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Mapping and analyzing the local climate zones in China’s 32 major cities using 
Landsat imagery based on a novel convolutional neural network
Xin Huang a,b, Anling Liu a and Jiayi Li a

aSchool of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China; bState Key Laboratory of Information 
Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China

ABSTRACT
The Local Climate Zone (LCZ) scheme provides researchers with a standard method to 
monitor the Urban Heat Island (UHI) effect and conduct temperature studies. How to 
generate reliable LCZ maps has therefore become a research focus. In recent years, 
researchers have attempted to use Landsat imagery to delineate LCZs and generate 
maps worldwide based on the World Urban Database and Access Portal Tools 
(WUDAPT). However, the mapping results obtained by the WUDAPT method are not 
satisfactory. In this paper, to generate more accurate LCZ maps, we propose a novel 
Convolutional Neural Network (CNN) model (namely, LCZ-CNN), which is designed to cope 
with the issues of LCZ classification using Landsat imagery. Furthermore, in this study, we 
applied the LCZ-CNN model to generate LCZ mapping results for China’s 32 major cities 
distributed in various climatic zones, achieving a significantly better accuracy than the 
traditional classification strategies and a satisfactory computational efficiency. The pro-
posed LCZ-CNN model achieved satisfactory classification accuracies in all 32 cities, and 
the Overall Accuracies (OAs) of more than half of the cities were higher than 80%. We also 
designed a series of experiments to comprehensively analyze the proposed LCZ-CNN 
model, with regard to the transferability of the network and the effectiveness of multi- 
seasonal information. It was found that the first convolutional stage, corresponding to 
low-level features, shows better transferability than the second and third convolutional 
stages, which extract high-level and more image- or task-oriented features. It was also 
confirmed that the multi-seasonal information can improve the accuracy of LCZ classifica-
tion. The thermal characteristics of the different LCZ classes were also analyzed based on 
the mapping results for China’s 32 major cities, and the experimental results confirmed 
the close relationship between the LCZ classes and the magnitude of the Land Surface 
Temperature (LST).
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1. Introduction
The Urban Heat Island (UHI) effect, i.e. the atmo-
spheric warmth of a city compared with its surrounding 
countryside, is a significant climatic response to the 
disruptions caused by urbanization (Stewart and Oke 
2012). Measurements of the UHI intensity of the ther-
mal environment have become the key content of 
recent studies (Streutker 2003; Fisher, Mustard, and 
Vadeboncoeur 2006; Li et al. 2011). In these studies, 
most of the researchers have measured the UHI effect 
through a simple “urban-rural” classification scheme, to 
show the temperature difference between the urban 
area and its rural surroundings (Streutker 2003; 
Fisher, Mustard, and Vadeboncoeur 2006; Li et al. 
2011). However, urban-rural systems are typically com-
plex, and the temperature data from various sites can 
have significant differences due to the distinct thermo-
dynamic characteristics of local landscapes. For these 
reasons, it is difficult to compare results across cities and 
to obtain quantitative meta data of the environment 
around a site using this simple binary system.

In order to address the above problems, the Local 
Climate Zone (LCZ) scheme was introduced by 
(Stewart and Oke 2012) as a climate-based classifica-
tion scheme, and is now regarded as a standard way to 
monitor the UHI effect and analyze urban tempera-
tures (Xu et al. 2017). Compared with simple urban- 
rural division, the LCZ system is segmented into 
“built” types (LCZ 1–10) and “natural” types (LCZ 
A–G), based on the regional landscape patterns 
(Stewart and Oke 2012). LCZs can be used to facilitate 
inter-site comparison and effectively measure the UHI 
magnitude among different cities (Xu et al. 2017). The 
classification system can be applied to monitoring the 
UHI effect, establishing climatic models, and design-
ing urban landscapes.

There have been a number of studies of computer- 
based approaches to interpret LCZs. One of the widely 
used techniques is the Geographic Information System 
(GIS)-based technique (Lelovics et al. 2014; Geletič 
and Lehnert 2016), in which a large amount of input 
parameters about the urban surface are needed, such 
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as the Sky View Factor (SVF), Impervious Surface 
Fraction (ISF), and building height (Wang et al. 
2018). However, detailed urban geographical data are 
not always available in many cities, especially in the 
developing countries (Bechtel et al. 2015; Xu et al. 
2017). The other common technique is the use of 
freely available satellite imagery to delineate LCZs 
and generate maps worldwide. The World Urban 
Database and Access Portal Tools (WUDAPT) project 
is a community-based initiative to produce LCZ maps 
around the world. The WUDAPT method (Ching 
et al. 2015) involves conducting urban classification 
based on the LCZ concept with Landsat images, the 
Google Earth platform, and a random forest classifier. 
To classify LCZs based on the WUDAPT framework, 
it is first necessary to create training areas using the 
Google Earth platform, then collect the spectral fea-
tures of the Landsat images, and finally achieve LCZ 
classification via the random forest classifier.

The WUDAPT method has been widely adopted in 
relevant research (Bechtel et al. 2015; Xu et al. 2017) 
because the input data and tools can be conveniently 
and freely employed (Wang et al. 2018). However, 
although the WUDAPT method has been applied to 
LCZ classification in more than 50 cities around the 
world (Danylo et al. 2016; Bechtel et al. 2019), the 
results for only a few cities have been quantitatively 
validated to have satisfactory mapping accuracies 
(Bechtel et al. 2015; Danylo et al. 2016; Wang et al. 
2018). For instance, LCZ classification based on the 
WUDAPT method achieved an OA of 64% in Kyiv in 
the Ukraine (Danylo et al. 2016), and 62% in 
Guangzhou in China (Xu et al. 2017). These results 
indicate that the WUDAPT-based LCZ classification 
approach is not satisfactory, especially for the dense 
and highly compact Asian cities, and the use of the 
approach can significantly affect the subsequent appli-
cations (Xu et al. 2017). To obtain more accurate 
mapping results, researchers have attempted to incor-
porate other satellite data sources, e.g. the addition of 
Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) and Synthetic 
Aperture Radar (SAR) data, which improved the OA 
by 1–2% and 0.3%, respectively (Xu et al. 2017; Bechtel 
et al. 2015). Xu et al. (2017) also attempted to take into 
account Gray-level Co-occurrence Matrix (GLCM) 
textural features, increasing the OA of the classifica-
tion results for Wuhan and Guangzhou by 2%. 
However, to sum up, neither the combined use of 
other satellite images nor the addition of textural 
features can substantially strengthen LCZ mapping 
results. Moreover, the accuracy of the mapping results 
produced by the WUDAPT method over a large num-
ber of other cities still requires further validation 
(Wang et al. 2018).

LCZs are defined by a combination of surface cover, 
urban structure, material, and human activities, and 

can be regarded as complex scenarios with multiple 
land-cover types and multiple ground objects, span-
ning scales of hundreds of meters to several kilometers 
(Stewart and Oke 2012). Although the addition of 
textural features did not improve the classification 
accuracy significantly in the existing literature, these 
features can actually provide important information 
on urban structure and can contribute to LCZ inter-
pretation. A possible explanation for the unsatisfac-
tory performance of the WUDAPT method in the 
current studies is that spectral and textural features 
are still low-level features, which cannot capture 
detailed information about the urban landscapes and 
semantics. In summary, LCZ classification is a very 
complex problem of remote sensing scene interpreta-
tion. For example, the open high-rise (LCZ 4) category 
is made up of open high-rise buildings, low plants, 
scattered trees, and soil, and the algorithms based on 
the WUDAPT method might not be well adapted to 
such a complicated scene classification task. Therefore, 
it is necessary to design a more suitable method for 
LCZ classification from the perspective of scene inter-
pretation, and to substantially improve the quality of 
the current LCZ mapping products.

Convolutional Neural Networks (CNNs), as 
a commonly used deep learning method, have the 
ability to represent higher-level features, and have 
shown their superiority in semantic understanding 
(Zhang et al. 2018). CNNs have demonstrated great 
potential in many remote sensing tasks, e.g. scene 
classification (Gao et al. 2021), water body extraction 
(Yu et al. 2018), semantic segmentation (Kemker, 
Salvaggio, and Kanan 2018), and land-use mapping 
(Huang et al. 2019). These studies showed that CNN 
models can substantially outperform the traditional 
image interpretation methods. Nevertheless, CNN 
models have rarely been applied to the classification 
of Landsat images, although they do have the potential 
to mine the spectral-spatial information.

In general, there are two strategies used to exploit 
CNN models for remote sensing classification: 1) the 
use of a pre-trained or fine-tuned CNN; and 2) fully 
training a CNN from scratch. The first strategy relies 
on the classical pre-trained CNN networks transferred 
from an auxiliary domain with natural images. These 
classical CNN models are directly used as feature 
extractors, and the number of categories can be mod-
ified according to the current sample dataset, and then 
fine-tuned to conduct the classification. Although 
some classical pre-trained models have been used in 
previous studies, e.g. LeNet (Lecun et al. 1998), 
AlexNet (Krizhevsky, Sutskever, and Hinton 2017), 
GoogLeNet (Szegedy et al. 2015), and VGGNet 
(Simonyan and Zisserman 2014), their input channels 
only refer to one or three spectral channels (RGB). 
However, Landsat images contain many more spectral 
bands, i.e. seven multispectral bands with a resolution 
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of 30 m as well as a panchromatic band with 
a resolution of 15 m. Therefore, the existing CNN 
models cannot make full use of the rich spectral infor-
mation in Landsat images. Moreover, the network 
structures of the existing CNNs are constructed from 
high-resolution natural images, and are often config-
ured with a large input window, with a lot of convolu-
tional layers and parameters. The collection of massive 
training samples from remote sensing images also 
requires a huge amount of labor, and is very time- 
consuming (Li, Huang, and Gong 2019). In summary, 
the aforementioned issues restrict the application of 
the current CNN models to the mapping of Landsat 
multispectral images. In contrast, the second strategy, 
i.e. networks based on training from scratch, allows 
the network architecture to be customized and para-
meters set according to the specific requirements, 
leading to greater flexibility and expandability, espe-
cially for Landsat images, which have a relatively low 
spatial resolution, and for which it is difficult to collect 
training samples. Some studies have attempted to 
design and train a small task-specific architecture 
with the aid of the current remote sensing datasets 
and the typical filters (Li, Huang, and Gong 2019). 
These small and fully trained CNNs can avoid the 
dilemmas of the high cost and risk in training the 
existing “large-scale” networks with high redundancy 
and over-parameterization (Li, Huang, and Gong 
2019). Therefore, it is interesting and meaningful to 
build an adaptive CNN model dedicated to the task of 
LCZ classification using Landsat imagery.

The difference of the thermal properties among the 
different LCZ categories also deserves comprehensive 
investigation, from the application viewpoint. 
However, to date, the relevant studies are inadequate. 
Alexander and Mills (2014) found that the LCZ 
D category (low plants) was generally the coolest, 
while the LCZs with higher impervious and building 
fractions were found to be warmer in Dublin, Ireland. 
Geletič and Lehnert (2016) calculated daytime Land 
Surface Temperature (LST) differences for the LCZs in 
Prague and Brno in the Czech Republic. The highest 
LST was found in LCZ 2 (compact mid-rise), LCZ 3 
(compact low-rise), and LCZ 10 (heavy industry), 
while the lowest LST was observed in LCZ A (dense 
trees) and LCZ G (water) in both cities. Lelovics et al. 
(2014) found that the high-rise and mid-rise LCZs 
were warmer than the low-rise types in Szeged in 
Hungary, while Wang et al. (2018) obtained 
a different result, in that the low-rise and mid-rise 
LCZs exhibited higher LST than the high-rise types 
in Phoenix and Las Vegas in the U.S. Most of the 
recent research (Geletič and Lehnert 2016; Cai et al. 
2018; Lelovics et al. 2014) has been aimed at typical 
cases of one to two cities, and their conclusions about 
the thermal properties of the different LCZs have not 
been entirely consistent, owing to the differences of 

the urban landscapes and background climates. 
Although some studies obtained analysis results in 
multiple cities, they were either based on urban 
agglomeration from a specific climatic zone (Cai 
et al. 2018) or a separate analysis of each city 
(Bechtel et al. 2019), and they did not comprehensively 
analyze the characteristics and differences of the cli-
matic zones. Stewart, Oke, and Krayenhoff (2014) 
encouraged more LCZ evaluation studies for urban 
environments under various climatic conditions. It is 
therefore necessary to explore the relationship 
between LCZs and the thermal environment, and to 
evaluate the LCZ classification scheme performance 
based on a large number of cities distributed in differ-
ent climatic zones.

In this context, from the technological aspect, we 
propose a novel CNN framework (namely, LCZ- 
CNN), which is designed to cope with the issues of 
LCZ classification using Landsat imagery. The pro-
posed LCZ-CNN model adequately considers the 
multi-spectral and multi-seasonal information of the 
Landsat images. Meanwhile, the traditional classifica-
tion strategies, including WUDAPT (Ching et al. 
2015), the Bag of Visual Words (BoVW) model 
(Yang and Newsam 2010), and the Multi-Layer 
Perceptron (MLP) (Hu 2011), were also applied for 
comparison. Furthermore, we applied the LCZ-CNN 
model to generate the LCZ mapping results for 
China’s 32 major cities distributed in different climatic 
zones, and the thermal characteristics of the different 
LCZ classes were then analyzed.

2. Study area and data

2.1. Study area

China is a country with a vast territory and a huge 
population, located in the east of Asia and the west 
coast of the Pacific Ocean. China’s terrain is high in 
the west and low in the east. Mountains, plateaus, and 
hills account for about 67% of the land area, while 
basins and plains account for the rest. Owing to the 
tremendous differences in geographical conditions, 
the climate of China is diverse, ranging from tropical 
in the south to subarctic in the north, and alpine in the 
higher elevations of the Tibetan Plateau. The diversity 
of climate and the uneven distribution of population 
also lead to large differences in the landscapes of the 
various cities in China.

As the largest developing country in the world, 
China has experienced a rapid urbanization process 
in recent decades, exacerbating the UHI effects in the 
large cities (Gong et al. 2012). Hence, this study 
focused on the 32 major cities of China, with regard 
to their accurate LCZ mapping, as well as a thermal 
environmental analysis (Figure 1). All of these cities 
are municipality or provincial capitals, which are 
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located in different climatic zones and exhibit com-
plex urban forms and landscapes. Therefore, the 
LCZ mapping in these selected cities was both chal-
lenging and meaningful, allowing us to not only test 
the robustness of the proposed deep neural network 
from the methodology point of view, but also to 
investigate the thermal characteristics of the mega-
cities of China.

Figure 2 shows examples of the representative LCZ 
classes in the 32 major cities, with detailed descrip-
tions, as well as the high-resolution images obtained 
from Google Earth. The numbers of LCZ classes in the 
different cities are different, due to the differences of 
their development levels and urban landscapes. In this 
research, the size of the input window for the LCZ 
classification was set to 240 m, which was identified 

Figure 1. Locations of the 32 major cities and five climatic zones in China. The climatic zones are based on Yang, Huang, 
and Li (2017).
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according to the definition of LCZs and the previous 
experimental results obtained for high-density Asian 
cities (Stewart and Oke 2012; Lau et al. 2015).

2.2. Data

In total, 128 Landsat 8 level-1 image scenes from differ-
ent seasons acquired mainly in 2015 with minimum 
cloud coverage were downloaded from the U.S. 
Geological Survey Earth Explorer website for the 32 
cities (Figure A1). Since the image quality for several 
cities in 2015 was poor, the available images of the most 
recent years were selected as supplements. We adopted 
the Additive Wavelet Luminance Proportional (AWLP) 
method to incorporate the spatial details in the high- 
resolution (i.e. 15 m) panchromatic bands of the 
Landsat images, allowing us to better capture the spatial 
structure information of the LCZs. AWLP is a widely 
used and robust pan-sharpening algorithm (as sug-
gested by the large-scale comparison in (Meng et al. 

2020)), which utilizes the electromagnetic spectrum 
responses of the sensors to improve the spatial resolu-
tion of multispectral images (Otazu et al. 2005).

3. Method

3.1. Architecture of the proposed LCZ-CNN model

In this research, we developed the novel LCZ-CNN 
model, adapting deep learning to Landsat-based LCZ 
classification. The model architecture is shown in 
Figure 3. The proposed LCZ-CNN model consists of 
one input layer, three convolutional layers, two max- 
pooling layers, one global average pooling layer, and 
one softmax layer (Figure 3(c)). A stage of the LCZ- 
CNN model (Figure 3(b)) includes a convolution 
operation, an elementwise non-linear function, and 
a pooling operation. As such, the main structure of 
the LCZ-CNN model can be summarized into three 
typical convolutional stages.

Figure 2. Examples of representative LCZs from Chinese cities. This classification system is segmented into “built” types (LCZ 1–10) 
and “natural” types (LCZ A–G), based on the regional landscape patterns (Stewart and Oke 2012).
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The input layer is intended to integrate Landsat 
images from four seasons to provide temporal infor-
mation that facilitates LCZ classification (Wicki and 
Parlow 2017). The input window size (16 × 16) of 
a sample patch is determined according to the scale 
(240 m × 240 m) of the LCZs, which is set according 
the scale of the LCZ classification of high-density cities 
(Lau et al. 2015). The experimental results based on 
the proposed method in Table A1 also confirm that 
240 m is a suitable window size for LCZ classification. 
The number of input channels is 32, consisting of 
eight Landsat spectral bands with four seasons. 
A major advantage of the proposed LCZ-CNN 
model is that it can make full use of the rich temporal 
and spectral information embedded in the Landsat 
images. The sample dataset was further divided into 
a training dataset and a test dataset (Figure 3(a)). The 
former was used to construct the network, and the 
latter was used to evaluate the mapping accuracy.

The purpose of the convolutional layers is to extract 
feature maps by applying a convolution operation to the 
input bands. Each convolution neuron processes data 
only for its receptive field. An elementwise non-linear 
activation function is then applied to these feature maps 
to complete a non-linear transform. The operation of 
a convolutional layer can be expressed as: 

Xl ¼ f ðwlXl� 1 þ blÞ (1) 

whereXldenotes the activation value of layer l, 
Xl� 1represents the input activation value produced 
by layer ðl � 1Þ, f ð�Þcorresponds to the activation 
function, andwl and bl represent the weights and 
biases at layer l, respectively.

The Rectified Linear Unit (ReLU) is chosen as the 
non-linear activation function, due to its ability to 
alleviate the problem of gradient disappearance, and 
to speed up the training (Zhang et al. 2016): 

ReLUðxÞ ¼ maxð0; xÞ (2) 

where x represents the output values for the neurons.
The first convolutional layer has 64 small convolu-

tional filters (each of 3 × 3). Its function is not only to 
extract the low-level visual features (Zhang, He, and 
Lu 2019), but also to output the linear combination of 
the spectral bands from the multi-seasonal images to 
sufficiently exploit the spatio-temporal information 
from the Landsat data. Please note that, in the pro-
posed LCZ-CNN model, the size of an LCZ patch 
(16 × 16) is much smaller than that for natural 
images, e.g. 224 × 224 in GoogLeNet (Szegedy et al. 
2015) and VGGNet (Simonyan and Zisserman 2014). 
With regard to the coarse spatial resolution of 
Landsat imagery (15 m after pan-sharpening), large 
convolutional filters cannot capture the small spatial 
variation within hundreds of meters. Thus, small 
convolutional filters (3 × 3) are also adopted in the 
fourth and sixth layers, which also make more non- 
linear changes (i.e. by activation function), as well as 
reducing the parameters.

The purpose of the pooling layers is to achieve 
translation invariance, making the architecture less 
susceptible to small variations in location, and allow-
ing the network to represent the more abstract features 
of the input as the network depth increases (Lai et al. 
2019). The operation of a pooling layer can be writ-
ten as: 

Figure 3. The LCZ-CNN framework used in this work. (a) Production process of training dataset and a test dataset. (b) A stage of the 
LCZ-CNN model. (c) Architecture of the proposed LCZ-CNN model.
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N¼
W � F þ 2� P

S
þ1 (3) 

where Nand Wdenote the sizes of the output maps 
and input maps, respectively, Frepresents the size of 
the pooling filters. P corresponds to the number of 
padding pixels, and S represents the stride value.

Feature maps obtained from the last convolu-
tional layer are usually fed into the fully connected 
layers (Figure 4(a)), followed by a softmax classifi-
cation layer with the same number of classification 
categories. However, the redundancy of the para-
meters produced by the fully connected layers can 
result in overfitting, thus restricting the generaliza-
tion ability of the whole network (Xu et al. 2019). 
Moreover, the previously extracted features cannot 
maintain their spatial structure after passing 
through the fully connected layers. Therefore, in 
the LCZ-CNN model, we adopt the strategy of 
Global Average Pooling (GAP) to replace the fully 
connected layers (Hsiao et al. 2019). The idea of 
GAP is to compute the average value of each fea-
ture map and input the result vector directly into 
the soft-max layer (Figure 4(b)). There is no para-
meter to tune in the GAP layer, so that overfitting 
can be avoided, and the spatial information is 
summed to make the spatial translations of the 
input more robust.

To summarize, the LCZ-CNN model is a lightweight 
network, specially designed for the task of LCZ map-
ping using multi-spectral and multi-seasonal Landsat 
images. The input window size is 16 × 16, and there are 
only three convolutional layers in this framework. The 
employment of the GAP layer also avoids the parameter 
redundancy caused by the fully connected layers. The 
proposed lightweight network can obtain satisfactory 
results with only a moderate amount of training 
samples.

3.2. LCZ-CNN model training

In the training process, we adopted two strategies – 
dropout and batch normalization – to prevent over-
fitting. Batch Normalization (BN) is an algorithm for 
accelerating the convergence and stability of neural 
networks (Li et al. 2018). When training the LCZ- 
CNN model, we added a BN operation after each 
convolutional layer. This can prevent the training 
from getting stuck in the “saturated regimes of non-
linearities” by normalizing the activation of the whole 
network (Li et al. 2018). In addition, a batch- 
normalized architecture allows for faster learning 
rates, thus generating models with better generaliza-
tion capabilities.

Dropout is a strategy used to reduce overfitting 
and to prevent complex co-adaptations on the train-
ing data (Srivastava et al. 2014). The specific opera-
tion of this method is to set the output of some 
hidden neurons to zero, which means that each 
hidden neuron is randomly omitted from the net-
work, with a probability of p. Thus, the dropped 
neurons do not participate in the forward-pass and 
are not used in the back-propagation process. In the 
different training epochs, different neural networks 
are formed by dropping neurons randomly. Finally, 
the neural networks produced in the different train-
ing epochs are approximately combined. Therefore, 
the dropout method prevents overfitting, and the 
neurons can learn more representative features 
(Srivastava et al. 2014). In this study, the probability 
of dropout was set to 0.5, at which point the most 
random network structures are generated (Srivastava 
et al. 2014).

Stochastic Gradient Descent (SGD) was selected as 
the optimization algorithm for LCZ-CNN in the train-
ing process. In the phase of model training, we ran-
domly selected 70% of the training data as the training 

Figure 4. Comparison between a fully connected layer and global average pooling. (a) Operation of fully connected layers. (b) 
Operation of global average pooling layers.
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samples, and the remaining 30% were used as the 
validation samples. The training data were collected 
from the Google Earth high-resolution images of the 
same period. Full details of the production process can 
be found at http://www.wudapt.org/.

3.3. Accuracy assessment

In the phase of inference, we used completely inde-
pendent ground-truth data to evaluate the test accu-
racy of the different models. The ground-truth 
production process was the same as the training sam-
ple collection process, but was conducted indepen-
dently. Table A2 shows the training and test data for 
the 32 cities. The confusion matrix was then calculated 
from the test samples for the accuracy assessment. Five 
quality indices calculated from the confusion matrix 
were then adopted to assess the classification perfor-
mance (Foody 2002; Stehman 2013), in terms of the 
Overall Accuracy (OA), Kappa, User’s Accuracy (UA), 
Producer’s Accuracy (PA), and F1-score (F).

3.4. Analysis of the thermal properties of the LCZ 
classes

The previous studies (Geletič and Lehnert 2016; 
Lelovics et al. 2014; Wang et al. 2018) have usually 
been conducted on a small number of cities (usually 

one to two cities), and their conclusions about the 
relationship between LCZs and LST have not been 
entirely consistent, owing to the different urban land-
scapes and background climates. Thus, in this study, 
we further investigated the thermal characteristics of 
the LCZ classes in the summer daytime for China’s 32 
cities, based on our mapping results. The LST data 
were derived from the thermal infrared images 
obtained from the Landsat 8 Thermal Infrared 
Sensor (TIRS). Please note that the thermal infrared 
bands of the Landsat 8 TIRS were not considered in 
the previous LCZ classification since they would be 
used in the subsequent LST analysis. To estimate the 
LST, we adopted the method of Li et al. (2011), which 
is a single-window algorithm based on Band 10 of the 
Landsat 8 TIRS.

To explore the relationship between LCZs and the 
thermal environment, we calculated the departure 
from the mean LST for all the LCZ classes: 

ΔLSTi ¼ LSTi � LSTmean (4) 

where i denotes an LCZ class, ΔLSTi is the departure 
from the mean LST for the ithLCZ class, LSTi is the 
mean LST for the ith LCZ class, and LSTmean is the 
average LST of all the LCZ classes.

We summarized the ΔLSTi frequency distribution 
in the 32 cities to evaluate the heat/cold island effects 
for each LCZ class. Box charts of the ΔLSTi of the cities 

Figure 5. The overall processing and analysis flowchart of this research, which is mainly divided into LCZ mapping, analysis of 
mapping results and analysis of thermal characteristics.
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in the different climatic zones were calculated sepa-
rately, to analyze the LST pattern of the LCZs. Figure 5 
shows the entire mapping and analysis flowchart of 
this research.

4. Results

4.1. LCZ classification of China’s 32 major cities

In this section, we describe how the methods of 
WUDAPT (Ching et al. 2015), BoVW (Yang and 
Newsam 2010), and MLP (Hu 2011) for LCZ classifi-
cation with Landsat imagery were compared with the 
proposed LCZ-CNN model.

The WUDAPT method was implemented with two 
different input features, using only the “spectral” fea-
tures (i.e. WUDAPT (Spec)) and using both the “spec-
tral” and “textural” features (i.e. WUDAPT (Spec 
+GLCM)), respectively. The spectral features included 
the eight Landsat bands in four seasons, which was 
consistent with the input of the LCZ-CNN model. The 
textural features included four GLCM features, i.e. 
contrast, homogeneity, energy, and correlation. The 
window sizes used for calculating the spectral features 
(average value and standard deviation) and GLCM 
features were 16 × 16 and 17 × 17, respectively.

The BoVW model was also implemented with two 
different input features, using only the “spectral” fea-
ture (i.e. BoVW (Spec)) and both the “spectral” and 
“textural” features (i.e. BoVW (Spec+GLCM)) to cre-
ate the visual dictionaries (Yang and Newsam 2010). 
Considering the classification accuracy and the com-
putational efficiency, the size of the visual words for 
the “spectral” dictionary and “textural” dictionary was 
set to 128 and 16, respectively, by manual parameter 
tuning. Random forest was selected as the classifier for 

WUDAPT and BoVW, as suggested by the other LCZ 
classification experiments (Bechtel et al. 2015; Xu et al. 
2019), and its robustness to the training set size and 
noise. The parameters of the MLP were also tuned 
manually. The learning rate was chosen as 0.001, the 
number of hidden layers was set to 3, and the number 
of nodes in each hidden layer was set to {300,200,100}.

The OAs of the experiments are shown in Figure 6. 
The proposed LCZ-CNN model achieves satisfactory 
classification accuracies in all 32 cities, ranging from 
65.2% to 99.4%. In fact, the OA for more than half of 
the cities is higher than 80%. The best results are 
achieved for Kunming, Beijing, Changchun, and 
Lhasa, with OA values of higher than 85%. The worst 
results are obtained for Guiyang and Changsha, with 
OA values of 65.2% and 66.6%, respectively. The 
increase in OA is very significant when compared 
with the other benchmark methods, and the proposed 
LCZ-CNN model achieves the best classification per-
formance in all 32 cities. In more than 20 cities, the 
OA values of the LCZ classification obtained by 
WUDAPT are less than 80%, indicating that the LCZ 
mapping results for some cities (especially the dense 
and highly compact Asian cities) obtained with the 
traditional WUDAPT method are not satisfactory, and 
may affect the subsequent applications (Xu et al. 
2017). Both BoVW and MLP achieve better OA values 
than WUDAPT, but the improvements are not as 
significant as for LCZ-CNN.

Based on all the test samples from the 32 cities, 
a confusion matrix was calculated for each method, 
which are presented in Tables A3–A8. Although con-
siderable confusion among the built types (LCZ 1–10) 
exists, the confusion between LCZ 1 (compact high- 
rise) and LCZ 4 (open high-rise), and LCZ 2 (compact 
mid-rise) and LCZ 5 (open mid-rise), for example, can 

Figure 6. Overall accuracies for China’s 32 major cities. The proposed LCZ-CNN model was compared with other benchmark 
methods (WUDAPT, BoVW, and MLP).
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be effectively alleviated by the proposed LCZ-CNN 
model. Figure 7 shows the OA and Kappa values of 
the various methods, and the ΔPA, ΔUA, and ΔF values 
for each LCZ class. To compare the results, we calcu-
lated the differences of the per-class accuracies (PA, UA, 
and F1-score) between each method and WUDAPT 
(Spec), which are recorded as ΔPA, ΔUA, and ΔF, 
respectively. It can be seen that the advantage of the 
proposed LCZ-CNN model is obvious, while the other 
benchmark methods (e.g. WUDAPT (Spec + GLCM), 
BoVW (Spec), BoVW (Spec + GLCM), and MLP) do 
not achieve significant accuracy improvements. The 
superiority of the proposed LCZ-CNN model is further 
demonstrated by the per-class mapping accuracies 
(Figure 7(c–e)), where the ΔPA, ΔUA, and ΔF values 
of all the LCZ classes are greatly increased compared 
with WUDAPT (Spec). For most built types (LCZ 

1–10), the per-class mapping accuracies of WUDAPT 
(Spec+GLCM), BoVW (Spec), and BoVW (Spec + 
GLCM) are also improved, compared with WUDAPT 
(Spec), which proves that adding texture information 
and extracting spatial features through the BoVW 
model can help to improve the classification accuracies 
for complex scenarios consisting of multiple land-cover 
types. In addition, it is also interesting that BoVW 
(Spec) improves the per-class mapping accuracies of 
most built types, compared with WUDAPT (Spec), 
and the same situation is also apparent when comparing 
BoVW (Spec+GLCM) with WUDAPT (Spec+GLCM). 
This phenomenon indicates that mapping spectral and 
texture features into sparse mid-level features through 
the BoVW model can also help to improve the classifi-
cation accuracy for complex urban scenes. The classifi-
cation results obtained by MLP are inferior to the 

Figure 7. Comprehensive comparison of the classification accuracies of the different methods.

Figure 8. Area proportion of each LCZ in the different climatic zones.
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results of LCZ-CNN, overall, revealing the great poten-
tial of machine learning algorithms in Landsat image 
scene classification.

4.2. LCZ mapping results for China’s 32 major 
cities

To explore the relationship between LCZ distribution 
and climatic zones, the average area proportion of each 
LCZ class in the different climatic zones is shown in 
Figure 8. There is only one city (Lhasa) in climatic zone 
TS (tundra climate and snow climate with cool summer 
and cold winter). Since climatic zone A (climate of arid 
steppe and desert) and TS are both located in Northwest 
China, the cities in these two climatic zones are merged 
in the subsequent analysis.

Concerning climatic zones A and TS, the natural 
type with the highest area proportion is LCZ 
F (bare soil or sand), since the arid climate is 
detrimental to vegetation growth, and there are 
many deserts around these cities (Hu, Su, and 
Zhang 1988). Compared with the other climatic 
zones, the area proportion of LCZ 1 (compact 
high-rise buildings) in climatic zones A and TS is 
also significantly higher. The surrounding topo-
graphic conditions (e.g. surrounding deserts, nar-
row valleys, mountains) and harsh climatic 
conditions (e.g. scarce precipitation, hot weather) 
limit the speed and scale of urban expansion in 
these zones, and hence the buildings are usually 
compact and high (Roeser et al. 2012).

As for the cities in climatic zone W (warm tem-
perature climate with dry winter), LCZ 10 (heavy 
industry) and LCZ A (dense trees) occupy a larger 
area than in the other climatic zones. Most of the cities 
in climatic zone W (e.g. Tianjin, Taiyuan, Chengdu, 
Shijiazhuang, and Xi’an) are China’s important indus-
trial cities, with prosperous industrial construction. 
Furthermore, the mild climate in this zone is suitable 
for plant growth.

LCZ 5 (open mid-rise) is the predominant built 
type in climatic zone S (snow climate with dry winter), 
and it occupies a larger proportion than in the other 
climatic zones, while the area proportion of LCZ 6 
(open low-rise) in climatic zone EW (equatorial cli-
mate and warm and fully humid temperate climate) is 
notably high. Most cities in climatic zones S and EW 
are located on plains or basins with agriculture, and 
hence there is a lot of space to satisfy the horizontal 
urban sprawl, forming a lot of open mid- or low-rise 
types. Moreover, most of the cities in climatic zone 
EW are located in southern China, with abundant 
precipitation and large lakes or rivers, and the area 
of LCZ G (water) in this zone is generally much larger 
than that in the other climatic zones.

Figure 9 presents the mapping results for four 
representative cities in different climatic zones. To 

show more details of the LCZ distribution, zoomed- 
in regions of 5 km ×5 km for each result are also 
shown in Figure 9, with the original Landsat images 
and the results obtained by the proposed LCZ-CNN 
model. It can be observed that that the maps are 
consistent with the characteristics shown in Figure 8. 
In general, LCZ 1 (compact high-rise), LCZ 2 (com-
pact mid-rise), LCZ 4 (open high-rise), and LCZ 5 
(open mid-rise) are the predominant built types in 
the downtown areas, most of which belong to residen-
tial and commercial areas. LCZ 8 (large low-rise) and 
LCZ 10 (heavy industry) are generally located in sub-
urbs or rural areas. In summary, the LCZ categories 
and the urban structures in the complicated and high- 
density Chinese megacities are effectively delineated 
by the proposed LCZ-CNN model.

5. Discussion

5.1. Comparison with other benchmark methods

In the previous sections, we compared the proposed 
LCZ-CNN model with other benchmark methods 
(WUDAPT, BoVW, and MLP) in terms of classifica-
tion accuracy. In this section, we further compare 
these methods from the perspective of theory and 
computational efficiency.

The LCZ built types usually correspond to com-
plex urban scenes with man-made structures and 
other spectrally heterogeneous features. Therefore, 
the results obtained by WUDAPT (Spec) based 
only on the image spectral features are not satisfac-
tory, as expected, since adequate spatial informa-
tion is not utilized. The GLCM texture counts the 
frequency distribution, which describes how often 
two gray levels occur in a given spatial relationship, 
capturing the spatial relationships and contextual 
information in the neighborhood of the current 
pixel (Huang et al. 2020). In this way, the complex 
scenes composed of multiple land-cover types in 
the LCZ categories can be more effectively repre-
sented by the addition of the spatial context rela-
tions, which explains why the classification results 
of WUDAPT (Spec + GLCM) are better than those 
of WUDAPT (Spec). The experimental results 
obtained by (Xu et al. 2017) in Wuhan and 
Guangzhou in China also verified that the quality 
of LCZ mapping results can be improved with the 
addition of textural information.

The BoVW model can extract mid-level semantic 
features of complex scenes from the low-level visual 
features such as the spectra and texture (Aslam et al. 
2019), and is better able to mine the spatial informa-
tion in remote sensing images. As a result, the classi-
fication accuracies for the representative built types 
(e.g. LCZ 1, 4, 5, and 6) obtained by the BoVW model 
show significant improvements when compared with 
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the results of the WUDAPT method. Please note that 
the BoVW model is a scene classification method, 
which has been successfully applied to land-use 
scene classification (Muhammad et al. 2019) and 
image retrieval (Arun, Govindan, and Kumar 2020) 
from high-resolution remote sensing images. 
However, to date, few studies have applied the 
BoVW model to information extraction from 
Landsat imagery. Our experimental results indicate 
that the BoVW model can achieve a satisfactory accu-
racy for Landsat image scene classification. However, 

the BoVW model calculates the histogram of all the 
visual words in an image scene, and thus it runs the 
risk of losing the spatial arrangement information 
(Yang and Newsam 2010). In addition, the model 
construction and feature mapping of BoVW is actu-
ally an unsupervised process, which may lead to 
a reduction in the classification accuracy.

The MLP is one of the most popular neural network 
models in remote sensing thematic mapping. It has 
been widely used in land-cover mapping (Jamali 
2020), land-use classification (Subiyanto et al. 2019), 

Figure 9. Mapping results for four representative cities (Xining, Shijiazhuang, Changchun, and Nanjing).
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and change detection (Wang, Lu, and Qin 2020). The 
MLP has the advantage of data-driven and automatic 
learning, which is conducive to specific classification 
tasks. However, the MLP usually learns the non-linear 
spectral feature space at the pixel level, without con-
sidering the spatial context implicit in the images 
(Zhang et al. 2018).

Differing from all the aforementioned classifiers, 
the LCZ-CNN model is a data-driven feature learning 
and classification method (Levine et al. 2016). It also 
does not need us to set handcrafted image descriptors 
(e.g. GLCM, Gabor, Scale-Invariant Feature 
Transform (SIFT)) in advance. The network para-
meters can be adjusted during the training process to 

Figure 9. (Continured).
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learn the spectral and spatial features applicable to 
a specific interpretation task. Therefore, the convolu-
tional layers of the proposed LCZ-CNN model can 
extract the spatial context information from Landsat 
images, and can learn more robust and adaptive fea-
tures than the handcrafted descriptors (Zhang et al. 
2018). Our experimental results demonstrate the 
superiority of the proposed LCZ-CNN model in 
mining and utilizing the spatial information contained 
in Landsat images.

Table 1 compares the computation time of the 
LCZ-CNN model with that of WUDAPT, BoVW, 
and MLP, for predicting 10,000 and 50,000 samples, 
respectively. These experiments were implemented 
using MATLAB 2016b with an Intel(R) Core(TM) 
i5-7500 CPU and 24.0 GB memory. The computation 
time of BoVW (Spec + GLCM) is the longest among 
all the methods. Its time cost mainly arises from the 
process of assigning local features to the correspond-
ing visual words, the calculation of the frequency 
histogram of visual words used for the scene classifica-
tion, and the GLCM feature extraction. It can be said 
that the efficiency of the LCZ-CNN model is signifi-
cantly higher than that of BoVW (Spec), BoVW (Spec 
+ GLCM), and WUDAPT (Spec + GLCM), when 
considering both the computation time and accuracy. 
The time complexity of a CNN is mainly related to the 
number of convolutional layers, the parameters of the 
convolutional kernels, and the channels of the feature 
maps generated by each convolutional layer (Wu et al. 
2018). In this research, the proposed LCZ-CNN model 
was made up of only three convolutional stages and 
a GAP layer as a replacement for the fully connected 
layers in the conventional CNNs. Therefore, com-
pared with the commonly used classical networks, 
e.g. AlexNet, Google Net, and VGG-16, the complex-
ity of LCZ-CNN is greatly reduced. In conclusion, the 
LCZ-CNN model is a lightweight CNN that can 
achieve both a satisfactory classification accuracy and 
an acceptable computational efficiency.

Table 2 records the Floating Point Operations 
(FLOPs), which are proportional to the model com-
plexity, and the average OA (OAavg) of the classifica-
tion results from all 32 cities. Several recent commonly 
used networks, i.e. LeNet-5 (Lecun et al. 1998), 
DenseNet-121 (Huang et al. 2017), and ResNet-50 
(He et al. 2016), are compared with LCZ-CNN in 
Table 2. LeNet-5 requires only one input channel, 
while DenseNet-121 and ResNet-50 require three 
input channels. In order to meet the requirements of 
these networks with regard to input channels, the 32- 
channel images were compressed into one or three 
channels through the use of the Principal 
Component Analysis (PCA) algorithm, according to 
the operation in Xiao et al. (2017), the purpose of 
which was to compare the performance of each net-
work fairly. We adopted two strategies to exploit the 
CNN models: 1) fine-tuning the pre-trained network; 
and 2) fully training the network from scratch. It can 
be clearly seen from Table 2 that the complexity of 
LCZ-CNN is far less than that of DenseNet and 
ResNet, and the classification accuracy of the LCZ- 
CNN model is much higher than that of all three 
commonly used networks, which proves the super-
iority of LCZ-CNN. Several other studies (Chen et al. 
2016; Ma et al. 2018; Song et al. 2019) have also 
concluded that directly applying these original classi-
cal CNNs to remote sensing tasks might not obtain 
satisfactory results.

5.2. Function and transferability of the 
convolutional stages

The proposed LCZ-CNN model is composed of three 
typical convolutional stages named Stage-1, Stage-2, 
and Stage-3, respectively (Figure 3(c)). A typical con-
volutional stage of a CNN includes a convolution 
operation, an elementwise non-linear function (e.g. 
ReLU non-linearity), and a pooling operation (Figure 
3(b)). To explore the function and transferability of 

Table 1. Comparison of the computation times of WUDAPT, BoVW, MLP, and LCZ-CNN.
Computation time (s)

WUDAPT BoVW

No. of samples Spec Spec+GLCM Spec Spec+GLCM MLP LCZ-CNN

10000 5.33 35.26 35.65 1286.81 17.17 22.18
50000 26.05 163.79 120.91 6725.42 97.14 107.03

Table 2. Comparison of the FLOPs and average OA for the 32 cities with LeNet-5, DenseNet-121, ResNet-50, and LCZ-CNN.
LeNet LeNetpre DenseNet DenseNetpre ResNet ResNetpre LCZ CNN

FLOPs 4.23� 105 4.23� 105 2.88� 109 2.88� 109 4.12� 109 4.12� 109 6.66� 106

OAavg 0.43 0.44 0.44 0.46 0.43 0.45 0.80

LeNet: LeNet-5 model trained from scratch with LCZ training samples. 
LeNetpre : Fine tuning the pre-trained LeNet-5 model of the MNIST dataset with LCZ training samples. 
DenseNet: DenseNet-121 model trained from scratch with LCZ training samples. 
DenseNetpre: Fine tuning the pre-trained DenseNet-121 model of the ImageNet dataset with LCZ training samples. 
ResNet: ResNet-50 model trained from scratch with LCZ training samples. 
ResNetpre: Fine tuning the pre-trained ResNet-50 model of the ImageNet dataset with LCZ training samples.
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each convolutional stage in the LCZ-CNN model, we 
designed a number of experiments (Figure 10), as fol-
lows. Specifically, the city used to construct the original 
network was called City A, and the LCZ-CNN model 
trained by the samples from City A was denoted as 
A-CNN. Furthermore, the A-CNN model was fine- 
tuned by the samples from City B, in order to test the 
function and transferability of the different stages of the 
LCZ-CNN model. We therefore set a series of 
experiments:

Experiment (a): The parameters of Stage-1 of 
A-CNN were fixed, but the parameters of Stage-2 
and Stage-3 were tuned according to the training 
samples from City B, and the fine-tuned model was 
applied to classify the images of city B. The purpose of 
this experiment was to explore the function and trans-
ferability of Stage-1.

Experiment (b): The parameters of Stage-1 and 
Stage-2 of A-CNN were fixed, and the parameters of 
Stage-3 were tuned with the training samples from 
City B. The fine-tuned model were then used for 

City B. This experiment was aimed at investigating 
the transferability of the features extracted by Stage-2.

Experiment (c): The parameters of all three con-
volutional stages (Stage-1, Stage-2, and Stage-3) of 
A-CNN were fixed. This is equivalent to using 
A-CNN as a feature extractor to classify the test sam-
ples from City B, without consideration of the samples 
from City B. In this way, the transferability and func-
tion of Stage-3 could be analyzed.

Experiment (d): A new LCZ-CNN model, i.e. 
B-CNN, was trained from scratch using training sam-
ples from City B. This experiment was conducted as 
a comparison.

The purpose of the above experiments was to ana-
lyze the transferability of the parameters in the various 
convolutional stages for LCZ mapping. Specifically, we 
chose three city groups for transfer learning: 
Guangzhou to Beijing, Hohhot to Hefei, and 
Shenyang to Fuzhou (the former is City A, and the 
latter is City B). In the experiments, City A and City 
B were chosen from different climatic zones. Table 3 

Figure 10. Experiments to explore the function and transferability of each convolutional stage in LCZ-CNN.
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compares the results obtained by the three CNN mod-
els, i.e. the cases of (a), (b), and (c), with the result of 
the self-trained network (the case of (d)).

In Experiment (a), although the classification per-
formances are inferior to those of Experiment (d), the 
OAs are greater than 60%. This implies that the first 

convolutional stage can extract low-level visual fea-
tures (e.g. spectra, texture), which are generally invar-
iant between different cities, so that the parameters of 
Stage-1 demonstrate transferability, to some degree 
(Alshehhi et al. 2017). In Experiment (b), the LCZ 
mapping accuracy is significantly decreased when 
compared to Experiment (a), with OA values of 
<60%. However, the accuracy of Experiment (b) is 
superior to that of Experiment (c). The results of 
Experiment (b) and Experiment (c) indicate that the 
parameters of Stage-2 and Stage-3 possess poor trans-
ferability. The objects, as well as their spectral-spatial 
characteristics, present considerable differences 
between the different cities, and although they belong 
to the same LCZ category, there are notable 

Figure 11. The original input image (LCZ 8, large low-rise) (a) and the features extracted from the three convolutional layers of 
LCZ-CNN (b)–(d). (b) The first convolutional layer. (c) The second convolutional layer. (d) The third convolutional layer. Nine feature 
maps arranged in a 3 × 3 layout are selected for each convolutional layer.

Table 3. Overall accuracies for the transfer learning 
experiments.

City A to City B
Guangzhou to 

Beijing
Hohhot to 

Hefei
Shenyang to 

Fuzhou

Experiment (a) 0.64 0.66 0.65
Experiment (b) 0.54 0.49 0.44
Experiment (c) 0.24 0.30 0.34
Experiment (d) 0.86 0.82 0.85

GEO-SPATIAL INFORMATION SCIENCE 543



distinctions in the image acquisition conditions (e.g. 
view angle, weather, atmosphere) and urban land-
scapes among the various cities (Yang and Lo 2000; 
Vogelmann et al. 2001). Consequently, the features 
extracted from Stage-2 and Stage-3 are probably 
more closely related to the specific image characteris-
tics of the LCZs from the target area (Traviglia and 
Torsello 2017), but are not suitable for transfer to 
other cities. The function of Stage-2 and Stage-3 is to 
further extract and highlight the task-oriented image 
features on the basis of the low-level visual features 
extracted by Stage-1, which actually limits the general-
ization ability of the extracted features obtained in 
Stage-2 and Stage-3.

The representative features extracted from all three 
convolutional layers of LCZ-CNN are displayed in 
Figure 11. The three convolutional layers in LCZ-CNN 
are denoted as Conv-1, Conv-2, and Conv-3, respec-
tively. Figure 11(b) highlights the shape and edges of the 
buildings in Figure 11(a), and demonstrates that the 
Conv-1 features retain the original contours of the 
ground objects. Figure 11(c) retains the fuzzy edges 
and geographical spatial relationships of the buildings 
in Figure 11(a,d) indicates the semantics of the buildings 
(or no buildings) in the urban scenes. The features 
extracted by Conv-3 are more abstract, and can be 
considered to be more likely to express higher-level 
semantic information (Liu et al. 2017).

Figure 12 presents the intra-class similarity and the 
inter-class separability in the three stages. The intra- 
class similarity was measured with Pearson correlation 
coefficients (Hauke and Kossowski 2011), and the 
inter-class separability between the different classes 
was calculated with the Jeffries-Matusita distance 
(Dabboor et al. 2014). Some LCZ categories (e.g. 
LCZ 1/LCZ 2 and LCZ 4/LCZ 5) that are difficult to 
distinguish were chosen in the analysis. With the 
increase of the number of convolutional stages, the 
receptive field becomes larger and the extracted fea-
tures become more global and abstract (Figure 11). 

Meanwhile, the inter-class separability exhibit a trend 
of growth (Figure 12(b)). It can be seen that the intra- 
class similarity is smaller in Stage-1 compared to the 
original images, but is gradually increased, and in the 
final stage, the intra-class similarity is larger than in 
the original images (Figure 12(a)). In summary, the 
above results illustrate that the features extracted by 
Stage-1 and Stage-2 are not as robust and discrimina-
tive as those of Stage-3. Therefore, it is necessary to set 
up Stage-3 to further convolute and integrate the fea-
tures extracted in the first two convolutional stages.

5.3. The contribution of seasonal information

Some studies (Zhao et al. 2016; Zhu and Liu 2014) have 
pointed out that seasonal information can optimize the 
mapping results of thematic land-cover classification 
tasks based on Landsat images. However, the LCZ 
scheme is a newly developed concept and has intrinsic 
differences with the traditional thematic mapping tasks 
such as land-cover mapping, land-use mapping, and 
object detection (Wang, Lu, and Qin 2020). To investi-
gate the contribution of seasonal information to the 
proposed LCZ-CNN model, we compared the OA of 
the LCZ classification obtained using multi-seasonal 
and single-seasonal inputs, respectively, for five repre-
sentative cities (Shanghai, Taiyuan, Tianjin, Yinchuan 
and Lhasa) chosen across different climatic zones 
(Figure 13). The results show that, with the addition 
of multi-seasonal images, the OAs for the five represen-
tative cities are improved by 2.6%, 4.0%, 3.9%, 6.8%, 
and 10.9%, respectively, compared with the classifica-
tion results based on only spring images. Specifically, 
taking Shanghai as an example, the OAs of the results 
for spring, summer, autumn, and winter are 70.9%, 
68.9%, 53.4%, and 66.2%, respectively, but the accuracy 
obtained by considering all four seasonal images is 
increased significantly to 73.6%. The reason for this is 
that multi-temporal information can introduce the phe-
nological characteristics of plants (Peng et al. 2009), and 

Figure 12. Intra-class similarity and inter-class separability of the extracted features.
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a lot of LCZ classes, e.g. LCZ 4 (open high-rise), LCZ 5 
(open mid-rise), LCZ 6 (open low-rise), LCZ A (dense 
trees), and LCZ B (scattered trees), refer to vegetation 
scenarios. Figure 13 also reveals that the contribution of 
each season is different in the different cities and cli-
matic zones, and hence it is difficult to clearly identify 
which season is optimal in LCZ classification. To sum 
up, our experimental results show that it is appropriate 
to make full use of the multi-seasonal images and cap-
ture the temporal characteristics for LCZ classification.

5.4. Thermal characteristics of the LCZs in China’s 
32 major cities

The LCZ scheme is a standard framework used to 
describe urban structures, which can reflect the local 
temperature and microclimate of a city (Stewart and 
Oke 2012). For instance, Figure 14 shows the LCZ 
mapping results and the corresponding LST in the 
two cities of Shanghai and Xining, where it is apparent 
that the spatial morphology of the LCZs is closely 
correlated to that of the LST.

According to formula (4), ΔLSTi can be calculated 
to represent the departure from the mean LST for the 
ith LCZ class. The range of ΔLSTi is divided into four 
classes at an interval of 1°C. The values of ΔLSTi > 0 
refer to a heat island, and ΔLSTi< 0 represents a cold 
island. Figure 15 shows that the built types generally 
show a significant heat island effect (ΔLSTi � 2 °C), 
while the cold island effect in most cities is concen-
trated in LCZ A (dense trees), B (scattered trees), 
D (low plants), and G (water).

Figure 16 presents box plots showing the departure 
from the mean LST for all the LCZ classes in China’s 
32 major cities, which indicate significant thermal 
differences among the various LCZ classes. From the 

figure, it can be found that LCZ A (dense trees) and 
LCZ G (water) have the lowest LST, while LCZ 2 
(compact mid-rise), LCZ 3 (compact low-rise), and 
LCZ 8 (large low-rise) are among the highest. LCZ 2 
(compact mid-rise) and LCZ 3 (compact low-rise) are 
usually located in bustling commercial or residential 
areas, while the majority of LCZ 8 (large low-rise) 
corresponds to industrial areas. The LST of most 
built types (LCZ 1–10) and LCZ F (bare soil or sand) 
is higher than the mean LST of all the LCZ classes, and 
the LST of the natural types (LCZ A, B, D, and G) is 
lower than the mean LST. This can be attributed to the 
large amount of heat generated from the consumption 
and re-radiation of solar radiation from urban struc-
tures and anthropogenic heat sources (Rizwan, 
Dennis, and Liu 2008). In particular, it is interesting 
to see that the compact built types (LCZ 1–3) generally 
have a higher LST than the open types (LCZ 4–6), 
since the former are mainly located in commercial and 
residential areas with high population density and 
frequent human activities. Moreover, the area propor-
tion of the permeable layer, i.e. vegetation, water, and 
soil, is low in these compact built types, and the effect 
of evapotranspiration and shading by plants can sig-
nificantly reduce the amount of heat that is re-radiated 
by urban constructions. Furthermore, compact build-
ings and narrow streets can form canyon structures, 
which increase the absorption of solar radiation, and 
lead to the trapping of long-wave radiation from the 
ground (Yuan and Ng 2012). The walls of buildings 
can also reduce wind speed and prevent air flow from 
cooling the street canyons, contributing to further 
heating of the land surface (Oke 1988). It is also 
found that the LST of the high-rise built types (LCZ 
1, 4) is lower than that of the low- and mid-rise built 
types (LCZ 2, 3, 5, and 6). A reasonable explanation is 

Figure 13. Comparison of the overall accuracies obtained by LCZ-CNN based on multi-seasonal information and single-seasonal 
input.
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that high-rise buildings can generate larger shaded 
areas than low- and mid-rise buildings, leading to 
lower LST in the neighborhood (Perini and 
Magliocco 2014). Another possible reason is that high- 
rise built types usually have a lower building density, 
which actually provides more open or green space, and 
hence decreases the LST (Cai and Xu 2017). In general, 
our results indicate that the spatial configuration of 
LCZs can significantly affect the magnitude of the LST.

Figure 16 is further decomposed into a series of sub-
figures (Figure 17) in terms of the climatic zones. From 
Figure 17(a), (b), and (c), it can be observed that the 
thermal characteristics of climatic zones S, EW, and 
W are similar to the overall pattern in Figure 16, indicat-
ing that the built types generally have a higher LST than 
most of the natural types. However, the LST pattern of 
climatic zones A and TS is clearly different from the other 
three (Figure 17(d)), where LCZ F (bare soil or sand) 

Figure 14. Selected regions in Shanghai and Xining, displaying the close relationship and similarity between LST (°C) and the LCZ 
mapping results.
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generally has a higher LST than the mean LST for all the 
LCZ classes, while most built types have a lower LST than 
the average LST. As shown in Figure 8, the area propor-
tion of LCZ F (bare soil or sand) is high in the cities of 
climatic zones A and TS. This is due to the fact that, in 
these climatic zones, desert occupies a large amount of 
space around the built-up areas of these cities (see Figure 
9). Owing to the lower heat capacity of the desert, it 
warms up faster than the land cover in the built-up 
areas. The warm air heated over the desert is transported 
over the built-up areas through local circulation, forming 
an inversion layer of upper heat and lower cold, which 
keeps the lower cold air stable, thus forming a relatively 
cool and humid microclimate in the urban areas (Hu, Su, 
and Zhang 1988). Therefore, the LST of the built-up LCZ 
classes in the A and TS climatic zones is significantly 
lower than that in the other zones. Similar phenomena 
have emerged in studies of Phoenix in the Southwestern 
U.S. (Wang et al. 2018) and Dubai in the Middle East 

(Nassar, Blackburn, and Whyatt 2016), both of which are 
typical cities surrounded by sand and soil, with an arid 
climate. However, differing from our results, there are 
still some LCZ classes in Phoenix with a higher LST than 
LCZ F (soil or sand), such as LCZ 8 (large low-rise). Our 
results for Western China are more similar to those in 
Dubai (Nassar, Blackburn, and Whyatt 2016), where LCZ 
F maintains a much higher LST in the daytime than all 
the other LCZ classes, which is perhaps due to the fact 
that both study areas are located in Asia.

6. Conclusion

This study was aimed at generating more accurate 
LCZ maps and investigating the relationship between 
LCZs and the thermal environment in China’s 32 
major cities. To this aim, in this paper, we have pro-
posed a novel CNN framework (namely, LCZ-CNN) 
designed to cope with the issues of LCZ classification 

Figure 15. ΔLSTi frequency distribution for the 32 cities.

Figure 16. Departure from the mean LST for all the LCZ classes in China’s 32 major cities.
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using Landsat imagery. The LCZ-CNN model ade-
quately considers the multi-spectral and multi- 
seasonal information contained in Landsat images. 
To evaluate its performance, the proposed method 
was tested over China’s 32 major cities distributed in 
different climatic zones, and the traditional classifica-
tion strategies of WUDAPT, BoVW, and MLP were 
also applied for comparison. The proposed LCZ-CNN 
model produced the most accurate mapping results 
and a satisfactory computational efficiency in all the 
study areas. A systematic analysis of the proposed 
LCZ-CNN model was conducted, including the trans-
ferability of the network and the effectiveness of multi- 
seasonal information. It was found that the first con-
volutional stage, corresponding to low-level features, 
shows better transferability than the second and third 
convolutional stages, which correspond to high-level 
and task-oriented features, It was also found that 
multi-seasonal information can significantly improve 
the accuracy of LCZ classification.

The relationship between LCZs and their ther-
mal properties was investigated in detail over 
China’s 32 major cities. To the best of our knowl-
edge, this is the first time that this relationship has 
been analyzed on the basis of a large number of 

cities across multiple climatic zones. Overall, it was 
found that the compact built types have higher 
LSTs than the open classes, and the LSTs of the 
high-rise built types are lower than those of the 
low- and mid-rise built types. Our experimental 
results confirmed the close relationship between 
the LCZ classes and the magnitude of the LST. 
For most cities in climatic zones S (snow climate 
with dry winter), W (warm temperature climate 
with dry winter), and EW (equatorial climate and 
warm and fully humid temperate climate), most 
built types have a significantly higher LST than 
their neighborhoods, and hence show the heat 
island effect. In contrast, the LCZs in climatic 
zones A (climate of arid steppe and desert) and 
TS (tundra climate and snow climate with cool 
summer and cold winter) demonstrate distinct 
thermal characteristics, i.e. LCZ F (bare soil or 
sand) has the highest LST, while most built types 
have a lower LST than the average. This phenom-
enon can be attributed to the unique urban land-
scape and climate conditions in the arid cities of 
China.

In the future, we will work toward constructing 
more powerful deep networks which have superior 

Figure 17. Departure from the mean LST for all the LCZ classes of the different climatic zones. (a) Climatic zone S. (b) Climatic zone 
EW. (c) Climatic Zone W. (d) Climatic zone A&TS.
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transfer capabilities and can obtain higher accuracies. 
The interpretation of LST from the LCZ viewpoint 
should also be further investigated by taking into 
account more cities across the globe. In addition, 
although Landsat images have been widely used for 
LCZ mapping in the existing literature, thanks to their 
free and convenient access and adequate data archives, 
high-resolution remotely sensed imagery should be 
considered in the future, since such imagery can pro-
vide more spatial and structural information, and has 
the potential to be more effective in delineating the 
composition and configuration of the various LCZ 
classes.
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Appendix A

Figure A1. Landsat 8 images employed in this research. The vertical axis represents the acquisition year, and the horizontal axis 
represents the acquisition date in the form of “day of year” (DOY).
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Table A1. Overall accuracies for different input window sizes of LCZs.

Size 
City 150 m 180 m 210 m 240 m 270 m 300 m
Harbin 0.463 0.587 0.583 0.845 0.613 0.590

Guangzhou 0.756 0.767 0.785 0.835 0.724 0.668
Xi’an 0.503 0.492 0.468 0.783 0.685 0.602

Table A2. Number of training and test samples for the 32 cities.

City Sample LCZ 1 LCZ 2 LCZ3 LCZ4 LCZ5 LCZ6 LCZ8 LCZ10 LCZA LCZ B LCZD LCZF LCZG

Beijing training 5,134 6,203 8,967 9,637 8,906 12,397 8,328 NA 8,257 2,815 10,529 3,672 6,131
test 325 275 325 400 300 550 225 NA 325 250 325 225 550

Guangzhou training 7,204 4,596 5,745 11,804 4,929 4,306 4,464 4,415 2,633 3,380 9,373 5,344 41,094
test 300 275 250 425 300 300 450 100 250 300 1,325 300 1,500

Wuhan training 1,627 2,373 3,170 5,585 9,362 4,459 22,345 NA 5,969 1,036 25,623 1,741 5,496
test 150 250 200 325 375 325 675 NA 525 550 1,025 175 325

Shijiazhuang training 3,812 5,859 11,715 9,161 9,889 3,991 7,685 4,931 2,472 1,635 18,428 3,135 4,403
test 325 225 800 575 750 400 600 75 250 100 1,175 125 325

Lanzhou training 1,380 2,204 2,650 3,730 3,260 NA 3,521 NA 3,695 2,885 5,468 10,873 1,932
test 275 250 350 375 275 NA 325 NA 625 325 475 175 225

Hangzhou training 2,363 2,288 4,497 5,564 5,146 8,197 19,844 NA 10,523 1,468 3,099 1,480 10,196

test 175 225 200 275 300 350 300 NA 425 200 200 175 150
Harbin training 2,829 2,611 4,688 6,367 5,503 8,051 6,986 NA 3,201 2,099 12,952 2,921 6,967

test 350 325 425 500 400 425 600 NA 350 225 650 325 875
Changsha training 2,013 2,856 2,864 7,937 4,523 6,794 6,161 NA 408 766 1,670 5,505 587

test 125 200 200 250 175 200 325 NA 75 150 225 325 250
Zhengzhou training 3,472 4,998 9,952 5,809 3,865 1,528 13,932 1,079 12,680 1,522 32,897 3,237 1,715

test 200 275 375 300 175 75 400 125 325 175 525 250 150

Chongqing training 4,218 459 3,269 6,227 7,596 NA 1,460 NA 4,302 2,749 15,899 54,377 9,910
test 150 25 150 400 350 NA 225 NA 225 1,475 350 225 675

Chengdu training 3,475 3,042 2,303 8,251 7,173 4,414 6,129 NA 4,780 3,021 2,244 8,799 4,826
test 150 225 200 375 275 250 225 NA 150 200 175 200 225

Nanning training NA 4,393 4,804 5,406 4,940 1,940 5,273 NA 18,818 1,942 4,014 5,310 10,038
test NA 250 200 275 225 50 250 NA 625 200 275 175 350

Shenyang training 6,705 6,622 5,053 6,977 7,715 7,382 6,111 NA 7,466 3,929 5,091 3,900 5,955

test 350 325 375 300 350 350 700 NA 650 225 510 300 625
Tianjin training 2,385 4,711 4,523 3,900 5,613 3,956 3,909 NA 5,138 2,514 4,547 6,647 5,034

test 200 225 250 200 250 200 425 NA 525 250 560 300 150
Jinan training 8,193 6,300 8,636 9,613 6,134 8,467 5,700 NA 5,078 8,382 8,727 6,731 9,766

test 225 375 350 350 275 350 75 NA 200 175 585 275 150
Yinchuan training 4,950 6,577 6,602 3,569 5,272 5,321 3,044 NA 559 50,680 31,438 4,204 7,898

test 275 350 275 175 250 275 75 NA 150 575 925 525 650
Taiyuan training 3,997 3,090 7,810 6,266 2,416 13,185 20,191 NA 18,801 1,027 13,647 3,315 2,977

test 250 175 175 175 125 275 175 NA 400 125 550 250 175

Hohhot training 5,710 7,681 7,396 2,465 5,298 3,863 9,134 NA 780 4,071 5,980 3,975 18,924
test 350 275 300 150 150 275 175 NA 225 200 225 125 125

Nanjing training 1,917 1,805 1,953 3,632 3,214 3,223 3,971 12,707 1,511 1,095 1,728 2,079 16,389
test 275 200 225 375 225 375 500 200 175 250 175 100 475

Kunming training 3,239 2,584 2,856 9,012 2,848 3,922 5,827 NA 52,115 4,755 12,652 15,737 3,000
test 200 200 175 425 200 150 375 NA 800 325 250 525 350

Xining training 3,398 5,187 8,112 1,260 914 NA 6,064 NA NA 1,510 1,642 434 2,547

test 175 225 275 75 50 NA 125 NA NA 50 75 50 50
Lhasa training 113 1,403 349 NA NA NA NA 246 NA 1,656 NA 3,938 1,553

test 25 75 25 NA NA NA NA 25 NA 100 NA 175 75
Urumqi training NA NA 1,855 3,394 6,077 NA 5,085 NA NA 191 NA 65,448 8,700

test NA NA 200 150 225 NA 175 NA NA 75 NA 1,125 350
Haikou training NA NA 733 2,220 1,909 486 1,395 NA 231 NA 348 152 875

test NA NA 200 175 125 125 50 NA 75 NA 50 50 200
Taipei training 1,567 1,444 1,564 NA NA NA NA NA 12,492 NA 325 NA 845

test 100 75 175 NA NA NA NA NA 275 NA 75 NA 100

(Continued)
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Table A2. (Continued).

City Sample LCZ 1 LCZ 2 LCZ3 LCZ4 LCZ5 LCZ6 LCZ8 LCZ10 LCZA LCZ B LCZD LCZF LCZG

Fuzhou training 2,212 1,786 2,408 5,332 2,387 2,312 4,083 1,535 1,217 718 3,358 5,133 10,645
test 175 175 225 175 200 300 225 75 225 225 175 250 425

Guiyang training 7,015 4,170 2,841 5,583 4,863 6,366 4,751 NA 3,911 5,032 4,362 3,717 5,595

test 325 225 225 175 250 125 250 NA 200 250 175 250 275
Shanghai training 1,823 3,384 4,070 10,813 6,882 7,060 5,455 10,720 2,775 1,969 11,467 1,513 6,405

test 100 250 250 500 250 250 300 75 200 225 250 150 150
Nanchang training 1,932 1,761 1,194 5,220 2,389 2,261 3,681 NA 544 2,033 353 2,669 1,265

test 125 225 225 225 200 250 250 NA 200 225 200 250 150
Xian training 3,495 3,485 9,408 13,770 5,455 2,609 8,069 NA 29,881 928 12,136 1,488 3,497

test 225 200 300 325 300 200 350 NA 600 175 550 175 225
Changchun training 2,868 4,320 5,005 9,117 10,166 6,588 13,618 NA 6,551 531 27,759 1,665 89,841

test 225 225 250 375 300 225 525 NA 300 125 1,050 225 250

Hefei training 2,212 1,786 2,408 5,332 2,387 2,312 4,083 1,535 1,217 718 3,358 5,133 10,645
test 225 275 225 425 300 250 375 150 325 225 325 225 575

Table A3. Confusion matrix of the LCZ-CNN model for all 32 major cities of China.

LCZ1 LCZ2 LCZ3 LCZ4 LCZ5 LCZ6 LCZ8 LCZ10 LCZA LCZB LCZD LCZF LCZG Total PA

LCZ1 4114 527 41 1314 177 15 57 0 5 24 8 38 30 6350 0.65
LCZ2 171 4849 493 222 793 115 127 29 0 64 0 12 0 6875 0.71

LCZ3 102 485 6903 116 189 73 383 37 4 20 45 18 0 8375 0.82
LCZ4 918 118 78 7150 438 177 98 34 10 41 52 79 32 9225 0.78

LCZ5 162 573 75 1059 5232 549 56 30 11 95 33 21 29 7925 0.66
LCZ6 55 82 149 225 568 5139 158 52 30 248 91 75 28 6900 0.74
LCZ8 130 94 392 100 114 85 8365 30 78 110 25 171 31 9725 0.86

LCZ10 86 62 42 56 73 11 21 469 0 0 2 3 0 825 0.57
LCZA 40 10 75 41 49 24 117 1 8891 331 71 16 9 9675 0.92

LCZB 54 23 58 190 201 267 104 17 357 5833 452 315 79 7950 0.73
LCZD 30 21 61 48 44 131 65 4 87 386 12006 438 109 13430 0.89

LCZF 58 33 132 58 45 99 180 67 19 253 336 6603 117 8000 0.83
LCZG 246 0 14 31 81 35 48 12 20 47 104 353 10134 11125 0.91
Total 6166 6877 8513 10610 8004 6720 9779 782 9512 7452 13225 8142 10598 OA 0.81

UA 0.67 0.71 0.81 0.67 0.65 0.76 0.86 0.60 0.93 0.78 0.91 0.81 0.96 Kappa 0.79

Table A4. Confusion matrix of WUDAPT (Spec) for all 32 major cities of China.

LCZ1 LCZ2 LCZ3 LCZ4 LCZ5 LCZ6 LCZ8 LCZ10 LCZA LCZB LCZD LCZF LCZG Total PA

LCZ1 3098 829 85 1587 319 50 159 21 26 33 14 67 62 6350 0.49
LCZ2 380 3811 719 460 979 111 155 47 0 75 59 67 12 6875 0.55
LCZ3 127 713 5975 262 231 261 576 42 27 29 41 91 0 8375 0.71

LCZ4 1110 180 222 5988 954 276 128 59 28 105 30 104 41 9225 0.65
LCZ5 225 643 253 1557 4217 625 161 25 14 71 92 17 25 7925 0.53

LCZ6 105 104 268 611 674 4069 254 51 13 373 223 143 12 6900 0.59
LCZ8 136 159 372 226 129 58 8131 100 116 58 56 173 11 9725 0.84

LCZ10 137 39 61 92 45 18 60 368 0 4 0 1 0 825 0.45
LCZA 26 47 126 52 55 84 154 0 8709 157 200 8 57 9675 0.90

LCZB 66 78 186 419 343 553 154 16 371 4463 951 293 57 7950 0.56
LCZD 22 26 170 58 33 249 50 20 133 280 10805 607 977 13430 0.80
LCZF 158 13 288 118 131 303 471 97 22 188 483 5201 527 8000 0.65

LCZG 99 12 17 69 181 165 74 6 102 30 181 183 10006 11125 0.90
Total 5689 6654 8742 11499 8291 6822 10527 852 9561 5866 13135 6955 11787 OA 0.70

UA 0.54 0.57 0.68 0.52 0.51 0.60 0.77 0.43 0.91 0.76 0.82 0.75 0.85 Kappa 0.68
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Table A5. Confusion matrix of WUDAPT (Spec+GLCM) for all 32 major cities of China.

LCZ1 LCZ2 LCZ3 LCZ4 LCZ5 LCZ6 LCZ8 LCZ10 LCZA LCZB LCZD LCZF LCZG Total PA

LCZ1 3246 770 50 1692 289 23 190 17 6 10 13 10 34 6350 0.51
LCZ2 269 4015 710 455 921 137 145 49 14 76 30 49 5 6875 0.58

LCZ3 95 610 6066 246 302 336 496 37 27 32 40 86 2 8375 0.72
LCZ4 1092 150 213 6369 760 231 114 31 3 113 27 89 33 9225 0.69

LCZ5 160 593 236 1476 4456 594 145 30 26 104 77 1 27 7925 0.56
LCZ6 67 115 180 634 666 4293 243 41 4 382 116 127 32 6900 0.62
LCZ8 116 123 316 188 95 72 8276 87 137 35 76 194 10 9725 0.85

LCZ10 68 88 50 164 19 5 41 383 0 4 1 2 0 825 0.46
LCZA 35 30 126 31 35 99 144 0 8679 174 194 41 87 9675 0.90

LCZB 48 53 161 343 276 564 180 31 431 4406 1092 293 72 7950 0.55
LCZD 23 33 125 100 71 233 59 0 116 363 10884 490 933 13430 0.81

LCZF 173 35 228 118 85 327 468 78 1 182 363 5470 472 8000 0.68
LCZG 73 6 38 99 156 184 57 0 155 82 168 166 9941 11125 0.89
Total 5465 6621 8499 11915 8131 7098 10558 784 9599 5963 13081 7018 11648 OA 0.72

UA 0.59 0.61 0.71 0.53 0.55 0.60 0.78 0.49 0.90 0.74 0.83 0.78 0.85 Kappa 0.69

Table A6. Confusion matrix of BoVW(Spec) for all 32 major cities of China.

LCZ1 LCZ2 LCZ3 LCZ4 LCZ5 LCZ6 LCZ8 LCZ10 LCZA LCZB LCZD LCZF LCZG Total PA

LCZ1 3279 744 152 1454 293 50 228 6 41 57 0 8 38 6350 0.52

LCZ2 379 3995 750 441 798 144 242 70 0 1 35 20 0 6875 0.58
LCZ3 77 588 5969 268 346 167 681 47 41 24 72 80 15 8375 0.71
LCZ4 988 264 135 6331 899 149 144 24 17 80 39 114 41 9225 0.69

LCZ5 102 873 208 1408 4490 439 163 17 9 82 123 10 1 7925 0.57
LCZ6 55 158 262 454 694 4391 255 42 63 175 211 112 28 6900 0.64

LCZ8 150 137 252 262 132 84 7983 60 135 52 147 303 28 9725 0.82
LCZ10 67 94 28 109 29 33 99 271 0 46 4 38 7 825 0.33

LCZA 25 11 73 34 48 119 106 0 8653 219 254 21 112 9675 0.89
LCZB 84 18 143 376 339 487 194 23 495 4133 1129 191 338 7950 0.52

LCZD 54 10 155 84 135 297 80 0 271 449 10707 556 632 13430 0.80
LCZF 182 30 367 123 148 256 717 52 35 260 531 4985 314 8000 0.62
LCZG 87 33 104 164 288 86 106 0 151 59 241 214 9592 11125 0.86

Total 5529 6955 8598 11508 8639 6702 10998 612 9911 5637 13493 6652 11146 OA 0.70
UA 0.59 0.57 0.69 0.55 0.52 0.66 0.73 0.44 0.87 0.73 0.79 0.75 0.86 Kappa 0.67

Table A7. Confusion matrix of BoVW (Spec+GLCM) for all 32 major cities of China.

LCZ1 LCZ2 LCZ3 LCZ4 LCZ5 LCZ6 LCZ8 LCZ10 LCZA LCZB LCZD LCZF LCZG Total PA

LCZ1 3296 771 146 1484 267 47 235 9 11 63 1 3 17 6350 0.52
LCZ2 397 3916 821 378 809 152 258 68 0 0 40 33 3 6875 0.57
LCZ3 79 563 6129 238 397 190 591 35 0 15 60 75 3 8375 0.73

LCZ4 907 236 131 6517 778 186 157 28 19 75 29 105 57 9225 0.71
LCZ5 95 824 198 1370 4682 436 147 15 7 91 51 9 0 7925 0.59

LCZ6 50 112 210 430 629 4446 316 49 63 169 186 213 27 6900 0.64
LCZ8 111 107 266 178 125 73 8294 47 98 74 113 215 24 9725 0.85

LCZ10 71 119 5 131 16 31 80 323 0 12 1 29 7 825 0.39
LCZA 1 15 50 52 29 102 56 0 8907 174 182 34 73 9675 0.92
LCZB 81 28 123 350 315 372 194 25 551 4364 984 132 431 7950 0.55

LCZD 49 28 91 121 89 267 103 0 223 518 10471 602 868 13430 0.78
LCZF 153 13 340 134 118 221 777 49 53 276 551 4999 316 8000 0.62

LCZG 82 40 116 223 265 79 118 0 91 194 181 86 9650 11125 0.87
Total 5372 6772 8626 11606 8519 6602 11326 648 10023 6025 12850 6535 11476 OA 0.71

UA 0.61 0.58 0.71 0.56 0.55 0.67 0.73 0.50 0.89 0.72 0.81 0.76 0.84 Kappa 0.69
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Table A8. Confusion matrix of MLP for all 32 major cities of China.

LCZ1 LCZ2 LCZ3 LCZ4 LCZ5 LCZ6 LCZ8 LCZ10 LCZA LCZB LCZD LCZF LCZG Total PA

LCZ1 3532 756 146 1254 395 54 86 15 0 26 0 11 75 6350 0.56
LCZ2 393 4211 650 404 818 105 207 26 1 37 11 12 0 6875 0.61

LCZ3 224 647 6224 210 235 145 465 29 7 44 5 140 0 8375 0.74
LCZ4 805 160 223 6166 1146 336 93 8 12 146 17 92 21 9225 0.67

LCZ5 169 573 285 1599 4450 557 70 5 32 149 21 7 8 7925 0.56
LCZ6 106 136 227 518 657 4437 205 31 49 280 83 160 11 6900 0.64
LCZ8 170 172 318 217 161 143 8084 42 64 92 23 204 35 9725 0.83

LCZ10 100 135 42 96 69 4 44 324 0 1 1 9 0 825 0.39
LCZA 56 27 64 51 60 89 109 2 8726 275 140 26 50 9675 0.90

LCZB 37 41 146 331 170 393 97 15 365 5328 675 288 64 7950 0.67
LCZD 4 10 150 75 87 135 70 0 134 563 11663 412 127 13430 0.87

LCZF 169 56 136 107 91 196 226 104 35 279 445 5996 160 8000 0.75
LCZG 124 21 28 111 351 45 57 6 66 145 114 229 9828 11125 0.88
Total 5889 6945 8639 11139 8690 6639 9813 607 9491 7365 13198 7586 10379 OA 0.74

UA 0.60 0.61 0.72 0.55 0.51 0.67 0.82 0.53 0.92 0.72 0.88 0.79 0.95 Kappa 0.72
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