target-nets less 
frequently than Q-function to let it exploit a lower error Q-value. Third, add 
clipped noise to the target action to reduce variance of target values. The full 
detail of TD3 was given by Chansuparp and Jitkajornwanich (2022).

Forward-Looking Actor

Generally, the actor improves the policy with the value of the critic provided. 
The general loss function of this improvement is as follows: 

Lo θð Þ ¼ � Qðst; μðstjθÞÞ (4) 

Wei and Ying (2020) proposed the foresightful policy improvement algorithm. 
It may be better if the action selection regards not only a current reward but 
also future benefits. To do so, they add two neural networks, which are in 
charge of learning the system model and the reward function, called system- 
net and reward-net, respectively. The system-net is learned to forecast a next 
state stþ1 of any given state-action pair (Fðst; atjθFÞ). The reward-net forecasts 
a reward, which will receive after executing state-action pair (Rðst; atjθRÞ). 
Their loss function of the actor network could be formulated as follows: 
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LaF θμð Þ ¼ � Q st; μ stjθμð ÞjθQ� �
� R st; μ stjθμð ÞjθR� �

� γR ~stþ1; μ ~stþ1jθμð ÞjθR� �

� γ2Qð~stþ2; μ ~stþ2jθμð ÞjθQÞ

(5) 

where ~stþ1;~stþ2 denote future states of st forecasted from system-net.
Their experiments on the open AI gym showed that adding FORK to the 

state-of-the-art model-free RL algorithms helps boost the performance in 
terms of both cumulative reward and time complexity. FORK outperforms 
other model-based RL algorithms.

Autoencoder

The autoencoder, as the name suggests, is a neural-network-based feature 
extraction method that does not need any supervised knowledge. The network 
consists of three components: First, an encoder, a module which compresses 
input data into a small compressed representation (features of data). Second, 
a bottleneck, the most compressed representation of input data is stored here 
and is thereby the essence of the network. Third, a decoder, a module that 
decompresses a compressed representation and reconstructs it back to the 
almost original input data. The network expects output to be the same or 
similar to input for ensuring that there is still vital information in bottleneck 
(or latent space). The architecture of the whole network can be seen in 
Figure 2.

There are various improvements on autoencoder such as denoising auto
encoder (Vincent et al. 2008), which add noise on the input to make the 
network more robust against discrepancy, sparse autoencoder (Ng 2011), 
which regularize autoencoder by sparsity constraint, and so on. In addition, 
there is a combination between autoencoder and Siamese network model with 
triplet loss (Schneider et al. 2019) to exploit the good representation in latent 

Figure 2. Autoencoder network.
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space and distance-based classification ability. The triplet loss function helps 
the features of data in the same class get closer than those from other classes. 
The function can be defined as follows: 

LT ¼ max d a; pð Þ � d a; nð Þ þm; 0ð Þ (6) 

where d denotes a distance matrix function. a; p denote an anchor sample and 
sample in the same class as anchor (positive sample). n denotes the different 
class, negative sample. m denotes some margin value.

Augmentative Backward Reward Function

In our previous work, we proved the severe problem of TR function in 
navigation tasks and proposed the new reward function, which is more 
rational, called ABR. Adding an extra reward to stimulate the agent to reach 
the goal can be a double-edged sword; it will negatively affect the agent instead 
if the goal reward dispensation is irrational. ABR adds an extra reward to all 
positive-rewards trajectories in success episodes. The trajectory means the 
sequence of observations, which the agent receives from the environment at 
each step o1; . . . ; olð Þ, where l denotes a constant value of sequence length. The 
trajectories are features extracted in an unsupervised manner by convolution- 
based one-shot learning, and we can classify them based on their cosine 
similarity to each other. Each cluster of trajectories has its own unique stack 
of floored sum of rewards in trajectory to measure the level of contribution for 
each trajectory. The workflow of ABR was shown in Figure 3 and the extra 
reward can be calculated as follows: 

re ¼ i� pexR (7) 

where i denotes the rank in unique stack of floored sum and pexR denotes 
hyper-parameter.

And, the rewards for collided and other cases can be defined as follows: 

Figure 3. Workflow of augmentative backward reward function.
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R s; að Þ ¼

rcolluded ðif collidedÞ
w1 Dpre � Dcur
� �

þ w2 1 � z � PapproAltð Þð Þ=PapproAltð Þð Þþ

w3 1 � vh=180ð Þð Þ þ w4 1 � vg=180
� �� �

ðif not collided and not reached the goalÞ

8
<

:

Vh ¼
360 � hðifh> 180Þ
h

�

Vg ¼
360 � gðifg > 180Þ
g

�

(8) 

where Dpre;Dcur denote the previous and current Euclidean distances between 
the agent and goal, respectively, z denotes altitude of UAV, h; g denote angles 
of the UAV’s head and position to goal, respectively, papproAlt denotes appro
priate altitude or flight level, and w1� 4 denote weight parameters.

Methodology

Unsupervised Trajectories Classification with All Positive Siamese Autoencoder

As mentioned in the section ‘Autoencoder’, Siamese model with triplet loss 
helps the features of data in the same class get close to each other and the 
features in different classes get apart such that it is much favorable for 
classification. But, it is the case that the positive and negative samples are 
known. If you consider denoising techniques to at least make the features 
robust against discrepancy, then the input data need to be distorted, and 
unlike the image data, this will quite change the meaning of trajectory data. 
With all these limitations, unsupervised trajectories classification has been 
arduous and also hard to concretely measure the accuracy. Hence, we propose 
a pilot study on unsupervised sequential data classification, which adapts the 
idea of Siamese autoencoder with triplet loss. In the absence of positive 
samples for a given trajectory, we assume that the past and future states 
st� 1; stþ1ð Þ are approximately similar to the state st. In other words, we use 

adjacent states as surrogates of positive samples in triplet loss. To allow our 
autoencoder to be resilient for both aspects, the past and future, the Siamese- 
triplet model was adopted for encoding. The architecture of our PSAE is 
illustrated in Figure 4.

Our Siamese network consists of three identical sub-networks, which have 
the same architecture and shared parameters. The network receives st� 1; stþ1ð Þ

as two positive inputs and st as an anchor input. The network returns recon
structed outputs ~s, which is expected to be similar to its own input s according 
to autoencoder theory, and the features ŝ in latent space (narrowest layer), 
which is expected to be close to the anchor’s features in terms of distance 
according to the triplet loss. So, our loss function is designed to minimize the 
mean squared error (MSE) between the input and output and to maximize the 
cosine similarities of the features pairs of the anchor with positives. 
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LPSAE ¼ pwae
X1

i¼� 1
si � ~sij jj j

2
2� 1 � pwaeð Þ

X

j¼� 1;1
coss ŝ0; ŝj
� �

(9) 

where pwae denotes the level of tradeoff between two terms and coss denotes 
cosine similarity function.

In terms of classification, all the features ŝ in buffer are clustered by the 
K-mean algorithm. The k number is determined by the elbow method, the 
classical method, which has been popular for unsupervised clustering (Liu and 
Deng 2021; Shi et al. 2021). The elbow method finds the optimal k number by 
iteratively calculating sum square error (SSE), the sum of average Euclidean 
distances between each data point and its centroid, and then picking the point 
where SSE is starting to stable, the graph’s part, which looks like an elbow. 

SSE ¼
XK

k¼1

X

x2Ck
x � Ckj jj j

2
2 (10) 

where K denotes maximum cluster number and C denotes the centroid of the 
cluster.

In the context of high-dimensional state space, there are abundance of 
trajectory patterns and so we increase k with some constant steps. After 
finding the optimal k, each state in buffer can be determined from its cluster 
label. These pairs of features and labels are used as training sets for the 
classifier. At the end, we replaced the one-shot classification in ABR with the 
PSAE classification and named it ABR+.

Figure 4. Network architecture of all positive Siamese autoencoder.
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Actor-Critic-LifeGuard

This new role, LG, was inspired by the proof of FORK that the supplementary 
forecast can significantly improve the policy training. After testing FORK on 
AUN, we found that the loss values of system-net during the training fluctuate 
dramatically. This can imply that it is unaffordable to precisely forecast the 
future states in high-dimensional state-action spaces. Consequently, we aimed 
to develop the actor assistant, which is low sophistication. The LG is simply 
a binary classifier, which forecasts whether the agent will collide or not if it 
takes an action ak at state sk. We adopt stochastic gradient descent (SGD) 
algorithm for learning the classifier since its linear complexity and scaling 
capability make the computation still fast even with huge and high- 
dimensional data (Mittal, Gaurav, and Sekhar Roy 2015). Let xn; ynð Þbe a set 
of training samples, x 2 Rm be features (the last observation in state) and y 2

1; 0f g be label (collided, not). Please note that the SGD is sensitive to feature 
scaling, and all attributes in features should be scaled to (0,1). The output of 
the SGD classification can be got by: 

c xð Þ ¼ wTxþ j (11) 

where w 2 Rm denotes model parameters and j 2 R denotes intercept.
w is found by minimizing the regularized training error with this cost 

function: 

E w; jð Þ ¼
1
n

Xn

i¼1
L yi; c xið Þð Þ þ αR wð Þ (12) 

where R denotes regularization term, the L2 norm, and α denotes 
a regularisation hyper-parameter.

For L, it denotes the loss function, and in this work, we adopted the logistic 
regression loss. 

L yi; c xið Þð Þ ¼ log 1þ exp � yic xið Þð Þð Þ (13) 

At each update time step, one training sample is taken, and the model para
meters are updated according to this rule: 

w w � lr α
dR wð Þ

dw
þ

dL wTxi þ j; yi
� �

dw

� �

lr tð Þ ¼
1

α t0 þ tð Þ
(14) 

where lr; t0 denote learning rate and initial time, respectively.
After training the LG for a while, the collision forecast is used to improve 

the policy (Actor) as follows: 

LaL θμð Þ ¼ � Q st; μ θμð ÞjθQ� �
� c ot þ μ θμð Þð Þpcp

� �
(15) 

where o denotes the last observation in state s, and pcp denotes the hyperpara
meter controlling the diminishing of Q value.
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AUN with TD3-LG and ABR+

In this section, we describe the workflow of the proposed method as illustrated 
in Figure 6. There are some pre-processes that have to be declared before going 
to the policy learning process. In a realistic navigation setting, the agent’s 
perception is usually represented with a point cloud, which contains abundant 
points in space; around a few hundred thousand points, it cannot be directly 
used as an input for the learning process. Hence, all experiments involved with 
UAV in this work proceeded under point cloud simplification with truncated 
icosahedron structure, which was proposed in our previous work. This soccer- 
ball-shaped structure programmatically covers the agent to screen only the 
cloud points it needs to be careful of; then it turns the point cloud into 32 
points according to the number of the structure’s sides as illustrated in 
Figure 5. The radius of this ball refers to the safe flying distance pradius. For 
this work, the observation consists of 32 cloud points f1� 32ð Þ, the altitude of 
UAV zð Þ, two angles of the head’s UAV (or camera direction in headless 
UAV), and UAV’s position with goal position h; gð Þ, respectively, and 
so ot ¼ f1; . . . ; f32; z; h; gð Þ.

At every time step t, after executing at, which generated from policy μ 
(actor), the agent will receive the new observation otþ1, reward rt, and episode 
end status dt from the environment and append otþ1 to the current state st in 
FIFO manner. So, stþ1 ¼ ot� 1; ot; otþ1ð Þ. The sequential state was proved 
superior compared to a snap state (Kapturowski et al. 2018; Zhang et al. 
2020). These attributes constitute the transition st; stþ1; at; rt; dtð Þ and then 
be stored in the replay buffer B in FIFO manner too. If dt is 1 and the agent 
reach the goal point, then all transitions of the episode in B are brought to 
calculate extra rewards, which will be added into the former reward ri with 
ABR+ function. For the policy learning, the model parameters update pro
ceeds in an online fashion over time. N transitions in B are sampled randomly 
to form a batch and then be sent to the actor, critic, and LifeGuard networks as 
an input. The model parameter update is almost the same as that of the TD3 
except the eval-net actor update that was replaced with Formula 6. 

Figure 5. Left: truncated icosahedron structure. Middle: agent (UAV) on environment. Right: 
agent’s perception via truncated icosahedron structure.
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Algorithm 3.1 : TD3-LifeGuard with ABR+

Initialize eval-networks of critic Q1;Q2 and actor μ with random parameters θQ1 ; θQ2 and  
θμ . Initialize target-networks with same parameters as in eval-networks θ0 ¼ θ 
Initialize buffer B with size pbuffer and trajectories history H 
For episode e = 1 to N do 

Receive initial observation o1 from env and form state s 0; 0; . . . ; opframes

� �

For t = 1 to t do  
Select an action with exploration noise 

at ¼ clip μ stjθ
μð Þþ; alow; ahigh

� �
.  

Execute at and receive reward rt , new observation otþ1,  
episode status dt , and cause it .  
Generate stþ1 by insert otþ1 to st in FIFO manner.  
Store transition st; at; rt; stþ1; dt; itð Þ in B   
If dt == 1 (done) & it == ‘goal’ then  

Select All transitions si; ai; ri; siþ1; dið Þ of e from B  
For j to number of transitions in e do  

Extract feature of the trajectory 
ŝ ¼ PSAE sj� 1; sj; sjþ1

� �
.  

Find the cluster the trajectory belongs to 
k ¼ classifier ŝð Þ.  
Insert rj to unique reward stack number k of H and sort  
stack then m is return index. 

rjþ ¼ m� pexR  

end for  
end if  
Sample mini-batch of N transitions si; ai; ri; siþ1; dið Þ from B randomly. 

a0 i ¼ clip μ0 siþ1jθ
μ0

� �
þ ε; alow; ahigh

� �
, yi ¼ ri þ y 1 � dið Þminj¼1;2Q0 jðsiþ1; a0 ijθ

Q0 j Þ.  

Update critic ÑθQ
j

θQ
j

� �
¼ 1

N

PN

i¼1
ÑθQ

j
yi � Qj si; aijθ

Qj
� �� �2

.  

If tmod pupdateDelay == 0 then  
Update actor θμ using deterministic policy gradient and  
LifeGuard. 

Ñθμ J θμð Þ ¼ 1
N

PN

i¼1
Ñθμ Q1ðsi; μðsijθ

μÞjθQ1 Þ � c oi þ μ sijθ
μð Þð ÞpcpÞ.  

Update target networks 
θQ0 ¼ ptauθQ þ 1 � ptauð ÞθQ0 , θμ0 ¼ ptauθμ þ 1 � ptauð Þθμ0 .  

End if  
if t > plimitStepor dt == 1 (done) then  

break loop.  
End if 

end for 
end for

Experiments

In order to make the experiment realistic, we designed the agent and environ
ment with the well-known robot testing simulator, GAZEBO (Koenig and 
Howard 2004). The shape, size, and weight of objects are almost the same as in 
reality. The environments also regard two external forces, which are gravita
tional and aerodynamic forces. The UAV control was conducted via the robot 
operating system (ROS) (Stanford Artificial Intelligence Laboratory 2018). All 
experiments involved with UAV in this work were operated under the point 
cloud simplification with truncated icosahedron structure and sequential state. 
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We measure the performances of the proposed method and the state-of-the- 
art method by using the success rate, which is the probability of the UAV 
reaching the goal for the last 500 episodes. All the parameters for this work are 
displayed in Table 1.

For this work, the environments have two types: static and dynamic. In 
static environment, as shown in Figure 7, there are no moving objects except 

Figure 6. Workflow of the proposed method for autonomous UAV navigation task.

Figure 7. Left: static environment (no moving objects except the agent). Right: dynamic environ
ment (there are three moving planes).
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for the agent, unlike the dynamic environment, in which there are three planes 
flying at the same altitude of the UAV, papproAlt, and having a constant speed. 
The initial positions of the goal point and the agent are randomly defined at 
the beginning of every episode. The episode will be done if one of the three 
criteria is met: First, the agent reaches the goal; second, the agent collides; 
third, the agent runs out of steps. For our AUN framework, 5,000 episodes of 
training approximately took 36 hours for moderate computers.

Trajectories Classification

After iteratively calculating the SSE, 4,000 was optimal k picked up by the 
elbow method for range 100–6,000 with 100 interval size. The 200,000 states 
randomly sampled from the 5,000 episodes training replay buffer were used to 
train the PSAE and to measure the performance between the PSAE and the 
convolution based one-shot learning. The standard deviation (SD) was used to 
indicate the spread of the data distributions from both methods.

Figure 8. Data distributions in clusters. Left: of one-shot learning. Right: of PSAE.

Figure 9. Success rates of using TD3 with ABR (one-shot learning) and ABR+ (PSAE). Left: in static 
environment. Right: in dynamic environment. (The figure is designed for coloured version.)
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As shown in Figure 8, it was obvious that the data distribution of PSAE was 
of a much lower concentration than that of the one-shot learning and had an 
SD at 24.89. For one-shot learning, the data were largely concentrated on just 
four clusters and had an SD at 5,017.52. Despite this huge difference, it may 
not be sufficient to judge which one is better for AUN. So, the results in the 
AUN task were compared once more to confirm the performance of each 
method.

As shown in Figure 9, the success rates in AUN task of PSAE (ABR+) and 
one-shot learning (ABR) were so close. For static environments, the success 
rates were 82.4%, 84.8%, respectively, and 61.6%, 63.2% for dynamic environ
ments. But what can be seen clearly is that the PSAE helps to make the learning 
process significantly more stable.

Autonomous UAV Navigation

If we consider the fact that FORK relies on learning the reward function to 
improve the policy, then the rewarding in ABR, in which reward fluctuates 
according to the rank of trajectory, may suffer the reward forecasting process. 
Therefore, we tested FORK on AUN with both TR and ABR+. The results on 

Table 1. Attributes and hyper-parameters in this work.
Name Variable Value

Action lx ; ly ; lz; az 4 dimensions
Action limit −2, 2
Observation f1; . . . ; f32; z; h; g 35 dimensions
Observation sequence length pframes 3
Feature size (latent space size) pfreatures 20
Appropriate altitude or flight level papproAlt 3.5 m
Radius of truncated icosahedron structure, Safe flying 

distance
pradius 4 m

Learning rate lr 0.001, 0.0001 for critic and actor
Level of trade-off in PSAE pwae 0.7
Q-value diminishing value in LG pcp 10
Traditional reward function: goal reward, collision 

punishment
50, −50

Weight-parameters in reward function w1� 4 8,1,0.5,0.5
Extra reward multiplier in ABR and ABR+ pexR 0.2
Collision punishment rcollided −10 (when using LG), −50
Buffer size pbuffer 106

Batch size N 250
Delay to slow the update of actor and target networks pupdateDelay 2
Maximum number of steps per episode plimitStep 300

Table 2. Sample complexity (million steps) of TD3-FORK+ABR+ and 
TD3-LG+ABR+.

Environment TD3-FORK+ABR+ TD3-LG+ABR+

Static environment 0.95 0.41
Dynamic environment 0.39 0.32
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the static environment of the proposed method and TD3-FORK are shown in 
Figure 10.

The TD3-LG+ABR+ (proposed) achieved the highest success rate, which is 
88.6%, and for TD3-FORK, it is 55.8% and 78.6% for TR and ABR+, respec
tively. This result is again the evidence that the drawbacks of TR outweigh the 
benefits. In terms of collision rates, TD3-LG+ABR+ received 8.8% and 38.6% 
and 18.2% for TR and ABR+ of TD3-FORK, respectively.

As shown in Figure 11, in dynamic environment, the success rate of TD3-LG 
+ABR+ dropped to 73.4%, which is 15% lower from the static. Conversely, TD3- 
FORK+ABR+ was somewhat able to maintain the same performance, which is 
71% (7% lower). The collision rates were 25.6% and 25.2% for TD3-LG and 
TD3-FORK, respectively.

Complexity

We also measured the improvement in terms of complexity. Our two methods 
(LG, ABR+) mainly utilized the DNN; so, their computational complexity can 
be formulated as follows: 

cLG ¼ O NhM2� �
(16) 

where cLGdenotes the computational complexity of LG and Nh;M denote 
number of hidden layers in DNN and maximum number of neurons in 
layer, respectively.

As can be seen in Equation 3.1, the computational complexity of ABR+ 
depends on the number of transitions in an episode. Hence, it can be done as 
follows: 

cABRþ ¼ O T NPSAEMPSAE
2� �
þ NCMC

2� �� �� �
(17) 

Figure 10. Results of using TD3-FORK with TR, ABR+, and TD3-LG with ABR+ in static environment. 
Left: success rate. Right: collision rate (the out-of-step rate is a residual from success and collision 
rates). (The figure is designed for coloured version.)
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where cABRþ denotes the computational complexity of ABR+ and 
N;Mdenote the number of hidden layers and maximum number of neurons 
for DNNs of features extraction (PSAE) and trajectories classification. T 
denotes the number of transitions in an episode.

But, in RL, only computational complexity is insufficient to tell how fast the 
method is. So, we decided to use the straighter way, the sample complexity. It 
is the number of training steps (million) required to reach the same point. In 
this work, the best success rates of TD3-FORK+ABR+ were used as the point, 
which are 78% and 74% for static and dynamic environments, respectively.

As shown in Table 2, in the static environment, TD3-FORK+ABR+ 
required 0.95 million training steps to achieve its best success rate (78%) and 
TD3-LG+ABR+ only needed 0.41 million steps to reach the same success rate, 
reducing the training steps by more than 50%. But, in the dynamic environ
ment, the numbers were not much different; the required training steps for 
TD3-LG+ABR+ were 18% lower than those of TD3-FORK+ABR+.

Figure 11. Results of using TD3-FORK with ABR+ and TD3-LG with ABR+ in dynamic environment. 
Left: success rate. Right: collision rate. (The figure is designed for coloured version.)

Figure 12. Left: BipedalWalkerhardcore task. Right: episodic rewards of using TD-FORK and TD-LG 
in BipedalWalkerhardcore task. (The figure is designed for coloured version).
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Other Navigation Task

To confirm the performance of the proposed method, we performed a test on 
the BipedalWalkerHardcore, which is the navigation task most similar to AUN 
for the well-known series of RL tasks, the OpenAI gym (Brockman et al. 2016). 
Wei and Ying (2020) suggested the three heuristic changes to overcome this 
tough task. Two of the three in the changes are modifying the reward so, to get 
along, the ABR+ was not put to this experiment. The result of TD3-FORK for 
this task was earned from running their source code, which was provided on 
online websites, on our computer. In terms of TD3-LG, we simply used the 
same as for AUN but under the three heuristic changes. The results are shown 
in Figure 12:

Conclusion

This work proposed the LG and PSAE algorithms to achieve more successes 
from AUN task and to address the apprehensive behavior of the agent. The 
experimental results proved that the proposed method is more efficient than 
both the state-of-the-art method (TD3-FORK) and our previous method, 
TD3-ABR. In the AUN task, the proposed method achieved 88.6% and 
73.4% success rates for the static and dynamic environments, respectively, 
which are 10% and 2.4%, respectively, greater than the state-of-the-art method 
in the static and dynamic environments. The higher success rates were caused 
by the absence of apprehensive behavior. If you notice the collision rates in the 
dynamic environment of all methods, it all were nearly equal to 25%, but for 
the proposed method, the amount of out-of-step episodes was significantly low 
(the out-of-step episodes are residual from the collision and success episodes). 
In general, if the collision punishment is low like in the proposed method, the 
agent will become reckless and never converge to a good result. But using the 
punishment through the policy update process of LG instead helps the agent 
stay in equilibrium between venturous and careful. In addition, even though 
the results of LG and FORK in BipedalWalkerHardcore are very close, the 
computational burden of LG is lower at least two times since it uses only one 
smaller network.

However, the proposed method has two drawbacks. First, the PSAE needs 
to be trained on training set having comprehensive patterns of trajectory 
before being used in ABR+. Second, like FORK, the hyper-parameter control
ling the level of policy adjustment somewhat influences the performance.
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