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Variational Autoencoder for Classification and Regression 
for Out-of-Distribution Detection in Learning-Enabled 
Cyber-Physical Systems
Feiyang Cai, Ali I. Ozdagli, and Xenofon Koutsoukos

Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

ABSTRACT
Learning-Enabled Components (LECs), such as neural networks, 
are broadly employed in Cyber-Physical Systems (CPSs) to tackle 
a wide variety of complex tasks in high-uncertainty environ
ments. However, the training dataset is inevitably incomplete, 
and Out-Of-Distribution (OOD) data not encountered during the 
LEC training may lead to erroneous predictions, jeopardizing the 
safety of the system. In this paper, we first analyze the causes of 
OOD data and define various types of OOD data in learning- 
enabled CPSs. We propose an approach to effectively detect 
OOD data for both classification and regression problems. The 
proposed approach incorporates the variational autoencoder 
for classification and regression model to the Inductive 
Conformal Anomaly Detection (ICAD) framework, enabling the 
detection algorithm to take into consideration not only the LEC 
inputs but also the LEC outputs. We evaluate the approach 
using extensive experiments for both classification and regres
sion tasks, and the experimental results validate the effective
ness of the proposed method for detecting different types of 
OOD data. Furthermore, the execution time of detection is 
relatively short; therefore, the proposed approach can be used 
for real-time detection.
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Introduction

The rapid development of machine learning techniques such as Deep Neural 
Networks (DNNs) over the past few years has made them widely used in 
a broad range of fields as they can tackle complex tasks that conventional 
techniques cannot easily solve. From another perspective, Cyber-Physical 
Systems (CPSs) are typically deployed and operated in environments with 
high uncertainty and variability, which requires a high level of autonomy. 
Therefore, it is unsurprising that CPSs increasingly employ Learning-Enabled 
Components (LECs) to perform different tasks (Yan et al. 2021). Although 
LECs have achieved remarkable performance, we should analyze and ensure 
their safety and reliability before employing them in real systems. 
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Nevertheless, the characteristics and complexity of the LECs impose immense 
obstacles to the analysis.

An explicit assumption that training and test data should follow the same 
distribution is essential in typical learning techniques used for training LECs, 
such as supervised learning. However, the training dataset of LEC is necessa
rily incomplete, and Out-Of-Distribution (OOD) data not encountered during 
training are inevitably present when LEC is deployed in the real world. OOD 
data may jeopardize the safety of the system by incurring erroneous LEC 
predictions. Consequently, to ensure the safety and reliability of the system, 
it is very significant and necessary to equip the LEC with the OOD detection 
method. The objective of OOD detection is to quantify the strangeness of test 
instances relating to the training dataset and raise alarms indicating that LEC 
may compute a large-error output due to the OOD data.

Although many efforts have been made for OOD detection in neural net
works (Hendrycks and Gimpel 2017), different types of OOD data have not 
been investigated systematically. The first contribution of this paper is the 
formal definition of different types of OOD data present in the LEC of CPS. 
We first discuss the causes of OOD examples and then classify them into four 
different categories, which are OOD data caused by (1) covariate shift, (2) 
target shift, (3) concept shift, and (4) label concept shift. We also provide 
distinctive examples for each type of OOD data in both classification and 
regression tasks. The categorization of the OOD data is based on the categor
ization of the dataset shift for the training and test distributions (Quionero- 
Candela et al. 2009). Note that dataset shifts focus on the difference between 
the distributions of the training and test datasets, while OOD detection aims at 
testing whether a single test instance comes from the distribution of the 
training dataset.

The second and main contribution of the paper is an algorithm for detecting 
different types of OOD data in learning-enabled CPS. Typical OOD detection 
techniques (DeVries and Taylor 2018; Hendrycks and Gimpel 2017) could 
cause a high volume of false alarms because they do not consider the dyna
mical nature of the CPS. Recently, an Inductive Conformal Anomaly 
Detection (ICAD) (Laxhammar and Falkman 2015) based method has been 
proposed by Cai and Koutsoukos (2020), in which multiple examples are 
incorporated to improve the robustness of detection. The method uses learn
ing models such as Variational Autoencoder (VAE) to efficiently measure the 
differences between the test example and the training dataset. Our work 
follows the similar approach but utilizes a VAE for classification and regres
sion model. The benefit of using such a model is that not only LEC inputs but 
also LEC outputs are taken into consideration, enabling the detection of 
a variety of OOD data present in CPS.

Last but not least contribution of this work is the comprehensive evaluation 
using several datasets for classification and regression tasks. We design 
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experiments for different types of OOD data and use the same model for OOD 
detection. The experimental results demonstrate that the proposed method 
can detect different types of OOD data with a quite small number of false 
alarms. Besides, the execution time is relatively short; therefore, our approach 
can be used for real-time detection.

The remainder of the paper is structured as follows: Section 2 discusses the 
related work, Section 3 defines various types of OOD data and formulates the 
detection problem, Section 4 introduces the VAE for classification and regres
sion model and presents the detection algorithm, Section 5 utilizes several 
experiments to evaluate the proposed approach, and Section 6 provides con
cluding remarks.

Related Work

OOD detection in deep neural networks has received considerable attention, 
and multiple approaches for different application domains have been devel
oped. The SoftMax score is utilized in Hendrycks and Gimpel (2017) to 
distinguish the in- and out-of-distribution examples. The idea is that in a well- 
trained neural network, the maximum SoftMax scores for in-distribution 
examples should be higher than those for OOD examples. In DeVries and 
Taylor (2018), an additional branch in the neural network is introduced to 
estimate the learning confidence, and the learned confidence estimates can be 
used for OOD detection.

Conformal Anomaly Detection (CAD) framework can provide well- 
calibrated error rates for anomaly detection (Laxhammar and Falkman 
2015). The framework allows using different NonConformity Measures 
(NCMs) to evaluate the differences between test instances and the training 
dataset. Kernel Density Estimation (KDE) NCM (Smith et al. 2014) and k- 
nearest neighbor NCM with Euclidian distance measure (Laxhammar and 
Falkman 2010) can be utilized for detecting point-wise anomalies, while sub- 
sequence local outlier factor NCM (Laxhammar and Falkman 2015) and k- 
nearest neighbor NCM with Hausdorff distance NCM (Laxhammar and 
Falkman 2011) can be performed for detecting sequence-wise anomalies. 
However, such NCMs struggle to cope with the high-dimensional inputs. 
Based on the CAD framework, Cai and Koutsoukos (2020) first proposes to 
leverage the deep neural networks such as Variational AutoEncoders (VAEs) 
to compute nonconformity scores for high-dimensional inputs efficiently. 
Thereafter, a series of works adopt different neural networks trying to improve 
the performance of the detection (Feng, Ng, and Easwaran 2021; Kaur et al. 
2022; Ramakrishna et al. 2022).

When considering the distribution of a test dataset in place of a single test 
instance, the OOD detection problem turns into the dataset shift detection 
problem. The effect of dataset shifts on the performance of models is 
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investigated in Shimodaira (2000), where a reweighing method – Maximum 
Weighted Log-likelihood Estimate (MWLE), is proposed to improve the 
performance of models. Huang, Gretton, Borg-wardt, Sch¨olkopf, and Smola 
(Huang et al. 2007) discusses another robust reweighing method aiming to 
covariate shift called Kernel Mean Matching (KMM). Such a KMM approach 
is adapted to label shifts in classification problems (Zhang et al. 2013). Label 
concept shifts are analyzed in Moreno-Torres et al. (2012) and, in general, are 
very difficult to detect.

Out-Of-Distribution Data in Learning-Enabled Cyber-Physical Systems

Formal Definition of Out-Of-Distribution Data

Before diving into the detection of different types of OOD data in learning- 
enabled CPSs, in this section, we will analyze the causes of different OOD data 
and categorize them based on the underlying dataset shifts.

OOD Data Caused by Covariate Shift
One of the most common dataset shifts encountered in the real-world problem 
is the covariate shift (Sugiyama, Krauledat, and Mãžller 2007). Suppose that an 
LEC f is trained with the dataset Dtrain. A typical assumption is that inputs x 
are independent and identically distributed (IID) drawn from PtrainðxÞ. Given 
x, the LEC can make predictions for some y according to the probabilistic 
model PðyjxÞ. Covariate shift is encountered when the input distribution PðxÞ
shifts between the training and test scenarios but the conditional relationship 
PðyjxÞ remains the same. Generalizing this definition, OOD data caused by 
covariate shift can be defined as the data where the input x does not come from 
the same distribution as training dataset PtrainðxÞ whereas the prediction 
model PðyjxÞ stays unchanged.

OOD Data Caused by Label Shift
Label shift is the opposite of the covariate shift, which describes the case where 
the distribution over the output variable PðyÞ changes after training phase but 
the conditional probability of x given y stays unchanged. OOD data caused by 
label shift can be defined as the data where the output y is no longer generated 
from the distribution PtrainðyÞ after training while the output-conditional 
model PðxjyÞ does not change.

OOD Data Caused by Concept Shift
Concept shift occurs when the relationship PðyjxÞ changes between the train
ing and test phases, while the input distribution is preserved (Vorburger and 
Bernstein 2006). Using the definition, for the OOD data caused by concept 
shift, we assume that the covariate variable x is from the same distribution as 
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the training dataset PtrainðxÞ whereas the conditional probability PðyjxÞ
changes such that PtrainðyjxÞ�PtestðyjxÞ.

OOD Data Caused by Label Concept Shift
Label concept shift is the contrary definition of concept shift, where the 
distribution over the output stays unchanged, while the output-conditional 
probability PðxjyÞ shifts. OOD data caused by label concept shift can be 
defined as the data where the output y is generated from the training distribu
tion PtrainðyÞ but the output-conditional probabilistic model PðxjyÞ changes, 
i.e. PtrainðxjyÞ�PtestðxjyÞ.

Examples of OOD Data

Classification
Consider the well-known digit recognition problem for the MNIST dataset 
(LeCun et al. 1998). A classification model is trained on the MNIST dataset, 
which only contains black and white handwritten digits. However, if a colorful 
handwritten digit or a handwritten digit with a different background is used as 
a test input, such a classification model is very likely to make an erroneous 
prediction. In this case, the test images are not from the training distribution. 
However, the classification results ought to be independent of the color or the 
background of the digits, and therefore the underlying relationship PðyjxÞ
should not change. Such test examples are typical OOD data caused by 
covariate shift. Further, the classification model can be influenced by other 
types of OOD data, such as OOD data caused by label shift, for example, when 
the probability distribution for the digit class PtrainðyÞ is not uniform or some 
classes of digits are not present in the training dataset.

OOD data caused by label concept shift arise in fault diagnosis and identi
fication, where a classification model is used to predict the type of fault based 
on sensor measurements. For example, consider the fault diagnosis model for 
a gearbox (PHM data challenge, 2009) which aims at classifying the damage 
type that may occur. Typically, the model is trained using data obtained under 
specific load conditions and tested under similar conditions resulting in 
satisfying accuracy. However, if the model is tested under a higher load 
condition, the performance will be degraded. In this case, although damage 
types in the test examples are still the same, the underlying relationship PðxjyÞ
changes due to additional load.

Regression
Covariate shifts occur in perception LECs used in autonomous vehicles. 
Consider, for example, an Advanced Emergency Braking System (AEBS) for 
an automobile that is designed to detect obstacles (Cai and Koutsoukos 2020). 
In this case, the perception LEC performs regression, and its performance can 
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be degraded in the case of OOD data caused by covariate shift which arises 
when the environmental conditions for the test data are different from 
conditions considered during training. Such components may also be sus
ceptible to OOD data caused by label shift. Similar to the classification 
problem, it is typically assumed that the output variable, e.g., distance to 
the obstacle, is uniformly distributed. However, in real-life situations, the 
collected training data may not match this assumption. Further, it is usually 
assumed that the vehicle types conform to standard specifications (e.g., size 
and shape). However, such specifications may change, for example, in 
response to autonomous vehicle technologies and the regression model 
may fail to predict the distance to a vehicle of type or size not used during 
training. In this case, the output-conditional probabilistic model PðxjyÞ
shifts, and such data should be considered as OOD data caused by label 
concept shift. Additional examples and datasets relating to applications in 
industrial informatics are evaluated in Section 5.

Problem Formulation

Consider an LEC f : X ! Y that is well trained to perform classification or 
regression using a labeled training dataset Dtrain ¼ fðxi; yiÞg

l
i¼1. While the 

system is running, the inputs fx01; . . . ; x0t; . . .g are sequentially fed to and 
consumed by the LEC to predict corresponding targets fy01; . . . ; y0t; . . .g. 
Such a model is assumed to be deployed in a system where test instances are 
sampled from the training distribution. Nevertheless, as the training dataset is 
necessarily incomplete, the LEC f may receive OOD test data pair ðx0t; y

0

tÞ, fail 
to make faithful predictions, and further threaten the system’s safety. 
Therefore, it is crucial to quantify a degree to which OOD data are present 
in the input sequence. OOD detection should consider all the various types of 
OOD data that may be present. Further, the detection algorithms must be 
robust and computationally efficient so they can be executed in real-time.

Detection of Out-Of-Distribution Data in Learning-Enabled 
Cyber-Physical Systems

VAE for Classification and Regression

Variational AutoEncoder (VAE) is an autoencoder introduced by Kingma and 
Welling (2014), which models the relationship between high-dimensional 
observations and representations in a latent space in a probabilistic manner. 
Aiming to disentangle the representations by the regression variable, a VAE 
for regression model is presented in Zhao et al. (2019), where the latent space 
is conditioned by the output of an additional regression branch. Such a model 
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can be adapted for the classification problem, and Figure 1 shows the archi
tecture of the VAE for classification and regression model. The predictor 
module in the figure can be a standard classification or regression network.

The essential of this model is to condition the latent encodings z on the 
target variable c inferred by the predictor, which performs classification or 
regression. Consequently, the prior distribution of the latent variables can be 
described using a conditional Gaussian distribution pðzjcÞ. Specifically, com
pared with the VAE, there are two additional components: the predictor and 
the latent generator. The predictor employs a model qðcjxÞ to infer the target c, 
which, in turn, is transformed by the latent generator to condition the latent 
representation z. The form of the target variable c is a one-hot encoding in the 
case of the classification task and a predicted scalar in the case of the regression 
task. The VAE for classification and regression model can be trained in two 
distinct phases: the prediction and the VAE phase. During the prediction 
phase, the predictor is trained to perform the classification or regression task 
regularizing the predicted class probability with the actual labels. The para
meters of the predictor network are fixed after the prediction phase. Then, 
during the VAE phase, the following loss function is employed to jointly train 
the encoder, decoder, and latent generator, 

Lðθ;ϕc;ϕz; xÞ ¼ Ez,qϕz ðzjxÞ½log pθðxjzÞ� � Ec,qϕc ðcjxÞ½DKLðqϕz
ðzjxÞjjpðzjcÞÞ�:

(1) 

The first term, the reconstruction term, is designed to enable the decoder to 
reconstruct the input from the latent representation as accurately as possible. 
The second term, the regularization term, aims to minimize the Kullback- 
Leibler (KL) divergence between the approximate posterior and the desired 
prior, a conditional Gaussian distribution pðzjcÞ.

Figure 1. Variational autoencoder for classification and regression model. Note that “Predictor” can 
be a classification or regression network.
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In practice, the balance between these two terms should be carefully tuned 
to trade off the fidelity of reconstruction against the quality of samples from 
the model (Rybkin, Daniilidis, and Levine 2021). Recently, a calibrated deco
der architecture called σ-VAE, which can automatically tune the trade-off and 
improve the quality of the generated samples, is developed in Rybkin, 
Daniilidis, and Levine (2021). The idea of σ-VAE is to add a weighting 
parameter σ between the reconstruction term and regularization term. The 
parameter σ can be computed analytically and does not require manual tuning. 
Implementation details can be found in Rybkin, Daniilidis, and Levine (2021). 
This technique can also be used with the proposed VAE for classification and 
regression model in a similar fashion by adding the weighting parameter σ in 
the reconstruction term in equation (1).

Inductive Out-Of-Distribution Detection

Our approach is built upon the Inductive Conformal Anomaly Detection 
(ICAD) framework, where a suitable NonConformity Measure (NCM) is 
required to evaluate the strangeness of a test example relative to the training 
dataset (Laxhammar and Falkman 2015). The VAE for classification and 
regression models are used to define the NCM. There are two significant 
benefits of using such models. First, the approach can scale up to the high- 
dimensional inputs and second, the model encodes both input and output 
variables of the regression or classification tasks into the latent representations, 
and consequently, can be used to detect different types of OOD data.

Nonconformity Measures
A test input x and its predictive label y0 are encoded as z in the latent space of 
the VAE for classification and regression model, and subsequently, the deco
der module reconstructs a similar example x̂. If the input-output pair ðx; y0 Þ is 
sampled from the same joint distribution Ptrainðx; yÞ as the training dataset, the 
test instance x will be reconstructed accurately. Therefore, the squared error 
between the test input x and its reconstructed example x̂, or the reconstruction 
error, can be defined as an NCM 

ARCðxÞ ¼ jjx � x̂jj2: (2) 

It is possible that some input features have rare or no contribution to the 
LEC prediction. Taking an image input as an example, such an NCM will 
bring about a large nonconformity score when the generative model struggles 
to reconstruct the fine-granularity details. Therefore, the nonconformity of 
input features should be evaluated based on their contribution to the LEC 
output. Layer-wise Relevance Propagation (LRP) is a typical saliency map 
technique that attributes high relevance scores to input features contributing 
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most to the predictions (Bach et al. 2015). Considering an input x, by propa
gating the prediction backward in the predictor portion of the VAE for 
classification and regression model, LRP computes the relevance score for 
each pixel of the input. Because different inputs will have different total 
contributions, the relevance should be normalized by the sum of contributions 
for all features in the input. Let us define a function r ¼ GðxÞ to denote the 
LRP algorithm computing the relevance map r for a given input x. The NCM 
with LRP is computed by weighting the reconstruction error for each input 
feature using the relevance score, which is defined as 

ARC� LRPðxÞ ¼ jjr � ðx � x̂Þjj2: (3) 

An important property introduced by the VAE for classification and regres
sion models is that the latent representations are disentangled by the target 
variable. Specifically, in the classification problem, the representations will be 
clustered by the target class. Therefore, for a test example x and its prediction 
y0 , the distance of its representation z to the corresponding class center cy0 can 
be defined as the distance-based NCM 

AdistðxÞ ¼ jjx � cy0 jj
2
; (4) 

where the center cy0 can be computed as the mean of the representations of the 
training data with the class label y0 . Note that such distance-based NCM 
cannot be used for regression since the target variable is continuous.

Detection Method
The proposed method operates in two phases, offline and online. During the 
offline phase, our approach first randomly divides the original labeled training 
dataset Dtrain ¼ fðxi; yiÞg

l
i¼1 into two parts, the proper training dataset 

Dproper ¼ fðxi; yiÞg
m
i¼1 and the calibration dataset Dcalibration ¼ fðxi; yiÞg

l
i¼mþ1. 

It then trains a VAE for classification and regression model using the proper 
training dataset Dproper. For each calibration example xj : j 2 fmþ 1; . . . ; lg, 
the encoder portion of the model approximates a posterior distribution in the 
latent space, and then a single point zj is sampled from it. The nonconformity 
score αΓ

j of this example can be computed by the NCMs defined earlier 
(equation (2), equation (3) and equation (4)). Specifically, for the reconstruc
tion-based NCMs ARC and ARC� LRP, the sampled point zj is used to recon
struct the input; for the distance-based NCMs Adist, the sampled point zj is 
directly used to compute the distance to the cluster center. The last step of 
offline phase is to sort the nonconformity scores of calibration data as 
fαjg

l
j¼mþ1 for online detection.

During the online detection phase, the test inputs ðx01; . . . ; x0t; . . .Þ arrive at 
the VAE for classification and regression model sequentially, which are used to 
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make predictions for the underlying task in the CPS and are also used to 
perform the detection task. Based on the approach in Cai and Koutsoukos 
(2020), multiple examples are incorporated to improve the robustness of the 
detection. Given a test input x0t, a posterior is estimated in the latent space, and 
N points fz0t;1; . . . ; z0t;Ng are sampled from it. Then, for each sampled point z0t;k, 
we compute its nonconformity score α0t;k using the NCM A, which is the same 
as the NCM used for calibration data. The p-value pt;k for each nonconformity 
score α0t;k is calculated as the ratio of calibration nonconformity scores that are 
not less than α0t;k: 

pt;k ¼
jfi ¼ mþ 1; . . . ; lgjαi � α0t;kj

l � m
:

If the test data x0t comes from a distribution similar to the training distribution, 
most of values in this p-value set fpt;kg

N
k¼1 should be relatively larger than 0. 

However, if many small values presented in the p-value set, the test example x0t 
is very likely to be an OOD example. A martingale can be used to test if many 
small p-values are present in the set (Fedorova et al. 2012) 

Mt ¼

ð1

0
MP

t dP ¼
ð1

0

YN

k¼1
Ppε� 1

t;k dP:

If the test example x0t is OOD, the martingale value Mt will increase dramati
cally. Further, as described in Cai and Koutsoukos (2020), a stateful cumula
tive sum (CUSUM) detector S can be used to detect and raise alarms on the 
consistently large martingale values. It should be noted that, if the input is not 
an example in a time sequence, the stateful CUSUM detector should be 
omitted, and the martingale value can be used for detection directly.

Evaluation

In this section, we evaluate the proposed approach on several datasets for both 
classification and regression tasks. All experiments are performed on a desktop 
PC with a 6-core Ryzen 5 CPU and a single GTX 1080Ti GPU.

IoT Network Intrusion

Experimental Setup
The number of Internet of Things (IoT) devices has grown dramatically over 
the past few years, providing a large surface to deploy malicious cyberattacks. 
Intrusion detection in IoT networks is very significant for mitigating such 
attacks. We use two IoT intrusion datasets, N-BaIoT (Meidan et al. 2018) and 
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IoTID20 (Ullah and Mahmoud 2020), to evaluate the proposed approach. 
N-BaIoT is a multivariate sequential dataset collected from 9 commercial IoT 
devices using two of the most prevailing botnet families: BASHLITE and 
Mirai. Our experiments focus on the data collected on a WiFi video doorbell. 
The dataset has 115 features extracted from the network packets, including 
packet size, packet count, etc. IoTID20 is another IoT botnet dataset collected 
from 2 typical IoT devices – a smart speaker and a WiFi camera. The dataset 
has 76 features extracted from raw network packet files. Compared with 
N-BaIoT, IoTID20 has more types of IoT attacks, including 5 categories and 
9 subcategories. However, the data in IoTID20 are not sequential. The entire 
IoTID20 dataset is utilized in our evaluation. In the following, we design and 
conduct different experiments using these two datasets to demonstrate our 
approach for detecting various types of OOD data.

Evaluation Metrics
Different evaluation metrics are used for non-sequential and sequential data, 
respectively. For non-sequential data, a threshold-free metric, AUROC, is used 
to assess the detection performance, which can be interpreted as the prob
ability that the detector assigns a nonconformity score for in-distribution data 
to be lower than OOD data. For sequential data, the number of false alarms, 
including false positives and false negatives, is used to evaluate the perfor
mance. We run the detection algorithm against multiple in-distribution and 
OOD sequences. We consider in-distribution sequences as false positives if 
alarms are raised and OOD sequences as false negatives if no alarm is raised.

Novelty Detection for Unknown Classes
Data from unknown classes are a typical case of OOD data caused by label 
shift. In this experiment, the training dataset includes not only the normal data 
but also some types of intrusion data. The objective is to detect the unknown 
types of intrusion data. Specifically, for the experiment using the N-BaIoT 
dataset, the training dataset consists of the normal data and data under attack 
by the BASHLITE botnet, and the data under attack by Mirai are considered as 
the OOD data caused by label shift. In the IoTID20 dataset, normal data and 
two categories of intrusion data (DoS and Mirai) are included in the training 
dataset, and the rest two categories (MITM and Scan) are the unknown classes. 
We note that because this experiment is deliberately designed to evaluate the 
method for detecting OOD data caused by label shift, the literature does not 
report results on the specific datasets and configurations.

We train both VAE for classification and σ-VAE for classification models. 
The VAE architecture is similar to the autoencoder architecture in Meidan 
et al. (2018). For the N-BaIoT dataset, we select 25 normal sequences, 25 
sequences attacked by BASHLITE, and 50 sequences attacked by Mirai as the 
test sequences. We report the false positives and false negatives by considering 
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different numbers of generated examples N, CUSUM detection parameters ω 
and τ, and learning models (VAE and σ-VAE for classification) in Table 2. We 
use the reconstruction-based NCMs and distance-based NCMs for both learn
ing models. The results show that all four different methods can detect novelty 
for unknown classes with zero false alarms.

For the IoTID20 dataset, the AUROCs are reported in Table 1 for different 
learning models and NCMs. For reconstruction-based NCMs, the method 
using σ-VAE for classification has a larger AUROC than using VAE for 
classification showing the σ-VAE for classification model can improve the 
reconstruction quality, and further improve the detection performance. As for 
the distance-based NCMs, it is interesting that the method using σ-VAE for 
classification model performs worse than the method using VAE for classifica
tion. This is because the disentanglement ability of σ-VAE for classification 
model is not as good as VAE for classification model. Further, we also report 
the AUROCs based on generating a single example from the latent space, and 
the evaluation results demonstrate the performance improvement by incor
porating multiple examples.

Intrusion Detection
In order to compare our approach with existing work, we consider intrusion 
detection without classifying the type of attack. Meidan et al. (2018) employs 
a deep autoencoder to detect malicious intrusions for the N-BaIoT dataset. In 
the experiment, only the normal data are used for training. The intrusion 
detection experiment can be viewed as a case for OOD data caused by label 
shift because only the data from the normal class are included in the training 
dataset. It should be noted that the VAE for classification model degrades to 

Table 1. False alarms for detecting OOD data in N-BaIot dataset.
Types NCM N;ω; τ False positives False negatives

Novelty detection ARC 5; 2; 50 0=50 0=50
10; 4; 40 0=50 0=50

Aσ;RC 5; 2; 50 0=50 0=50
10; 4; 40 0=50 0=50

Adist 5; 2; 50 0=50 0=50
10; 4; 40 0=50 0=50

Aσ;dist 5; 2; 50 0=50 0=50
10; 4; 40 0=50 0=50

Intrusion detection ARC 5; 2; 50 0=50 0=50
10; 4; 40 0=50 0=50

Aσ;RC 5; 2; 50 0=50 0=50
10; 4; 40 0=50 0=50

Table 2. Classification accuracy and AUROC for detecting OOD data in gearbox dataset.
NCM Single example Multiple examples Accuracy(ID/OOD)

ARC 0:573 0:581 99:1%/60:5%

Adist 0:690 0:698
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a VAE model as only one class is used to train the model. For the N-BaIoT 
dataset, we select 50 normal sequences, 25 sequences attacked by BASHLITE, 
and 25 sequences attacked by Mirai as the test sequences. We report the false 
positives and false negatives by considering different numbers of generated 
examples N, CUSUM detection parameters ω and τ, NCMs, and learning 
models in Table 2. From the results, both methods can also achieve the same 
zero false alarms for detecting intrusions as the deep autoencoder method in 
Meidan et al. (2018). In practice, as more data are collected, more categories of 
labeled intrusion data will be present in the training dataset and a VAE for 
classification can be used.

For the IoTID20 dataset, we report the AUROCs by considering different 
learning models in Table 1. From the table, we can see that the AUROCs of the 
methods using σ-VAE for classification are greater than those using VAE for 
classification, reflecting again that the improvement in quality of generated 
examples can also enhance the detection performance.

Gearbox Fault Detection

We evaluate the performance of detecting OOD data caused by label concept 
shift using a gearbox fault detection dataset (PHM data challenge, 2009). The 
objective is to classify the damage types of the gearbox by using the measure
ments from accelerometers mounted on various locations. In this experiment, 
we consider the output shaft vibration data. The gearbox operates under the 
normal behavior and five different types of fault behavior. For each behavior, 
low- and high-load conditions are simulated to generate two sub-datasets, 
respectively. The sub-dataset from low-load condition (including all normal 
and fault data) is used as the training dataset to train a VAE for classification 
model. On the contrary, the data from the high-load condition are regarded as 
the OOD data. The classification labels or the fault types keep unchanged 
between two sub-datasets, but the working condition or the output- 
conditional probabilistic model PðxjyÞ has changed. Therefore, OOD data 
from different working conditions can be viewed as the OOD data caused by 
label concept shift, and this experiment is designed to evaluate the proposed 
approach for detecting such kind of OOD data.

The encoder portion of the VAE for classification model consists of four 
fully connected layers with 450=300=200=150 units, and the decoder has the 
symmetric architecture of encoder. The AUROCs and the classification 
accuracy are reported in Table 2. The classification accuracy for In- 
Distribution (ID) data is much higher than for Out-Of-Distribution 
(OOD) data due to the change in conditional probability. The results reveal 
that the method using ARC does not have a promising performance as the 
method using Adist.
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MNIST Dataset

In this subsection, to demonstrate that our approach can also apply to the 
image input, we evaluate the approach on a well-known digit recognition 
dataset, MNIST (LeCun et al. 1998). We first design an experiment to detect 
the OOD data caused by covariate shift. The encoder and latent generator 
portions of the VAE for the classification model used in this experiment are 
listed in Table 4. The classifier has a similar architecture to the encoder but its 
last layer is a fully connected layer with 10 units, and the decoder is mirrored 
from the encoder. For the test data, the colorful MNIST (Su et al. 2020) and 
SVHN (Netzer et al. 2011) are used as the OOD dataset. These two datasets 
have the same labels of ten digits as the MNIST dataset; however, the input 
images are collected from different scenarios: the colorful MNIST images are 
synthesized by the MNIST image with colorful backgrounds, and SVHN 
images are the digit images from street view house numbers. Because the 
test input does not come from the same distribution as the training dataset, 
but the underlying relationship between input and output remains the same, 
the data from these two datasets are the OOD data caused by covariate shift. 
We report AUROCs in Table 3 using different NCMs. All the AUROCs are 
almost close to 1:0, which demonstrates that the method can detect the OOD 
input images caused by covariate shift.

We also evaluate our approach for detecting the OOD input image caused 
by label shift using the MNIST dataset. In our experiment, following the 

Table 3. AUROC for detecting OOD data in MNIST dataset.
Types NCM Single example Multiple examples

Covariate shift ARC 1:000 1:000
Aσ;RC 1:000 1:000
AVAE 1:000 1:000

Label shift ARC 0:852 0:878
Aσ;RC 0:879 0:879
Adist 0:874 0:870
Aσ;dist 0:803 0:805
AVAE 0:704 0:723

Table 4. VAE for classification architecture in MNIST.
Module Layer Number of neurons (filters) Activation Kernel size stride

Encoder Convolutional 32 LeakyReLU 4� 4 2
BatchNorm N/A N/A N/A N/A
Convolutional 64 LeakyReLU 4� 4 2
BatchNorm N/A N/A N/A N/A
Convolutional 128 LeakyReLU 4� 4 2
BatchNorm N/A N/A N/A N/A
Convolutional 256 LeakyReLU 4� 4 2
BatchNorm N/A N/A N/A N/A
Fully Connected 512 LeakyReLU N/A N/A
BatchNorm N/A N/A N/A N/A
Fully Connected � 2 20 Sigmoid N/A N/A

Latent generator Fully Connected 20 N/A N/A N/A
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experimental protocol in Chen et al. (2020), six digits in MNIST are randomly 
selected as known classes, while the remaining four digits are unknown. The 
data from unknown classes can be viewed as the OOD data caused by label 
shift. The AUROCs using different NCMs are shown in Table 3. The results 
also reveal that the reconstruction-based NCM using σ-VAE for classification 
performs better than the NCM using VAE for classification. The distance- 
based NCM using VAE for classification model has a comparable performance 
with the reconstruction-based NCM using σ-VAE for classification model.

Moreover, we also perform the ablation analysis by directly using the VAE- 
based method introduced in Cai and Koutsoukos (2020) to detect the OOD 
examples. The results of using VAE-based method are reported in Table 3 
denoted by AVAE. Although there is no difference between the methods using 
VAE and VAE for classification in the detection of OOD data caused by 
covariate shift, as for the OOD data caused by label shift, the novel method 
using VAE for classification obviously reveals better performance than the 
VAE-based method. This is because the VAE for classification takes into 
account not only the input but also the output.

Advanced Emergency Braking System

We also evaluate the approach using a perception LEC of the Advanced 
Emergency Braking System (AEBS). The system attempts to predict the dis
tance to the approaching obstacle and applies an appropriate brake to stop the 
host vehicle safely, avoiding the potential collision. We implement the AEBS in 
an autonomous driving simulator – CARLA (Dosovitskiy et al. 2017). The 
perception LEC is a typical regression LEC whose objective is to predict the 
distance to the nearest front obstacle by consuming the images. In order to 
collect the training dataset, we control the precipitation parameter available in 
CARLA, which is randomly sampled between 0 and 20. We totally collect 
labeled 19900 images to construct the training dataset, which are almost 
balanced between 0 and 50. Then, the training dataset is randomly divided 
into two sets: a proper training set (15920 images) and a calibration set (3980 
images). The histogram of ground-truth distance for the training data set is 
plotted in Figure 2, which shows that the amount of data corresponding to 
each interval of the distance range under consideration is almost equal.

We implement the VAE for regression model using a convolutional neural 
network, whose encoder and latent generator modules are listed in Table 5. 
The regressor has almost the same architecture as the encoder but two addi
tional dense layers with 256 and 1 units. The decoder has a symmetric 
architecture of encoder. The regressor is successfully trained with satisfying 
training and test errors after 250-epoch training. Additionally, we plot the low- 
dimensional representations of the latent encodings in Figure 3 by applying 
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t-SNE (Maaten and Hinton 2008). The distance-related dimensions are well 
disentangled in the latent space using the VAE for regression model.

We precompute and sort the nonconformity scores for the calibration data 
for the online detection. In the online phase, N ¼ 10 examples are generated 

Figure 2. Histogram of ground-truth distance in training dataset.

Table 5. VAE for regression architecture in AEBS.
Module Layer Number of neurons (filters) Activation Kernel size stride

Encoder Convolutional 32 ELU 5� 5 2
BatchNorm N/A N/A N/A N/A
Convolutional 64 ELU 5� 5 2
BatchNorm N/A N/A N/A N/A
Convolutional 128 ELU 5� 5 2
BatchNorm N/A N/A N/A N/A
Convolutional 256 ELU 5� 5 2
BatchNorm N/A N/A N/A N/A
Fully Connected 1568 ELU N/A N/A
BatchNorm N/A N/A N/A N/A
Fully Connected � 2 1024 Sigmoid N/A N/A

Latent generator Fully Connected 256 ELU N/A N/A
BatchNorm N/A N/A N/A N/A
Fully Connected 1024 N/A N/A N/A

Figure 3. The 2D embedded features visualized by t-SNE.
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from the VAE for regression model for each test example. The proposed 
approach is firstly illustrated using an in-distribution epoch in Figure 4, 
where the prediction error of the regression module, the p-values, and 
CUSUM detector outputs are plotted. Both reconstruction-based NCMs 
with and without LRP are employed in our experiments, and their results 
are shown in Figure 4. From the plots, we can see that, for in-distribution data, 
the p-values of both NCMs are greater than 0 resulting in low detector values 
during the whole episode, which indicates there are no OOD data presented in 
the sequence.

In AEBS, the precipitation parameter can be controlled to enforce the input 
of test examples out of the distribution of the training dataset. Specifically, the 
precipitation parameter in images of the training dataset is randomly sampled 
between 0 and 20; however, in testing, the precipitation parameter is from 
a different distribution ½30; 100�.

An OOD episode caused by such precipitation shift is plotted in Figure 5. 
The prediction errors are conspicuously greater than those of in-distribution 
episode, which can surpass 15m. The p-values for both NCMs are relatively 
small (close to 0), and the detector S reveals the OOD data are present in the 
sequence. We evaluate the approach using total 100 episodes, 50 of which are 
in-distribution episodes and 50 are out-of-distribution episodes caused by 
covariate shift. We report the false positives and false negatives for detection 
of such specific type of OOD data using two different NCMs ðARC and 

Figure 4. An episode with in-distribution data in AEBS (detector parameter: N ¼ 10, ω ¼ 4, 
τ ¼ 40).
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ARC� LRPÞ in Table 6. From the results, we can see that the method can be used 
for detecting OOD data caused by covariate shift with few false alarms.

For OOD data caused by label shift, the training dataset excludes all data 
ranging from 15m to 45m, which is illustrated in Figure 6. We retrain the VAE 
for regression model and report the false alarms for detecting such type of 
OOD data in Table 6. The results show that the proposed method can be used 
for detecting OOD data caused by label shift. The method using NCM with 
LRP has fewer false alarms than without LRP, which validates that the LRP 
algorithm can improve the robustness of the detection. An OOD episode 
caused by label shift is presented in Figure 7, where the data cover from 
0m to 50m. The LEC fails to estimate accurate distances to the obstacle. In 

Figure 5. An episode with OOD data caused by covariate shift in AEBS (detector parameter: 
N ¼ 10, ω ¼ 4, τ ¼ 40).

Table 6. False alarms for detecting OOD data in AEBS.
Types NCM N;ω; τ False positives False negatives

Covariate shift ARC 5; 2; 50 0=50 0=50
10; 4; 40 0=50 0=50

ARC� LRP 5; 2; 50 4=50 0=50
10; 4; 40 3=50 0=50

Label shift ARC 5; 2; 50 N/A 13=50
10; 4; 40 11=50

ARC� LRP 5; 2; 50 N/A 3=50
10; 4; 40 2=50

Label concept shift ARC 5; 2; 50 0=50 0=50
10; 4; 40 0=50 0=50

ARC� LRP 5; 2; 50 4=50 0=50
10; 4; 40 3=50 0=50
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the plots, p-values approach zero and the detector values S grow dramatically, 
indicating the presence of OOD data during the episode.

We also evaluate the approach for detecting OOD data caused by label 
concept shift. In this experiment, we introduce a double-size leading vehicle 
and collect 50 episodes doubling the size of the leading vehicle for testing. 
The distribution of the distance keeps unchanged, and the OOD data is 
caused by changes in the relationship between the image and distance. 
Therefore, such OOD data can be viewed as OOD data caused by label 

Figure 6. Histogram of ground-truth distance of training dataset that excludes data ranging from 
15 to 45.

Figure 7. An episode with OOD data caused by label shift in AEBS (detector parameter: N ¼ 10, 
ω ¼ 4, τ ¼ 40).
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concept shift. The results of one episode are illustrated in Figure 8. It is 
reasonable to see that the predicted distance is much less than the ground- 
truth distance at the beginning of the OOD episode since the double-size car 
occupies more pixels in the image than the normal-size car. The p-value 
becomes small and the detector indicates the OOD data are present in the 
test episode. From the experiment, we observe that the method with LRP has 
a shorter detection delay compared to the one without LRP since the LRP 
makes the NCM concentrate on features contributing most to the LEC 
output. We report the false alarms for detecting such OOD data in 
Table 6, which demonstrates the effectiveness of our approach for detecting 
such type of OOD data in AEBS.

Computational Efficiency

The timeliness is significant for detection tasks applied in CPS. Therefore, we 
take the AEBS as an example and measure the execution time of using different 
NCMs in one episode of the experiment. We plot the results in the boxplot in 
Figure 9. Note that as the number of points sampled from the posterior in the 
latent space N increases, the execution time of the detection method will also 
increase. We fix the number N at 10 when measuring these execution times. 
From the plot, we can observe that the execution time of the method using 
LRP is slightly longer than that of the method not using LRP because of the 

Figure 8. An episode with OOD data caused by label concept shift in AEBS (detector parameter: 
N ¼ 10, ω ¼ 4, τ ¼ 40).
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LRP computations. Besides, since the execution time of the detection approach 
is less than the operational period of the AEBS, 50, the proposed detection 
method can be operated in real-time.

Conclusions

This paper discusses the causes of the OOD data and categorizes them into four 
different types. Focusing on such OOD data, we propose a detection approach 
based on the ICAD framework, which utilizes VAE for classification and regres
sion models to compute the nonconformity measures. Since such models take not 
only LEC inputs but also LEC outputs into consideration, it is beneficial to the 
detection of different types of OOD data. We designed and conducted multiple 
experiments for classification and regression tasks, and the results show that the 
proposed method can detect different types of OOD data with a relatively small 
number of false alarms. Further, our approach can be used for real-time detection 
due to the short execution time. A promising direction to improve the detection 
performance is to incorporate attention mechanisms into VAE models.
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